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Abstract

In this paper, we propose a novel formula-
tion of the network clique detection problem
by introducing a general network data repre-
sentation framework. We show connections
between our formulation with a new algebraic
tool, namely Radon basis pursuit in homoge-
neous spaces. Such a connection allows us
to identify rigorous recovery conditions for
clique detection problems. Practical approx-
imation algorithms are also developed for
solving empirical problems and their useful-
ness is demonstrated on real-world datasets.
Our work connects two seemingly different
areas: network data analysis and compressed
sensing, which helps to bridge the gap be-
tween the research of network data and the
classical theory of statistical learning and sig-
nal processing.

1 Introduction

In the past decade, the research of network data has
increased dramatically. Examples include scientific
studies involving web data or hyper text documents
connected via hyperlinks, social networks or user pro-
files connected via friend links, co-authorship and ci-
tation network connected by collaboration or citation
relationships, gene or protein networks connected by
regulatory relationships, and much more. Due to the
increasing importance of network data, principled an-
alytical and modeling tools are crucially needed.

Towards this goal, researchers from the network model-
ing community have proposed many models to explore
and predict the network data. These models roughly
fall into two categories: static (there is only one single
snapshot of the network) and dynamic models (there
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are many snapshots of the network indexed by differ-
ent time points). Examples include the Erdös-Rényi-
Gilbert random graph model [10, 11], latent space
model [14], stochastic blockmodel [2, 27], the prefer-
ential attachment model [1], and dynamic latent space
model [24]. A comprehensive review of these models
is provided in [12].

In network data analysis, the problem of identifying
communities [17] or cliques1 based on partial infor-
mation arises frequently in a variety of applications,
including identity management [13], statistical rank-
ing [9, 15], and in particular, social networks [19]. In
these applications we are typically given a network
with the nodes representing players, items, or charac-
ters, and edge weights summarizing the observed pair-
wise interactions. The basic problem is to determine
communities or cliques within the network by observ-
ing the frequencies of low order interactions, since in
reality such low order interactions are often governed
by a considerably smaller number of high order com-
munities or cliques. In this sense we could formulate
our problem as an inverse problem in networks, where
one tries to infer a sparse signal over communities by
sensing low order interactions. In particular, we cast
our problem as a compressed sensing problem. Com-
pressed sensing, also known as compressive sensing and
compressive sampling, is a technique for finding sparse
solutions to underdetermined linear systems. In statis-
tical machine learning, it is related to reconstructing a
signal which has a sparse representation in a large dic-
tionary. The field of compressed sensing has existed
for decades, but recently it has exploded due to the
important contributions of [4, 5, 6, 26]. Before rigor-
ously formulating the problem, we provide a concrete
illustrative example.

Motivating Example: Detecting communities in so-
cial networks is of extraordinary importance. It can
be used to understand the organization or collabora-
tion structure of a social network. However, we do
not have direct mechanisms to sense social communi-
ties. Instead, we have partial, low order interaction
information. For example, imagine we have a small

1A clique means a complete subgraph of the network.
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social network of four people — Alice, Bob, Cathy,
and David. Suppose Alice, Bob, Cathy took the same
class, and they co-appear in the same classrooms three
times per week; Bob, Cathy, and David are gymnastic
buddies, they hang out to gym twice per week. Thus,
we will observe that pairwise co-appearances of Alice
and Bob are three times per week, while pairwise co-
appearances of Bob and Cathy are five times per week,
etc. With all such pairwise co-appearance data among
people available, we hope to detect the two social com-
munities in the network. 2

Such a network community detection problem has
been intensively studied in the social network litera-
ture. However, we note that there is no consistent def-
inition of a “community” across different literature.
Most methods detect community based on network
node partitioning. Among them, the most famous one
is based on the modularity of a partition of the nodes in
a group [22] . A shortcoming of partition-based meth-
ods is that they do not allow overlapping communities,
which occur frequently in practice. Recently there
have been growing interests in studying overlapping
community structures [18]. Moreover, we note that
many real-world applications also try to support the
feature of overlapping communities, such as Google+,
where an user can group his friends into different over-
lapping communities (friends, family, acquaintances,
and so on). The relevance of cliques to overlapping
communities was probably first addressed in the clique
percolation method [23]. They model communities as
maximal connected components of cliques in a graph
where two k-cliques are said to be connected if they
share k − 1 nodes.

In this paper, we use the same definition as in [23] but
are more interested in identifying cliques. We pursue
an alternative approach on exploring networks based
on clique information which potentially sheds light on
multiple aspects of community structures. Roughly
speaking, we assume that each low order subset is as-
sociated with a frequency. As shown in our motivating
example, the pair “Alice and Bob” co-appear “three
times per week”, the pair “Bob and Cathy” co-appear
“five times per week”, and etc. We also assume that
there are latent frequencies associated with high order
subsets which we hope to infer. For example, the com-
munity “Alice, Bob, and Cathy” have classes “three
times per week”, while the community “Bob, Cathy,
and David” go to gyms “twice per week”. Clearly, the
interaction frequency of a particular low order subset
should be the sum of frequencies of high order subsets

2Low order interaction data can be accessed easily, and
they can be maintained with moderate storage. In some
cases, data do appear only in the form of low order inter-
actions, e.g., who visited whose personal page, and etc.

which it belongs to. Hence we consider a generative
mechanism in which there exists a linear mapping from
frequencies on high order subsets (usually sparsely dis-
tributed) to low order subsets. One typically can col-
lect data on low order subsets while the task is to find
those few dominant high order subsets.

2 Main Idea

In this section, we introduce a general network data
representation framework, which facilitate the formu-
lation of the clique detection problem.

We represent a network as a graph G = (V,E), where
V = {1, . . . , n} is the set of nodes and E ⊂ V ×V is the
set of edges. Let B ∈ R

n×n be the adjacency matrix of
the observed network whose element B(i, j) ∈ R repre-
sents a quantity associated with nodes i and j. Entries
in the matrix B may indicate the co-appearance fre-
quency of the pair i and j. As a bivariate function
B : V × V → R, we consider the following representa-
tion

B(i, j) =
∑

k

ckφk(i, j) + z. (1)

In our framework, we assume that (1) has a sparse
representation with respect to a dictionary A =
[φ1, . . . , φN ] where each φk : V × V → R is a basis
function, i.e., there exists a subset S ⊂ {1, . . . , N}
with cardinality |S| ≪ N , such that ck = 0 for k 6∈ S.
Here, z represents noise, and N may be infinitely
large. We can view φk as evaluating a possibly infinite-
dimensional function on a discrete set V ×V , thus the
model (1) is intrinsically nonparametric and can model
any static networks.

To address the clique detection problem, we focus on a
specific design of the basis dictionary A in this paper.
In such a dictionary, each basis can be interpreted as
a clique, which is a complete subgraph of G and with
a set of nodes K ⊂ V . We let φK be the adjacency
matrix of a clique with nodes K, i.e. φK(i, j) = 1 if
i, j ∈ K, i 6= j and 0 otherwise. Such a basis function
leads to the clique detection problem studied in this
paper.

In the sequel, without loss of generality, we assume
that B is symmetric: B = BT and diag(B) = 0.
With these assumptions, to model B we only need to
model its upper-triangle. For notational simplicity, we
squeeze B into a vector b ∈ R

M where M = n(n−1)/2
is the number of upper-triangle elements in B. In this
case each basis function becomes a vector φk ∈ R

M

and A becomes a M -by-N matrix. We denote by Apq

the element on the p-th row and q-th column of A.
Here p indexes a pair of different nodes and q indexes
a basis φq.
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Given the dictionary A, we can recover the sparse
representation in (1), by reconstructing x =
(x1, . . . , xN )T from the following problem

(P0) min ‖x‖0 s.t. ‖b−Ax‖z ≤ δ (2)

where ‖ · ‖z is a vector norm constructed using the
knowledge of z. The problem in (2) is non-convex. In
the sparse learning literature, a convex relaxation of
(2) can be written as

(P1) min ‖x‖1 s.t. ‖b−Ax‖z ≤ δ. (3)

In both optimization problems, entries in x represent
unknown frequencies associated with high order sub-
sets, while entries in b represent observed frequencies
associated with low order subsets. The matrix A can
thus be interpreted as an operator that can linearly
map frequencies on high order subsets to low order
subsets.

Now, we see that the network clique detection prob-
lem fit nicely into the general framework (1). In such a
generative model where the observed adjacency matrix
is assumed to have a sparse representation in a large
dictionary where each basis corresponds to a clique,
we connect our framework with a new algebraic tool,
namely Radon basis pursuit in homogeneous spaces.
Our problem can be regarded as an extension of the
work in [15] which studies sparse recovery of functions
on permutation groups, while we reconstruct functions
on k-sets (cliques), which are often called the homo-
geneous spaces associated with permutation groups in
the literature [9]. It turns out that the discrete Radon
basis becomes the natural choice instead of the Fourier
basis considered in [15]. Unfortunately, the greedy al-
gorithm for exact recovery in [15] cannot be applied to
noisy settings, and in general the Radon basis does
not satisfy the Restricted Isometry Property (RIP)
[4] which is crucial for the universal recovery in com-
pressed sensing. All of these leave us new challenges
on addressing the noiseless exact recovery and stable
recovery with noise. In this paper, we develop new
theories and algorithms which guarantee exact, sparse,
and stable recovery under the choice of Radon basis.
These theories have deep roots in Basis Pursuit [7]
and its extensions with uniformly bounded noise. We
also provide practical algorithms on the clique recovery
problem to illustrate the usefulness of our framework.

3 Clique Detection with Radon Basis

Pursuit

Under the general framework in (1), we formulate the
clique detection problem into a compressed sensing
problem (3) named Radon Basis Pursuit. For this,
we construct the dictionary A so that each column of

A corresponds to one clique. The intuition of such a
construction is that we assume there are several hid-
den cliques within the network, which are perhaps of
different sizes and may have overlaps. Every clique
has certain weights and the observed adjacency ma-
trix B (or equivalently, the vectorized upper-triangle
part of b) is a linear combination of many clique basis
contaminated by the noise vector z.

For simplicity, we first restrict ourselves to the case
that all the cliques are of the same size k < n. The
case with mixed sizes will be discussed later. Let
C1, C2, . . . , CN be all the cliques of size k and each
Cj ⊂ V . We have N =

(
n
k

)
. For each q ∈ {1, . . . , N},

we construct the dictionary A as the following:

Apq =

{
1 if the p-th pair of nodes both lie in Cq

0 otherwise.

The matrix A constructed here is related to discrete
Radon transforms on homogeneous space. In fact, up
to a constant and column scaling, the transpose ma-
trix A∗ is called the discrete Radon transform for two
suitably defined homogeneous spaces [9]. Our usage
here is to exploit the transpose matrix of the Radon
transform to construct an over-complete dictionary, so
that the observation b has a sparse representation with
respect to it. Due to the limited space of this paper,
we leave out the technical discussions of the Radon
transformations.

The above formulation can be generalized to the case
where b is a vector of length

(
n
j

)
(j ≥ 2) with the p’th

entry in b characterizing a quantity associated with
a j-set. The dictionary A will then be changed to a
binary matrix Rj,k with entries indicating whether a
j-subset is a subset of a k-clique, i.e.,

Rj,k
pq =

{
1 if the p-th subset of nodes all lie in Cq

0 otherwise.

Therefore, the case where b is the vector of length
(
n
2

)

corresponds to a special case where A = R2,k. Our
algorithms and theory hold for general Rj,k with j < k.

Now we provide two concrete reconstruction programs
for the clique identification problems:

(P1) min ‖x‖1 s.t. b = Ax

(P1,δ) min ‖x‖1 s.t. ‖Ax− b‖∞ ≤ δ.

P1 is known as Basis Pursuit [7] where we consider
an ideal case that the noise level is zero. For ro-
bust reconstruction against noise, we consider the re-
laxed program P1,δ. The program in P1,δ differs from
the Dantzig selector [6] which uses the constraint that
‖A∗(Ax− b)‖∞ ≤ δ. The reason for our choice of P1,δ
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lies in the fact that a more natural noise model for
network data is bounded noise rather than Gaussian
noise. Moreover, our linear programming formulation
of P1,δ enables practical computation for large scale
problems.

4 Mathematical Theory

One advantage of our new framework to represent net-
work data is that it enables rigorous theoretical anal-
ysis of the corresponding convex programs.

4.1 Failure of Universal Recovery

Recently it was shown by [5] and [4] that P1 has a
unique sparse solution x0, if the matrix A satisfies the
Restricted Isometry Property (RIP), i.e. for every sub-
set of columns T ⊂ {1, . . . , N} with |T | ≤ s, there ex-
ists a certain universal constant δs ∈ [0,

√
2 − 1) such

that

(1− δs)‖x‖22 ≤ ‖ATx‖22 ≤ (1 + δs)‖x‖22, ∀x ∈ R
|T |,

where AT is the sub-matrix of A with columns indexed
by T . Then exact recovery holds for all s-sparse signals
x0, whence called the universal recovery.

Unfortunately, in our construction of the basis matrix
A, RIP is not satisfied unless for very small s. We
have the following theorem regarding to the failure of
universal recovery in our case.

Theorem 1. Let A = Rj,k with j < k. Unless s <(
k+j+1

k

)
, there does not exist a δs < 1 such that the

inequalities

(1− δs)‖x‖22 ≤ ‖ATx‖22 ≤ (1 + δs)‖x‖22, ∀x ∈ R
|T |

hold universally for every T ⊂ {1, . . . , N} with |T | ≤ s.

Note that
(
k+j+1

k

)
does not depend on the network size

n, which will be problematic. We can only recover a
constant number of cliques no matter how large the
network is! The main problem for such a negative re-
sult is that the RIP tries to guarantee exact recovery
for arbitrary signals with a sparse representation in
A. Instead of studying such “universal” conditions, In
this paper we seek conditions that secure exact recov-
ery of a collection of sparse signals x0, whose sparsity
pattern satisfies certain conditions more appropriate
to our setting. Such conditions could be more natural
in reality, which will be shown in the sequel as simply
requiring bounded overlaps between cliques.

4.2 Exact Recovery Conditions

Here we present our exact recovery conditions for x0

from the observed data b by solving the linear program

P1. Suppose A is anM -by-N matrix and x0 is a sparse
signal. Let T = supp(x0), T

c be the complement of
T , and AT (or AT c) be the submatrix of A where we
only extract column set T (or T c, respectively). The
following proposition from [5] characterizes the condi-
tions that P1 has a unique condition.

Proposition 1. Let x0 = (x01, . . . , x0N )T , we assume
that A∗

TAT is invertible and there exists a vector w ∈
RM such that:

1. 〈Ai, w〉 = sign(x0i), ∀i ∈ T ;

2. | 〈Aj , w〉 | < 1, ∀j ∈ T c.

Then x0 is the unique solution for P1.

In other words, the theorem simply points out the nec-
essary and sufficient condition that in the noise-free
case P1 exactly recover the sparse signal x0. The ne-
cessity comes from the KKT condition in convex opti-
mization theory [5]. However this condition is difficult
to check due to the presence of w. If we further assume
that w lies in the column span of AT , the condition in
Proposition 1 reduces to the following condition.

Irrepresentable Condition (IRR) The ma-
trix A satisfies the IRR condition with respect
to T = supp(x0), if A∗

TAT is invertible and
‖A∗

T cAT (A
∗
TAT )

−1‖∞ < 1, where ‖ · ‖∞ stands for
the matrix ∞-norm, i.e., ‖A‖∞ := maxj

∑
i |Aij |.

Intuitively, the IRR condition requires that, for the
true sparsity pattern x0, the relevant bases AT is not
highly correlated with irrelevant bases Ac

T . Note that
this condition only depends on A and x0, which is
easier to check. The assumption that w lies in the
column span of AT is mild; it is actually a necessary
condition so that x0 can be reconstructed by Lasso [25]
or Dantzig selector [6], even under Gaussian-like noise
assumptions [29, 30].

4.3 Detecting Cliques of Equal Size

In this section, we present sufficient conditions of IRR
which can be easily verified. We consider the case that
A = Rj,k with j < k. Given data b about all j-subsets,
we want to infer important k-cliques. Suppose x0 is a
sparse signal on all k-cliques. We have the following
worst-case theorem, which follows from Lemma 1.

Theorem 2. Let T = supp(x0), if we enforce the
overlaps among k-cliques in T to be no larger than
r, then r ≤ j − 2 guarantees the IRR condition.

Lemma 1. Let T = supp(x0) and j ≥ 2. Suppose for
any σ1, σ2 ∈ T , the two cliques corresponding to σ1

and σ2 have overlaps no larger than r, we have

1. If r = j − 2, then ‖A∗
T cAT (A

∗
TAT )

−1‖∞ < 1;
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2. If r = j − 1, then ‖A∗
T cAT (A

∗
TAT )

−1‖∞ ≤ 1 where
equality holds with certain examples;

3. If r = j, there are counter examples such that
‖A∗

T cAT (A
∗
TAT )

−1‖∞ > 1.

The proof of Lemma 1 is based on combinatorial ar-
guments. Theorem 2 provides a sufficient condition
on allowed clique overlaps which guarantees the IRR
Condition. Clique overlaps no larger than j − 2 is suf-
ficient to guarantee the exact sparse recovery by P1,
while larger overlaps may violate the IRR Condition.
This theorem is based on a worst-case analysis. In the
following, we construct explicitly conditions which al-
low large overlaps while the IRR still holds, as long
as such heavy overlaps do not occur too often among
the cliques in T . The existance of a partition of T
in the next theorem is a reasonable assumption in the
network settings where network hierarchies exist.

Theorem 3. Assume (k + 1)/2 ≤ j < k, let T =
supp(x0). Suppose there exists a partition T = T1 ∪
T2 ∪ · · · ∪ Tm with each Ti satisfies |Ti| ≤ K, such
that for any σi, σj belong to the same partition, |σi ∩
σj | ≤ r; for any σi, σj belong to different partitions,

|σi∩σj | ≤ 2j−k−1, If K satisfies (K−1)
(
r
j

)
/
(
k
j

)
< 1/4

and
((

k−1
j

)
+ (K − 1)

(
(k+r)/2

j

))
/
(
k
j

)
≤ 3/4, then IRR

holds.

The basis matrix A = Rj,k have
(
n
k

)
bases, which is not

polynomial with respect to k. As we will see from later
sections, a practical implementation of the Radon ba-
sis pursuit for the clique detection problem works on a
subset of bases among all

(
n
k

)
bases. In that case, we

are actually solving P1 and P1,δ with the basis matrix
Ā, which is only a submatrix of A with a subset of col-
umn bases extracted. We have the following theorem
regarding this scenario.

Theorem 4. Denote the set of all cliques for columns
in Ā by S. Assume any two k-cliques in S = T ∪ T c

have intersections at most r, i.e. ∀σi, σj ∈ S, |σi ∩
σj | ≤ r, where T = supp(x0) ⊂ S, and T c is the
complement of T with respect to S. Then IRR holds if

r ≤ k/
(
|T |(1 +

√
|T |)

)1/j

.

In summary, IRR is sufficient and almost necessary
to guarantee exact recovery. Generally, the intuition
behind the IRR is that overlaps among cliques must
be small. In some cases, we can have large overlaps
among the cliques, provided that they do not occur
too often. In the next subsection, we show that IRR is
also sufficient to guarantee stable recovery with noises.

4.4 Stable Recovery Theorems

In applications, one always encounters examples with
noise such that exact sparse recovery is impossible. In
this setting, P1,δ will be a good replacement of P1 as a
robust reconstruction program. Here we present stable
recovery theorem of P1,δ with bounded noise.

Theorem 5. Under the general framework (1), we
assume that ‖z‖∞ ≤ ǫ, |T | = s, and the IRR holds with
‖A∗

T cAT (A
∗
TAT )

−1‖∞ ≤ α ≤ 1/s. Then the following
error bound holds for any solution x̂δ of P1,δ,

‖x̂δ − x0‖1 ≤
2s(ǫ+ δ)

(1− αs)
‖AT (A

∗
TAT )

−1‖1. (4)

In the special case where k = j + 1, we have:

Corollary 1. Let k = j + 1, |T | = s, and for any
σ1, σ2 ∈ T , the two cliques corresponding to σ1 and
σ2 have overlaps no larger than j − 2. Then we have
‖A∗

T cAT (A
∗
TAT )

−1‖∞ ≤ 1/(j + 1), and thus the fol-
lowing error bound for solution x̂δ of P1,δ holds:

‖x̂δ − x0‖1 ≤
2s(ǫ+ δ)

(j + 1− s)
(j + 1)3/2, s < j + 1.

4.5 Identifying Cliques with Mixed Sizes

In general settings, we need to identify high order
cliques of mixed sizes, i.e., cliques of sizes k1, k2, · · · , kl
(k1 < k2 < · · · < kl), based on the observed data b on
all j-subsets. One way to construct the basis matrix
A is by concatenating Rj,k with different k’s satisfying
k > j. We can then solve P1 and P1,δ for exact recov-
ery and stable recovery with this newly concatenated
basis matrix A. We have the following theorem:

Theorem 6. Suppose x0 is a sparse signal on cliques
of sizes k1, k2, · · · , kℓ(j ≤ k1 < k2 < · · · < kℓ ≤ k) and
b = Ax0. Let T = supp(x0).

1. If the cliques in T have no overlaps, then they can
be identified by P1.

2. If the data b = Ax0 + z is contaminated by the
noise z, P1,δ provides an estimate of x0 for which the
inequality in (4) still holds.

The above theorem provides us a sufficient condition
to guarantee exact sparse recovery with concatenated
bases and the stable recovery theory is also established.

5 Computational Algorithm

In practical applications, we often have pairwise inter-
action data in a network with n nodes and we wish to
infer high order cliques up to size k. Directly con-
structing A by concatenating Radon basis matrices
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Rj,j , Rj,j+1 . . . , Rj,k and solving P1,δ would incur ex-
ponential complexity since A has exponentially many
columns with respect to k. This would be intractable
for inferring high order cliques in large networks. In
this section, we describe a polynomial time (with re-
spect to both n and k) approximation algorithm for
solving P1,δ. Recall that the primal and dual programs
P1,δ and D1,δ are3:

(P1,δ) min ‖x‖1 s.t. ‖Ax− b‖∞ ≤ δ

(D1,δ) max−δ‖γ‖1 − b∗γ s.t. ‖A∗γ‖∞ ≤ 1.

The key of our algorithm is that we use a polynomial
number variables and constraints to approximate both
programs, yielding an approximate solution for P1,δ.
More precisely, we apply a sequential primal-dual in-
terior point method to solve the relaxed programs:

(P1,δ,T) min ‖x‖1 s.t. ‖ATx− b‖∞ ≤ δ

(D1,δ,T) max−δ‖γ‖1 − b∗γ s.t. ‖A∗
T γ‖∞ ≤ 1.

Here AT is a submatrix of A where we extract a sub-
set of columns T . We approximate the solution to the
original programs by solving the above relaxed pro-
grams where we use polynomially many columns in-
dexed by T . In particular, we want to find an interior
point γ for D1,δ,T which is also feasible for D1,δ. With
this γ available, we can use duality gaps to check con-
vergence because the current dual objective provides a
lower bound for D1,δ and any interior point for P1,δ,T

provides an upper bound for P1,δ.

Let Ai be the i-th column of A. We need to sequen-
tially update the column set T . When we have a solu-
tion γ (which is called the approximate analytic cen-
ter) for the relaxed program D1,δ,T , we need to find a
new column Ai (i ∈ T c) which is not feasible in D1,δ,T .
By incorporate Ai into T , the feasible region of D1,δ,T

is reduced to better approximate that of D1,δ. When
the current solution γ has no violated constraint, i.e.,
γ is feasible for D1,δ, we use interior point methods to
find a series of interior points which converge to the
solution of D1,δ,T . However, we may obtain a new in-
terior point γ which is not feasible for D1,δ. We then
need to go back and add violated constraints. A formal
description is provided in Algorithm 1.

In Algorithm 1, the first IF statement involves a prob-
lem of finding a violated dual constraint for the cur-
rent relaxed program. In the special case where γ are
dual variables associated with edges, the problem be-
comes the maximum edge weight clique problem, which
is known to be NP-hard. We use a simple greedy
heuristic algorithm, which iteratively adds new nodes
in order to maximize summation of edge weights to

3the proof that D1,δ is the dual of P1,δ trivially follows
from the KKT conditions

Algorithm 1 Cutting Plane Method for Solving P1,δ

Initialize A = I, x = b, γ = (1, 1, · · · , 1)t.
while TRUE do

if ∃ |A∗
i γ| > 1 where i ∈ T c then

T ← T ∪ {i}, formulate new D1,δ,T and P1,δ,T .
Find new interior points γ and x for D1,δ,T and
P1,δ,T respectively.

else if the duality gap is small then
get the dual solution x̂ and stop.

else
find a new interior point γ for D1,δ,T , which
optimizes the dual objective.

end if
end while

solve this problem [20], which runs in O(nk2) time and
can return a 0.94-approximate solution in the average
case. Note that, if γ is feasible for the dual relax-
ation problem with no additional violated constraints,
then 0.94γ must be feasible for D1,δ whose objective is
discounted by 0.94. Thus, we will terminate with an
0.94-approximate solution.

Let η be the threshold to check the duality gap. Algo-
rithm 1 can also be understood as the column genera-
tion method [8], since adding a new inequality con-
straint in the dual program adds a variable to the
primal program and thus adds a column to the ba-
sis matrix. For more details of the algorithm, see [21]
and [28]. Theoretically, if one is able to find a violated
constraint in constant time and uses interior point
methods to locate approximate centers of the primal-
dual feasible regions, then Algorithm 1 has computa-
tional complexity O(M/η2), where M is the number
of dual variables [21, 28]. In our case, M ≍ O(n2) and
find a violated constraint has complexity O(nk2), thus
algorithm 1 has complexity O(n3k2/η2).

Finally, we note that other iterative algorithms, e.g.,
Bregman iterations, which have guaranteed conver-
gence rates [3] can be used to find solutions of linear
program relaxations in our algorithms. We also note
that, in practice, we never need to explicitly construct
the matrix A because there are many combinatorial
structures within the basis matrix to exploit. For ex-
ample, evaluating inner products between the bases
can be efficiently estimated by directly comparing two
sets.

6 Experimental Results

In this section, we demonstrate two examples of iden-
tifying communities in social networks. We compare
our approach with the state-of-the-art clique percola-
tion method. In these examples, we use the clique
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Cliques Names of Characters Relationships Percolation Radon Basis

{1, 2, 3} {Myriel, Mlle Baptistine, Mme Magloire} Friendship N N
{4, 13, 14} {Valjean, Mme Thenardier, Thenardier} Dramatic Conflicts N Y
{4, 15, 22} {Valjean, Cosette, Marius} Dramatic Conflicts N Y
{20, 21, 22} {Gillenormand, Mlle Gillenormand, Marius} Kinship N Y
{5, 6, 7, 8} {Tholomyes, Listolier, Fameuil, Blacheville} Friendship Y Y
{9, 10, 11, 12} {Favourite, Dahlia, Zephine, Fantine} Friendship Y Y
{14, 31, 32, 33} {Thenardier, Gueulemer, Babet, Claquesous} Street Gang N Y

Figure 1: Les Misérables social network. (a) Social network of characters in Les Misérables; (b) Spectral
clustering result; (c) The identified 3-cliques; (d) The identified 4-cliques. The table summarizes the ground
truth community of all the nodes.

volume and conductance, which arguably are the sim-
plest evaluation criteria of clustering quality, to evalu-
ate different algorithms. The clique volume is the sum
of edge weights inside the clique, while the clique con-
ductance is the ratio between the number of weights
leaving the clique and the clique volume [19]. Let B be
the adjacency matrix of a network. The conductance

φ(S) of a set of nodes S is φ(S) =
∑

{(i,j):i∈S,j/∈S} Bij

min(Vol(S),Vol(V \S))

and volume is Vol(S) =
∑

{i,j∈S} Bij .

6.1 The Social Network of Les Misèrables

We consider the social network of 33 characters in Vic-
tor Hugo’s novel Les Misèrables [16]. We represent this
social network using a weighted graph (Figure 1-(a)).
The edge weights are the co-appearance frequencies
of the two corresponding characters. Figure 1-Table
illustrates several social communities formed by rela-
tionships including friendships, street gangs, kinships,
etc. The underlying social community, regarded as
the ground truth for the data, is summarized in Fig-
ure 1-(a) where several social communities arise. Fig-
ure 1-(b) shows the spectral clustering result in which
the first three red cuts are reasonable while the next
three blue cuts destroyed a lot of community structures
within the network.

We compare our method with the clique percolation
method, 23 and 19 cliques were identified respec-
tively where our approach can identify more meaning-
ful cliques – see Figure 1-Table where we verified the
ground truth from the novel. For example, our method

can correctly identify two separate cliques {4, 15, 22}
and {20, 21, 22}, while the clique percolation method
is treating {4, 15, 20, 21, 22} as a single clique. The in-
teraction frequencies among those characters, however,
show that there are relatively smaller cross-community
interactions, thus those two 3-cliques should be sepa-
rated. Figure 1-(c) and (d) depict important 3 and 4
cliques identified by our algorithm. The sparsity pat-
terns of those cliques satisfy the irrepresentable con-
dition where overlaps between them are generally not
large. However, they do not necessarily satisfy the con-
dition in Lemma 1 which is based on a worst-case anal-
ysis. In Figure 2-(a-d), we also compare both meth-
ods in terms of clique conductances and volumes and
see that cliques identified by Radon basis pursuit have
slightly lower conductances and larger volumes, which
demonstrates advantages of our approach.

In summary, our method obtains more abundant so-
cial structure information than the competing tech-
niques. We also obtain social communities with over-
laps which is impossible for clustering methods. We
note that some simple schemes will not work well. For
example, one may think of scoring each large clique
by the mean scores of the included small cliques. In
this example, since two or three key characters appear
very frequently, we will end up with finding that the
top high order cliques always contain them. In fact,
among the top ten 3-cliques, seven of them contain
node 4 and six of them contain node 15, which does
not give us good results.
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Figure 2: Les Misérables social network and coauthorship network: Box plot of clique conductances and volumes
for our approach and the clique percolation method. Cliques identified by our approach have smaller conductances
and larger volumes.

6.2 Coauthorships in Network Science

We also studied a larger coauthorship network where
there is a total of 1589 scientists who come from a
broad variety of fields. There are 136 and 166 cliques
identified by our approach and the clique percolation
method. In Figure 2-(e-h), we evaluate these two
methods in terms of clique conductances and volumes.
We see that the cliques identified by Radon basis pur-
suit have smaller conductances and comparable clique
volumes than the clique percolation method. Our ap-
proach scales very well. In this example, it can identify
the cliques up to size 9 in 564 seconds.

Finally, we note that clustering techniques, e.g., spec-
tral clustering which does not allow overlaps, can-
not provide abundant social community information.
When we ran the bipartite spectral clustering on the
data, many community structures were destroyed. An-
other alternative approach might be to simply score
each large clique by the mean scores of the included
small cliques. However, this approach is not robust
with respect to super-nodes (those with many edges
with large weights). Such nodes will incorrectly gen-
erate many high order cliques with large scores.

7 Conclusions

We studied the network clique detection problem in
this paper by introducing a new network data repre-
sentation framework. Such a novel framework allows

us to explore and analyze network data guided by more
rigorous theory coming from the compressed sensing
literature. Instead of providing just another heuristic
method, we aim at contributing at the foundational
level to network data analysis. We hope that our work
could build a bridge connecting the research commu-
nities of network modeling and compressed sensing, so
that research results and tools from one area could be
ported to another one to create more exciting results.

Acknowledgements

The authors would like to thank Zongming Ma, Minyu
Peng, Michael Saunders, Yinyu Ye, and the anony-
mous reviewers for very helpful dicussions and com-
ments. Thanks also to Kyle Heath, Qixing Huang, and
Fan Wang for reading this paper and giving their valu-
able feedback. Xiaoye Jiang and Leonidas Guibas wish
to acknowledge the support of ARO grants W911NF-
10-1-0037 and W911NF-07-2-0027, as well as NSF
grant CCF 1011228 and a gift from the Google Corpo-
ration. Yuan Yao acknowledges supports from the Na-
tional Basic Research Program of China (973 Program
2011CB809105, 2012CB825501), NSFC (61071157),
Microsoft Research Asia, and a professorship in the
Hundred Talents Program at Peking University. Han
Liu is thankful for the support of NSF grant IIS-
1116730 and a faculty supporting package from Johns
Hopkins University.



Xiaoye Jiang, Yuan Yao, Han Liu, Leonidas Guibas

References

[1] A. L. Barabasi and R. Albert. Emergence of scaling
in random networks. Science, 286(5439):509–512, Oc-
tober 1999.

[2] P. J. Bickel and A. Chen. A nonparametric view of
network models and newmangirvan and other modu-
larities. Proceedings of National Academy of Sciences
of the United States of America, 106(50):21068–21073,
December 2009.

[3] J. Cai, S. Osher, and Z. Shen. Linearized bregman it-
erations for compressed sensing. Mathematics of Com-
putation, 78(267):1515–1536, 2009.

[4] E. J. Candès. The restricted isometry property and its
implications for compressed sensing. Comptes Rendus
de l’Académie des Sciences, Paris, Série I, 346:589–
592, 2008.

[5] E. J. Candès and T. Tao. Decoding by linear pro-
gramming. IEEE Transaction on Information Theory,
51:4203–4215, 2005.

[6] E. J. Candès and T. Tao. The dantzig selector: statis-
tical estimation when p is much larger than n. Annals
of Statistics, 35(6):2313–2351, 2007.

[7] S. Chen, D. L. Donoho, and M. A. Saunders. Atomic
decomposition by basis pursuit. SIAM Journal on Sci-
entific Computing, 20:33–61, 1999.

[8] G. Dantzig and P. Wolfe. Decomposition principle
for linear programs. Operations Research, 8:101–111,
1960.

[9] P. Diaconis. Group Representations in Probability and
Statistics. Institute of Mathematical Statistics, 1988.
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