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Online Learning as Stochastic Approximation of
Regularization Paths: Optimality and

Almost-Sure Convergence
Pierre Tarrès and Yuan Yao

Abstract— In this paper, an online learning algorithm is
proposed as sequential stochastic approximation of a regulariza-
tion path converging to the regression function in reproducing
kernel Hilbert spaces (RKHSs). We show that it is possible
to produce the best known strong (RKHS norm) convergence
rate of batch learning, through a careful choice of the gain
or step size sequences, depending on regularity assumptions on
the regression function. The corresponding weak (mean square
distance) convergence rate is optimal in the sense that it reaches
the minimax and individual lower rates in this paper. In both
cases, we deduce almost sure convergence, using Bernstein-type
inequalities for martingales in Hilbert spaces. To achieve this,
we develop a bias-variance decomposition similar to the batch
learning setting; the bias consists in the approximation and drift
errors along the regularization path, which display the same rates
of convergence, and the variance arises from the sample error
analyzed as a (reverse) martingale difference sequence. The rates
above are obtained by an optimal tradeoff between the bias and
the variance.

Index Terms— Online learning, stochastic approximations,
regularization path, reproducing kernel Hilbert space.

I. INTRODUCTION

CONSIDER the following classical problem of learning
from examples: given a sequence of i.i.d. random exam-

ples (zt = (xt , yt ))t∈N drawn from a probability measure ρ
on X × Y , one seeks to approximate from some hypothesis
space H the regression function

fρ(x) :=
∫
Y

ydρY |x ,

i.e. the conditional expectation of y given x . Recall that fρ
minimizes the following mean square error

E ( f ) =
∫
X ×Y

( f (x) − y)2dρ. (1)
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In the latter half of the last century till now, we have seen
a large volume of literature on exploring the hypothesis space
H as a reproducing kernel Hilbert space (RKHS) HK for
some positive semi-definite kernel K [2], [5], [22], [26], [33].
RKHS provides us a unified framework for nonparametric
regressions including several important settings, e.g.

(i) generalized smooth spline functions in Sobolev
spaces [33],

(ii) real analytic functions with bounded bandwidth [10] and
their generalizations [28],

(iii) Gaussian processes [20]; [22].

In fact, any Hilbert space of functions on X with a bounded
evaluation functional is a RKHS [2], [33]. By choosing suit-
able kernels, HK can be used to approximate any function
in L 2

ρX
, the square integrable functions with respect to the

marginal probability measure ρX . With such a dense function
space H , regularization is necessary where the following
Tikhonov regularization is widely adopted [9], [14]. Let, for
all λ > 0, fλ be the solution of the regularized least square
problem

fλ = arg min
f ∈H

E ( f ) + λ‖ f ‖2
H . (2)

Depending on assumptions on the Hilbert space H and on
the regularity of fρ , fλ converges to fρ in L 2

ρX
or H -norm

when λ → 0. The map

f. : R+ −→ H

λ �−→ fλ

is called regularization path of fρ in H .
Regularization paths gained rising attention from statistics

recently, particularly because that the regularization paths of
LASSO [12] are piecewise linear, which enables one to track
the entire path by locating a finite number of change points.
This property generalizes to the case where the loss and the
penalty are respectively piecewise quadratic and linear [25].
However Tikhonov regularization does not own piecewise
linear paths.

In machine learning, a batch learning algorithm refers to
a mapping to H from a sample set given once and for all
at some fixed size m, i.e. z = {(xi , yi )}m

i=1. For instance,
Tikhonov regularization yields (also called Ridge Regression
in statistics)

fz,λ := arg min
f ∈H

{
Êz( f ) + λ‖ f ‖2

H

}
(3)
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where the empirical error is defined by

Êz( f ) := 1

m

m∑
i=1

( f (xi ) − yi )
2.

For more background on regularization of inverse problems,
see for instance [13]. In modern statistics, an L1-type regular-
ization called LASSO [32], is proposed in pursuit of sparsity
of fρ with respect to certain basis.

The regularization parameter λ is chosen as a function
of the sample size m, and of some prior knowledge on
the regularity of the function fρ , such that as m → ∞,
λm → 0 and fz,λm → fρ . In this setting, rigorous probabilistic
upper bounds of ‖ fz,λm − fρ‖H were obtained for instance
in [9] and [29].

In a contrast, an online learning algorithm aims at obtaining
this approximation of the regression function recursively, using
at each time step the new example zt = (xt , yt ) to update the
current hypothesis ft−1 (approximating fρ) to ft . In other
words, ft = Tt ( ft−1, zt ) for some map Tt : H × X ×
Y → H . For example, [27] proposed online learning
algorithms as stochastic gradient descent or Robbins-Monro
procedure [24] to solve (2) with a fixed regularization λ > 0.
In this setting, tight probabilistic upper bounds for the
convergence ft → fλ are derived in [36], which further shows
an averaging process can achieve the same convergence rates
as batch learning [29], being minimax optimal for stochastic
approximation under strongly convex objective functions [3];
see also [37] for further bounds in expected L2-distance
to fρ , when λ is chosen as a function of the total sample
size up to time T as in batch learning. Note that for fixed
regularization parameter, stochastic gradient descent can be
generalized to incremental methods that are effective to solve
the equivalent (3) with general convex loss and regularization
schemes [6].

However, these results are only with a fixed regularization
λt = λ > 0 with bounds on ‖ ft − fλ‖. In online learning,
the sample size t increases as time goes on, whence the
regularization parameter λt needs to be updated such that
ft follows the regularization path fλt with ‖ ft − fλt ‖ → 0
and fλt → fρ . Note that [37] obtain bounds in expected
L2-distance on a large regularity class for fρ when λ = 0,
although no almost-sure convergence is obtained. Recently [3]
also proposed some bounds on the expected loss or risk
when it is non-strongly convex, which provides a weaker
convergence than in expected L2-distance, but without any
regularity assumption on fρ .

Our purpose in this paper is to iteratively define an “online”
sequence of functions ( ft )t∈N ∈ H , which will provide a
stochastic approximation of the Tikhonov regularization path
( fλt )t∈N ∈ H . The main theorems in this paper provide some
probabilistic upper bounds to guarantee the convergence of
( ft )t∈N to fρ , in HK or L 2

ρX
, under the assumption that

fρ ∈ HK has additional regularity. With an adequate choice
of the regularization parameters λt → 0 based on a bias-
variance trade-off, the convergence rate in L 2

ρX
is optimal in

the sense that it reaches the minimax and individual lower rate,
and the convergence rate in HK meets the same best rates as

in batch learning [29]. Critically, both upper bounds depend
on a logarithmic power α > 0 of the confidence threshold δ
(i.e. O(logα 1/δ)). They imply by Borel-Cantelli Lemma the
almost sure convergence of ft to fρ in HK and L 2

ρX
. Such

a theorem improves our early result (see [35]), where in mean
square distance the upper bounds depended polynomially on
the confidence (i.e. O(δ−α)), and hence solves the open
problem raised therein.

Our analysis starts in the setting of a general Hilbert space
in Section III, with the study of an iteratively defined sequence,
which is a stochastic approximation of the solution of some
linear equation. This study will be specialized in later sections
to the cases of HK or L 2

ρX
in order to show the main

results of the paper. Two structural decomposition theorems
are introduced in that Section III, the reversed martingale
decomposition and the martingale decomposition, and play an
important role in the proof of the main results, the former
being suitable for strong convergence in HK and the latter
for weak convergence in L 2

ρX
.

Both decompositions lead to the breakdown of the total error
ft − fρ into four parts: the initial error caused by the initial
guess f0, the sample error as a reverse martingale difference
sequence, the approximation error fλt − fρ , and the drift error
along the regularization path ( fλt ) caused by time-varying λt .
By a suitable choice of step sizes, the initial error won’t affect
the convergence rates. Now a key observation is that the drift
error, which does not appear in previous fixed regularization
settings with λt = λ, has the same order as the approximation
error. Bernstein-type inequalities for martingales in Hilbert
spaces are then used to bound the sample error. Therefore we
have a similar bias-variance decomposition in online learning
as in batch learning, with the bias being the approximation and
the drift errors, and the variance being the sample error. It is
then possible to optimize in order to yield the same optimal
rates in online learning as in batch learning.

The paper is organized as follows. Section II collects the
main results. Section III studies stochastic approximations of
regularization paths for linear operator equations in general
Hilbert spaces, where the key martingale and reverse martin-
gale decompositions are presented. Section IV collects some
estimates on the drift along the regularization path, ‖ fλ − fμ‖
(λ,μ > 0), which are needed for the study of the bias,
i.e. the approximation and drift errors. Sections V and VI
yield upper bounds for convergence in HK and L 2

ρX
, respec-

tively. Appendix A derives a probabilistic inequality from the
Pinelis-Bernstein inequality for martingales in Hilbert spaces,
which is used to derive the probabilistic upper bounds in this
paper. Appendix B collects some preliminary upper bounds
used in the paper. Appendix C gives proofs of some results in
Section III-B.

II. MAIN RESULTS

A. Notations and Assumptions

Let X ⊆ R
n be closed, Y = R and Z = X × Y .

Let ρ be a probability measure on Z , ρX be the induced
marginal probability measure on X , and let ρY |x be the
conditional probability measure on Y with respect to x ∈ X .
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Define fρ : X → Y by fρ(x) = ∫
Y ydρY |x , the regression

function of ρ. In the sequel, we let E[·] be the expectation
with respect to ρ.

Let L 2
ρX

be the Hilbert space of square integrable functions
with respect to ρX . In the sequel ‖ ‖ρ denotes the norm in
L 2

ρX
, where

‖ f ‖ρ = ‖ f ‖L 2
ρX

=
{∫

X
| f (x)|2dρX

}1/2

.

Let K : X ×X → R be a Mercer kernel, i.e. a continuous1

symmetric real function which is positive semi-definite in the
sense that

∑m
i, j=1 ci c j K (xi , x j ) ≥ 0 for any m ∈ N and any

choice of xi ∈ X and ci ∈ R (i = 1, . . . , m). A Mercer
kernel K induces a function Kx : X → R (x ∈ X ) defined
by Kx (x ′) = K (x, x ′). Let HK be the reproducing kernel
Hilbert space (RKHS) associated with a Mercer kernel K , i.e.
the completion of the span{Kx : x ∈ X } with respect to the
inner product, defined as the linear extension of the bilinear
form 〈Kx , Kx ′ 〉K = K (x, x ′) (x, x ′ ∈ X ). The norm of HK

is denoted by ‖ ‖K . The most important property of RKHS
is the reproducing property: for all f ∈ HK and x ∈ X ,
f (x) = 〈 f, Kx 〉K .

Throughout this paper, assume that
Finiteness Condition. (A) There exists a constant κ ≥ 0 such
that

κ := sup
x∈X

√
K (x, x) < ∞.

(B) There exists a constant Mρ ≥ 0 such that

supp(ρ) ⊆ X × [−Mρ, Mρ ].
Define the linear map

L K : L 2
ρX

→ HK

by the following integral transform

L K ( f )(t) :=
∫

X
K (t, x) f (x)dρX (x).

It is well-known that L K is well-defined, and that composition
with the inclusion HK ↪→ L 2

ρX
yields a compact positive

self-adjoint operator on L 2
ρX

[e.g. [9], [16]]. The restriction
L K |HK : HK → HK is the covariance operator of ρX in
HK : by the reproducing property,

L K |HK = Ex∼ρX [〈·, Kx 〉Kx ].
Abusing notation, we will denote the three operators by L K in
the sequel.

Note that, by Cauchy-Schwarz inequality, ‖L K f ‖∞ ≤
κ2‖ f ‖L 2

ρX
, so that

‖L K ‖L 2
ρX

→L 2
ρX

≤ κ2. (4)

1In computer science literature, one often bears in mind some implicit
feature map � : X → H which takes an input vector x to a high (or infinite)
dimensional feature vector, say an element of a Hilbert space H , and then
one considers explicitly the inner product K (x, x ′) = 〈�(x),�(x ′)〉 as the
kernel. In this construction, the continuity of K is equivalent to continuity of
the feature map �.

The compactness of L K : L 2
ρX

→ L 2
ρX

implies the exis-
tence of an orthonormal eigensystem (μα, φα)α∈N in L 2

ρX
.

Recall that (e.g. [9]) L K is a trace-class operator as

∑
α∈N

μα =
∫
X

K (x, x)dρX (x) ≤ κ2.

We assume in this paper that all eigenvalues μα are positive,
which implies that L K : L 2

ρX
→ L 2

ρX
is injective and

L1/2
K : L 2

ρX
→ HK is an isometrical isomorphism of Hilbert

spaces [9]. Hence the eigenfunctions (φα)α∈N are orthogonal
both in L 2

ρX
and HK . We can define, for all r > 0,

Lr
K : L 2

ρX
→ L 2

ρX∑
α∈N

aαφα �→
∑
α∈N

aαμr
αφα; (5)

Lr
K can be regarded as a low-pass filter, and ‖Lr

K ‖ =
maxα∈N μr

α = ‖L K ‖r .
For all f ∈ L 2

ρX
and r > 0, we write L−r

K f ∈ L 2
ρX

when
f lies in the image of the mapping Lr

K : L 2
ρX

→ L 2
ρX

.
Note that, if r ≥ 1/2, then this implies f ∈ HK because of
the isometry L1/2

K between L 2
ρX

and HK .
For all λ > 0 and r ∈ R \ {0}, we can similarly define

(L K + λI )r : L 2
ρX

→ L 2
ρX

, which is a bijection; indeed,
μα →α→∞ 0 implies λ+μα ∈ [λ, A] for some A > 0, hence∑

α∈N
a2
α < ∞ ⇐⇒ ∑

α∈N
a2
α(λ + μα)2r < ∞.

It can be shown [e.g. [9]] that for any λ ∈ R+, the solution
of (2) is

fλ = (L K + λI )−1 L K fρ ∈ HK . (6)

In this paper, by B1, C1, D1, B2, C2, D2, . . ., we denote
various constants, which are defined “locally” in the sense that
the same notations appeared in different sections has different
meanings.

B. Stochastic Gradient Algorithms

Let F = (Ft )t∈N0 ∈ X × Y be the filtration Ft =
σ {(xi , yi ) : 1 ≤ i ≤ t}. In the sequel denote by Et = E[·|Ft ],
the conditional expectation w.r.t. Ft . Consider the following
Ft -adapted process ( ft )t∈N taking values in HK ,

ft = ft−1 − γt [( ft−1(xt ) − yt )Kxt + λt ft−1], (7)

for some fixed f0 ∈ HK , e.g. f0 := 0, where
(I) for each t , (xt , yt ) is independent and identically distributed
(i.i.d.) according to ρ;
(II) the gain (step size) sequence (γt )t∈N and regularization
sequence (λt )t∈N are taking values in R+ := (0,∞), and
converging to 0 as t goes to infinity.

Remark II.1: The computational cost of this algorithm typ-
ically is O(t2). As each step t , the main computational cost is
due to the evaluation ft−1(xt ) which needs to access all Kxi

(1 ≤ i ≤ t) in O(t) steps. Thus the total cost is of O(t2) at
time t . In the cases that one can store and access the values
ft (x) for all x , e.g. on a grid of X , the computational cost
is merely linear O(t) at the requirement of large memory and
fast memory access.
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By reproducing property, we can see that the gradient
map of

Vz( f ) = 1

2

[
( f (x) − y)2 + λ‖ f ‖2

K

]
, z = (x, y) ∈ Z

is given by grad Vz( f ) = ( f (x) − y)Kx + λ f [e.g. [27]],
as a random variable depending on z. Since the expectation
E[Vz( f )] = 2(E ( f ) + λ‖ f ‖2

K ), algorithm (7) can thus be
regarded as stochastic approximations of gradient descent
method to solve (2), for each λ = λt .

C. Main Theorems

Theorem A provides sufficient conditions for the conver-
gence of the online learning sequence ( ft )t∈N0 in (7) to the
regression function fρ . Theorem B and C explicit the corre-
sponding convergence rates, respectively in HK and L 2

ρX
.

Theorem A (SufficientConditions forConvergence): Assume
fρ ∈ HK , and let ( ft ) be defined by equation (7), with
assumptions (I)-(II). Then

lim sup
t→∞

E[‖ ft − fρ‖2
K ] = 0,

if the following conditions are satisfied:

(A)
∞∑

t=0

γtλt = ∞.

(B) lim sup
t→∞

t∑
k=1

γ 2
k

t∏
i=k+1

(1 − γiλi )
2 = 0,

(C) lim sup
t→∞

t∑
k=1

‖ fλk − fλk−1 ‖K

t∏
i=k+1

(1 − γiλi ) = 0.

This theorem will be proved in Section III, as a consequence
of Theorem III.5 in the setting of Hilbert spaces. Assump-
tions (B) and (C) can be replaced by the stronger (but less
technical) assumptions (B ′) and (C ′) in Corollary III.7 that
γt/λt → 0 and ‖ fλt − fλt−1‖K /(λtγt ) → 0.

Remark II.2: Although λt → 0, condition (A) puts a
restriction that γtλt can not drop too fast, in fact this is
necessary to “forget” the error caused by the initial guess f0.
Condition (B) says that the step size γt → 0, and it has to drop
faster than the regularization parameter λt . Such a condition
is to attenuate the random fluctuation caused by sampling.
Condition (C) implies that the drifts of the regularization
path ( fλt ) converges to zero, at a speed faster than γtλt .
This condition says that in the long run, the drifts along
the regularization path should decrease fast enough for the
algorithm to follow the path. The drifts depend on regularity
of fρ , that the smoother fρ is, the faster drifts go down.

In the next two theorems (B) and (C) we choose the
sequences (γt )t∈N and (λt )t∈N in order to optimize the rates of
convergence in HK and L 2

ρX
. This optimization is twofold.

First, the study of convergence of approximations of
ordinary differential equations generically yields a phase tran-
sition between a slower rate with “shadowing” of mean-
field trajectories, and a faster one, normally distributed after
renormalization. Even though the picture is more complicated
in our case, in particular because the vector ft is infinite-
dimensional, this justifies here that we choose γtλt reciprocally
linear in t .

Second, optimization over (γt ) at fixed (γtλt ) yields a bias-
variance trade-off similar to the one observed in statistical
“batch” learning, which relies on the regularity assumption on
the regression function fρ .

More precisely, let us first recall the phase transition in
classical finite-dimensional stochastic approximation, in the
rate of convergence towards a stable equilibrium. Naturally,
we study the projections of the algorithm on the base of
eigenvectors of the linearization of the ordinary differential
equation at the equilibrium. Let (ηt )t∈N be one of these
projections, and assume for instance that the corresponding
eigenvalue is −1, so that the stochastic recursion is of the
form

ηt+1 = ηt + γt (−ηt + εt+1 + rt+1),

where Et−1[εt ] = 0, (εt ) is bounded, and (rt ) is small. For
simplicity we will assume that rt = 0 (which corresponds to
the special case λt = λ is a constant), but the heuristics holds
on to the general case where rt is less than quadratic in all
coordinates. Let, for all t ∈ N, βt := ∏t

k=1(1 − γk). Then it
is easy to show by induction that

ηt = βt

⎡
⎣η0 +

t∑
j=1

γ j

β j
ε j

⎤
⎦.

Now suppose for instance that γt ∼ c/t (c > 0); then
βnnc −→

n→∞ C > 0. Depending on the choice of c, ηt exhibits
the following phase transition at c = 1/2 in its asymptotic
dynamics.

• If c < 1/2 then
∑

(γ j/β j )
2 < ∞, therefore

∑t
j=1

γ jε j /β j converges a.s. by Doob’s convergence theorem,
which implies that ηt tc −→

t→∞ C ′ (where C ′ is a positive

random variable). In other words, (ηt ) asymptotically
“shadows” one particular solution of the ODE

dx

dt
= −cx,

in the sense that the distance of (ηt ) to that solution
converges to 0 faster than (ηt ) converges to 0. For a
review on shadowing in stochastic approximation, see [4],
Chapter 8, for instance.

• On the contrary, if c > 1/2, then
∑

(γ j/β j )
2 = ∞,

and by the martingale convergence theorem (see for
instance [34]), assuming for instance Et−1[ε2

t ] =
D2 > 0 constant, and ηt

√
t converges towards a

centered normally distributed random variable with
variance c2 D2/(2c − 1), and follows an associated
Ornstein-Uhlenbeck process, see [11], Chapter 4, for
instance.

Therefore it suffices to choose c > 1/2 to achieve fast
convergence rates. In this paper we will set c = 1 and choose
γtλt ∼ 1/t to meet the heuristics above.

The next two theorems present some probabilistic upper
bounds which characterize the convergence rates in HK and
L 2

ρX
, under certain regularity assumptions on the regression

function fρ .
Let t0 > 0 and, for all t ∈ N,

t := t + t0,
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where t0 is large enough which won’t affect the speed of con-
vergence. We assume, in the statement of Theorems B and C,
that, for all t ∈ N,

γt = a

(
1

t

) 2r
2r+1

, λt = 1

a

(
1

t

) 1
2r+1

.

Theorem B (Upper Bounds for HK -Convergence): Assume
L−r

K fρ ∈ L 2
ρX

for some r ∈ (1/2, 3/2], a ≥ 1, and
t0 ≥ (aκ2 + 1)(2r+1)/(2r). Then, for all t ∈ N, with
probability at least 1 − δ,

‖ ft − fρ‖K ≤ C0

t
+
(

C1a1/2−r log
2

δ
+ C2a

)(
1

t

) 2r−1
4r+2

,

where

C0 : = 2t
4r+3
4r+2

0 Mρ, C1 := 20r − 2

(2r − 1)(2r + 3)
‖L−r

K fρ‖ρ,

C2 : = 20(κ + 1)2 Mρ

κ
.

Its proof is given in Section V.
Remark II.3: Given δ > 0, Mρ and ‖L−r

K fρ‖ρ , one can
optimize a in order to minimize

h(a) := C1a1/2−r log
2

δ
+ C2a.

This yields the choice a∗ := [C1(r − 1/2) log(2/δ)/

C2](r+1/2)−1 ∨ 1, with

h(a∗) = (r + 1/2)

[
C1Cr−1/2

2 (r − 1/2) log
2

δ

](r+1/2)−1

when a∗ > 1.
This asymptotic rate in O(t−(2r−1)/(4r+2)) is the same

as the best known rates in batch learning algorithms;
see [Theorem 2, [29]].

Remark II.4: Note that the upper bound consists of three
parts. The first term at a rate O(t−1), captures the influence
of the initial choice f0 = 0, which does not depend on
r and is faster than the remaining terms. The second term
at a rate O(‖L−r

K fρ‖ρ t−(2r−1)/(4r+2)), collects contributions
from both drifts along the regularization path fλt − fλt−1

and the approximation error fλt − fρ , since they share the
same rates up to different constants. The third term at a
rate O(t−(2r−1)/(4r+2)), reflects the error caused by random
fluctuations by the i.i.d. sampling. Later as we will see, the
second term is a bound on the bias and the third term is a
bound on the variance.

Theorem C (UpperBoundsforL 2
ρX

-Convergence): Assume
that L−r

K fρ ∈ L 2
ρX

for some r ∈ [1/2, 1]. Assume a ≥ 4,
and t0 ≥ (2 + 8κ2a)(2r+1)/(2r).

Then, for all t ∈ N, with probability at least 1 − δ
(δ ∈ (0, 1)),

‖ ft − fρ‖ρ ≤ D0

t
+
(

D1a−r + √
a D2 log

2

δ

)(
1

t

) r
2r+1

+ . . . +
(

a3/2D3

√
log t + a5/2 D4

)
(log(2/δ))2

(
1

t

) 4r−1
4r+2

.

where

D0 := 2Mρ t0, D1 := 5r + 1

r(1 + r)
‖L−r

K fρ‖ρ,

D2 := 10κ Mρ , D3 = 63κ2Mρ , and D4 := 50κ2Mρ t1/2−θ
0 .

Its proof will be given in Section VI.
Remark II.5: When r ∈ (1/2, 1], the first term of O(1/t)

and the third term of O(t−2r−1/2/2r+1 log1/2 t) both drop
faster than the second term of O(t−

r
2r+1 ), whence they can be

ignored asymptotically. The second term as the dominant one,
roughly speaking has contributions from two parts: the one
with constant D1 comes from the bias, i.e. the approximation
and the drift errors, while the other with constant D2 comes
from the variance, i.e. the sample error.

Remark II.6: A special case is r = 1/2, which is equivalent
to say fρ ∈ HK . In this case γt = λt = t−1/2, whence it does
not satisfy the Path Following Condition (B) in Theorem A
(recall

∏t
i=k+1(1−γiλi ) = (k + t0)(t + t0)−1). But Theorem C

suggests a weaker notion that ft follows the regularization
path, i.e. ft → fρ in L 2

ρX
rather than HK , which in fact

converges at a rate of O(t−1/4 log1/2 t) uniformly for all
fρ ∈ HK .

Remark II.7: Overall, the convergence in L 2
ρX

has rates
O(t−r/(2r+1) log1/2 t ·log2 1/δ), a logarithmic polynomial on δ,
whence the Borel-Cantelli Lemma implies almost sure con-
vergence ‖ ft − fρ‖L 2

ρX

as→ 0. Note that no almost-sure tight
convergence bounds were obtained so far in online learning in
RKHS [27], [35], [37].

In [37], some tight convergence rates are presented
for a weaker convergence in mean square distance E‖ ft −
fρ‖2

ρ → 0. In particular when λt = 0, mean square distance
convergence rates are studied under two choices of step sizes,
time varying γt and constant γt = γ (T ), depending on total
sample size T as in batch-learning. For chosen time varying
step sizes γt and λt = 0, convergence rates

E[‖ ft − fρ‖2
ρ ] ≤ O(t−2r/(2r+1) log t) (8)

are established for r ∈ (0, 1/2], which differs from the
complexity class in this paper. Again for (chosen) varying
γt but constant λt = λ(T ) > 0, rates (8) at time t = T
hold for r ∈ (0, 1]. Finally for (chosen) constant step size
γt = γ (T ) and λt = 0, the rates (8) are established at time
t = T for all r > 0. Note that those constant choices of λ(T )
and γ (T ) imply that the algorithms are not truly online, as they
need to know a priori the total sample size. In summary it is
therefore an open problem whether the same type of almost-
sure convergence as above can be established for the whole
regularity range r > 0.

Remark II.8: To see the asymptotic optimality, consider the
generalization error E ( f ) − E ( fρ) = ‖ f − fρ‖2

ρ [see [9]].
Since the rate O(t−r/(2r+1)) dominates when r > 1/2, then
under the same condition of Theorem C, there holds with
probability at least 1 − δ (δ ∈ (0, 1)), for all t ∈ N,

E ( ft ) − E ( fρ) ≤ O(t−2r/(2r+1)).

For r ∈ (1/2, 1], the asymptotic rate O(t−2r/(2r+1)) has been
shown to be optimal in the sense that it reaches the minimax
and individual lower rate [7]. To be precise, let P(b, r) (b >
1 and r ∈ (1/2, 1]) be the set of probability measure ρ on
X ×Y , such that: (A) almost surely |y| ≤ Mρ ; (B) L−r

K fρ ∈
L 2

ρX
; (C) the eigenvalues (μn)n∈N of L K : L 2

ρX
→ L 2

ρX
,
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arranged in a nonincreasing order, are subject to the decay
μn = O(n−b). Then the following minimax lower rate was
given as Theorem 2 in [7],

lim inf
t→∞ inf

(zi )
t
1 �→ ft

sup
ρ∈P(b,r)

Prob
{
(zi )

t
1 ∈ Z t : · · ·

E ( ft ) − E ( fρ) > Ct−
2rb

2rb+1

}
= 1

for some constant C > 0 independent on t , where the infimum
in the middle is taken over all algorithms as a map Z t �
(zi )

t
1 �→ ft ∈ HK .

Note that in the minimax lower rate, the probability mea-
sure may change for different data size t , which violates
the fundamental identical distribution assumption in learning.
Therefore [15] suggests a kind of individual lower rates for
learning problems. The following individual lower rate was
obtained as Theorem 3 in [7]: for every B > b,

inf
((zi )

t
1 �→ ft )t∈N

sup
ρ∈P(b,r)

lim sup
t→∞

E[E ( ft )] − E ( fρ)

t−
2r B

2r B+1

> 0,

where the infimum is taken over arbitrary sequences of func-
tions ft : Z t → HK . It can be seen that the key difference in
the individual lower rate, lies in that by putting lim supt→∞
before supρ∈P(b,r), the probability measure ρ is applied to all
sufficiently large t .

Now we compare these lower rates to our upper bound.
Since L K : L 2

ρX
→ L 2

ρX
is a trace-class operator [9],

its eigenvalues are summable. Therefore by taking b =
B = 1, one may obtain an eigenvalue-independent lower rate
O(t−2r/(2r+1)) for all possible L K . Therefore, the upper bound
by Theorem C reaches both the minimax and the individual
lower rates.

Remark II.9: The condition L−r
K fρ ∈ L 2

ρX
for r ≥ 1/2

implies that fρ ∈ HK with some additional regularity, since
L1/2

K : L 2
ρX

→ HK is a Hilbertian isometry. Assuming
that fρ = ∑

α∈N
aαφα, where (μα, φα) is an orthonormal

eigensystem of L K , this regularity condition L−r
K fρ ∈ L 2

ρX

translates into
∑
α∈N

a2
α

μ2r
α

< ∞

which requires that aα → 0 rapidly enough, in particular
faster than μr

α converges to 0. Hence the larger r is, the more
regularity fρ has.

For example, let X = Sd be the d-sphere and let ρX be
the uniform measure on Sd . Then, following [33], one can
take the Sobolev space Wd (Sd ) as a RKHS HK , such that the
associated integral L K has eigenvalues λα ∼ α−1 (α ∈ N).
Then with r = s/d , L−r

K fρ ∈ L 2
ρX

implies that fρ ∈ Ws(Sd).
Theorem B and C gives upper Wd (Sd )- and L 2

ρX
-convergence

rates at O(t−
2s−d

4s+2d ) and O(t−
s

2s+d ), respectively for s ≤ d .

III. SEQUENTIAL STOCHASTIC APPROXIMATIONS OF

REGULARIZATION PATHS IN HILBERT SPACES

In this section, we study some stochastic approximation
sequences in the more general setting of general Hilbert
spaces.

Let W be a Hilbert space with inner product 〈,〉 and
associated norm ‖u‖ := √〈u, u〉, and let SL(W ) be the vector
space of self-adjoint bounded linear operators on W , endowed
with the canonical norm

‖A‖ := sup
‖x‖≤1

‖Ax‖.

Let X and Y be two topological spaces (on which we
make no other assumption), let Z := X × Y and let ρ
be a probability measure on the Borel σ -algebra of Z . Let
A : Z → SL(W ) and b : Z → W be random vari-
ables on the sample space Z taking values respectively in
SL(W ) and W , and let

Ā := E[A], b̄ := E[b]
be their expectations on (Z , ρ).

Now assume that Ā is a strictly positive operator with
an unbounded inverse. Knowing A and b, but not ρ (and
subsequently not Ā and b̄), and assuming b̄ ∈ Ā(W ), the aim
is to devise a stochastic algorithm approximating the solution
w̄ of the following linear equation

Āw = b̄, (9)

using as data an i.i.d sequence (zt )t∈N in Z with proba-
bility law ρ. As in the standard setting of Robbins-Monro
(see [17], [24]), it is natural to consider a stochastic gradient
descent algorithm.

More precisely, the search for the solution w̄ of (9) is
equivalent to the minimization of the quadratic potential map
V̂ : W → R

V̂ (w) := 1

2
〈Ā(w − w̄),w − w̄〉,

whose gradient grad V̂ : W → W is given by

grad V̂ (w) = Āw − b̄ = E[Aw − b].
In the context of online learning presented in the first two

sections, W := HK , A((x, y))( f ) := f (x)Kx , b((x, y)) :=
yKx (see Section III-C), so that Ā = L K , b̄ = L K fρ and
w̄ = fρ , and V̂ (w) = ‖ f − fρ‖2

L 2
ρX

= E ( f ) − E ( fρ) is the

generalization error.
A natural Robbins-Monro gradient descent algorithm

would be

wt = wt−1 − γt (A(zt )wt−1 − b(zt )), (10)

since Ezt ∼ρ [A(zt )wt−1 − b(zt )] = Āwt−1 − b̄.
However, the sample complexity analysis on Hilbert spaces,

in order to estimate the sample size sufficient to approximate
the minimizer with high probability, requires boundedness of
Ā−1 (see for instance [27]).

To solve this ill-posed problem with unbounded Ā−1, one
may construct sequences of random variables (At )t∈N and
(bt )t∈N on the sample space Z taking values respectively in
SL(W ) and W , with the assumption that, if

Āt := E[At ], b̄t := E[bt ]
are their expectations on (Z , ρ), Āt has bounded inverse and
Āt → Ā, b̄t → b̄. Then the aim is to find assumptions ensuring
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that the stochastic approximation sequence (wt )t∈N iteratively
defined by w0 := W0 deterministic, and

wt = wt−1 − γt (At (zt )wt−1 − bt(zt )), (11)

where (γt )t∈N is a real positive sequence, converges to the
solution w̄ of (9) as t goes to infinity. We note that such a

This question can be divided into two subquestions: first the
deterministic convergence of

w̄t := Ā−1
t b̄t . (12)

to w̄, the path t �→ w̄t being then called a regularization path
of the solution of equation (9), and second the probabilistic
convergence of the quantity

rt := wt − w̄t , (13)

which we call the remainder (note that w̄t = Ā−1
t b̄t �= E[wt ]

in general). In the online learning case (see Section III-C),
we choose At := A +λt I , (λt )t∈N positive sequence, bt := b,
so that w̄t = fλt → fρ in HK .

We provide in Section III-A two structural decompositions
of rt , respectively a reversed martingale and a martingale one.
Both expand rt into three parts: one depending on the initial
value of r. called the initial error, one depending on the drift

� j := w̄ j − w̄ j−1 (14)

along the regularization path (w̄t ) called the drift error, and
finally one random variable of zero mean called the sample
error, respectively written as a reversed martingale and as a
martingale at time t .

The reversed martingale decomposition will, on one hand,
enable us to prove Theorem III.5 below, whose corollary
is Theorem A in the context of online learning, and which
provides sufficient assumptions on the asymptotic behaviour of
the norms of At , A−1

t , Ā−1
t and bt for the convergence of

the variance of the remainder rt . On the other hand, this
reversed decomposition will yield Theorem B giving upper
bounds on ft − fρ in HK with high probability, proved in
Section V.

The martingale decomposition will imply Theorem C giving
upper bounds of ft − fρ in L 2

ρX
with high probability, proved

in Section VI.

A. Two Structural Decomposition Theorems

For all j , t ∈ N, let �t
j be the random operator on W ,

on the sample space Z N, defined by

�t
j ((zi )i∈N) =

⎧⎪⎪⎨
⎪⎪⎩

t∏
i= j

(I − γi Ai (zi )) if j ≤ t;

I otherwise.

By a slight abuse of notation, we let At := At (zt ) and
bt := bt(zt ) in the sequel, when there is no ambiguity.

Theorem III.1 (Reversed Martingale Decomposition): For
all s, t ∈ N, t ≥ s,

rt =�t
s+1rs −

t∑
j=s+1

γ j�
t
j+1(A j w̄ j −b j )−

t∑
j=s+1

�t
j � j (15)

Remark III.2: Note that �t
j+1 is an operator whose ran-

domness only depends on z j+1, . . . zt , whereas the random-
ness in A j w̄ j − b j , with zero mean, only depends on z j .
By independence of zt , t ∈ N, the conditional expecta-
tion E[γ j�

t
j+1(A j w̄ j − b j )|z j+1, . . . , zt ] is 0, whence for

each t , γ j�
t
j+1(A j w̄ j −b j ) is a reversed martingale difference

sequence whose sum is a reversed martingale sequence with
zero mean. For more background on reversed martingales, see
for example [21].

Proof of Theorem III.1: By definition,

rt = wt − w̄t

= wt−1 − w̄t − γt (Atwt−1 − bt )

= (I − γt At )(wt−1 − w̄t−1) . . .

−(I − γt At )(w̄t − w̄t−1) − γt (At w̄t − bt )

which implies

rt = (I − γt At )rt−1 − γt (At w̄t − bt ) − (I − γt At )�t . (16)

The result follows by induction on t ∈ N, t ≥ s. �
For all j , t ∈ N, let

χt = ( Āt − At )wt−1 + (bt − b̄t ),

and let �̄t
j be the deterministic operator on W defined by

�̄t
j =

⎧⎪⎪⎨
⎪⎪⎩

t∏
i= j

(
I − γi Āi

)
if j ≤ t;

I, otherwise.

Theorem III.3 (Martingale Decomposition): For all s, t ∈
N, t ≥ s,

rt = �̄t
s+1rs +

t∑
j=s+1

γ j �̄
t
j+1χ j −

t∑
j=s+1

�̄t
j� j (17)

Remark III.4: The martingale decomposition was proposed
in [36]. Contrary to the reversed martingale decomposition,
only the sample error is random here, the operator �̄t

j+1
being deterministic. The process (γ j �̄

t
j+1χ j ) j∈N is a mar-

tingale difference sequence since, for all j ∈ N and t ≥ j ,
E j−1[γ j �̄

t
j+1χ j ] = 0. Note that the martingale property

continues to hold for dependent sampling zt (z1, . . . , zt−1),
as long as Et−1[At(zt )] = Āt and Et−1[bt (zt )] = b̄t . As a
consequence, the same almost-sure convergence result can be
proved in this case, using the decomposition of the Markov
sampling process in [30], which has exponentially decreasing
drift errors.

The non-randomness of the operator �̄t
j will play a key

role in the proof of Theorem C in the online learning context,
since it will enable us to make explicit calculations involving
the spectral decomposition of L K : L 2

ρX
→ L 2

ρX
(recall that

Āi = L K + λi then). However, the fact that χt , contrary to
At w̄t − bt in the reversed expansion, does not depend only on
zt but rather on the whole past (zi )0≤i≤t , makes it necessary
to obtain a preliminary upper bound of χt in Appendix C,
which explains the factor (log 2/δ)2 in Theorem C, rather than
log 2/δ in Theorem B.
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Proof of Theorem III.3: By definition,

rt = wt − w̄t

= wt−1 − w̄t − γt (Atwt−1 − bt )

= (I − γt Āt )(wt−1 − w̄t ) + γtχt , using b̄t = Āt w̄t

= (I − γt Āt )rt−1 + γtχt − (I − γt Āt )[w̄t − w̄t−1].
The result follows by induction on t ∈ N, t ≥ s. �

B. Sufficient Conditions for the Convergence of the Remainder

The following Theorem III.3, which implies Theorem A in
the context of online learning (see Section III-C), states the
convergence of ‖rt‖2 = ‖wt − w̄t‖2 to zero in expectation,
under some assumptions on the asymptotic behaviour of the
gain sequence γt and of the norms of bt and operators At ,
A−1

t and Ā−1
t .

The corresponding Generalized Finiteness Condition on the
asymptotic behaviour of At and bt is a generalization of the
Finiteness Condition in [27].
Generalized Finiteness Condition. Let (αt )t∈N and (αt )t∈N

be deterministic positive sequences. For all t ∈ N, assume that
almost surely, At is positive, and the operators At , Āt and Ā
are invertible (although Ā has an unbounded inverse), and that

‖At‖ ≤ αt , ‖A−1
t ‖ ≤ α−1

t .

Theorem III.5: Consider the stochastic approximation
sequence (wt )t∈N0 and remainder (rt )t∈N0 defined in
(11)-(13).

Suppose that the Generalized Finiteness Condition holds,
and that the variance E‖At w̄t − bt‖2 is uniformly bounded in
t ∈ N. Then

E‖rt ‖2 → 0,

if the following assumptions hold:
(A) γt → 0 and

∑
t

γtαt = ∞,

(B) lim sup
t→∞

t∑
k=1

γ 2
k

t∏
i=k+1

(1 − γiαi )
2 = 0,

(C) lim sup
t→∞

t∑
k=1

‖�k‖
t∏

i=k+1

(1 − γiαi ) = 0.

The following Lemma III.6 enables us to provide simple
sufficient conditions for (B) and (C) in Corollary III.7.

Lemma III.6: Let (at )t∈N and (bt )t∈N be two real positive
sequences converging to 0 when t goes to infinity. Then

lim sup
t→∞

at/bt = 0 and
∑
t∈N

bt = ∞

�⇒ lim sup
t→∞

t∑
k=1

ak

t∏
i=k+1

(1 − bi ) = 0.

Corollary III.7: In the statement of Theorem III.5, assump-
tions (B) and (C) may respectively be replaced by
(B ′) lim sup

t→∞
γt

αt
= 0,

(C ′) lim sup
t→∞

‖�t‖
αtγt

= 0.

Theorem III.5 and Lemma III.6 are proved in Appendix C,
and imply Corollary III.7: Lemma III.6 with at := γ 2

t (resp.

at := ‖�t‖) and bt := αtγt shows that (B ′) (resp. (C ′))
implies (B) (resp. (C)).

The proof of Theorem III.5 makes use of the following
preliminary Lemma III.8 (shown in Appendix C), which
implies some upper bounds of the norms of operators �t

j ,
t ≥ j , also used in Sections VI and V.

Lemma III.8: Let j0 ∈ N, and let (γt )t∈N, (αt )t∈N and
(αt )t∈Nbe real positive sequences, and let (At )t∈N be a
sequence of positive compact self-adjoint operators on the
Hilbert space W . Assume that, for all t ≥ j0, ‖At‖ ≤ αt ,
‖A−1

t ‖ ≤ α−1
t and γtαt ≤ 1.

Then, for all t ≥ j0 and j0 ≤ j ≤ t ,
(A) ‖I − γt At‖ ≤ 1 − γtαt ;

(B) ‖�t
j ‖ ≤

t∏
i= j

(1 − γ jα j ).

In particular, if the two sequences (γt )t∈N and (αt )t∈N are
such that, for all t ≥ j0, γtαt := ct−1 (recall t = t + t0) for
some c, t0 > 0, then (B) yields

‖�t
j ‖ ≤

(
j + t0
t + 1

)c

.

C. Application to Online Learning and Proof of Theorem A

The online learning sequence ( ft )t∈N0 defined in (7), with
assumptions (I)-(II), can be interpreted as a sequential stochas-
tic approximation algorithm (wt )t∈N0 in (10), taking values in
the Hilbert space W := HK : letting zt = (xt , yt ),

A((x, y)) : = 〈., Kx 〉K Kx , b((x, y)) := yKx

At : = A(zt ) + λt I, bt := b,

so that

Ā = L K , b̄ = L K fρ, w̄ = fρ,

Āt = L K + λt I, w̄t = fλt ,

rt = ft − fλt , �t = fλt − fλt−1 .

Let us emphasize that the operator A is only defined from
HK to HK here (we would not be able to define f (x) for
f ∈ L 2

ρX
). The properties mentioned below will only hold

on HK in general, and in particular the norms of operators
‖.‖ are assumed to be ‖.‖HK →HK , although operators defined
on L 2

ρX
and commuting with L1/2

K (which is an isometry
between L 2

ρX
and HK ) have the same norm in either spaces.

Note that A(z) is positive for all z = (x, y) ∈ Z (which
implies Ā = L K positive as well), since

〈A((x, y))( f ), f 〉 = 〈 f (x)Kx , f 〉 = f (x)2 ≥ 0

for all f ∈ HK .
Also, for all f ∈ HK , ‖A f ‖ = |〈Kx , f 〉|‖Kx‖ ≤

‖Kx‖2‖ f ‖, so that

‖A‖ ≤ κ2, ‖ Ā‖ ≤ E(‖A‖) ≤ κ2.

Hence

‖At‖ ≤ αt := λt + κ2, ‖A−1
t ‖−1 ≥ αt := λt . (18)

With these definitions, we are now ready to prove
Theorem A.
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Proof of Theorem A: Under the assumptions of Theorem A,
the Generalized Finiteness Condition of Section III-B is
satisfied. Now fρ ∈ HK implies ‖ fλ − fρ‖K → 0 when
λ → 0, using for example Theorem IV.1 (C) with r = 1/2.
Therefore the conclusion follows from the convergence of
E[‖wt − w̄t‖2] = E[‖ ft − fλt ‖2] to 0 in Theorem III.5, while
the condition of uniform boundedness of E‖At w̄t − bt‖2 is
shown in Lemma V.5 (B). �

For convenience, we will use, in Sections V, VI and in the
Appendix, the notation

Lt := A(zt ) = 〈., Kxt 〉K Kxt (19)

We will assume that

γt = a

tθ
, λt = b

t1−θ
, for some θ ∈ [0, 1], t0 > 0, (20)

and then study the HK or L 2
ρX

- norm of the error ft − fρ ,
based using a reverse martingale (resp. martingale) decomposi-
tion in Section V (resp. Section VI). We will then optimize the
upper bounds in θ , a and b by using some prior information
on the regularity of fρ .

Finally observe that Lemma III.8 implies, using (18), that
for all j , t ∈ N, t ≥ j ,

‖I − γt At‖ ≤ 1 − γtλt = 1 − ab

t
, ‖�t

j ‖ ≤
(

j + t0
t + 1

)ab

(21)

if tθ0 ≥ a(κ2 + b) (and, therefore, γtαt = γtλt + γtκ
2 ≤

abt−1
0 + aκ2t−θ

0 ≤ 1).
Similarly, for all j , t ∈ N, t ≥ j ,

‖I − γt Āt‖ ≤ 1 − ab

t
, ‖�̄t

j‖ ≤
(

j + t0
t + 1

)ab

(22)

if tθ0 ≥ a(κ2 +b); the norm in (22) can be ‖.‖HK →HK as well
as ‖.‖L 2

ρX
→L 2

ρX
.

IV. ESTIMATES OF DRIFT ON THE

REGULARIZATION PATH

This section is devoted to estimates on the drift ‖ fλ −
fμ‖ (λ,μ ≥ 0), along the regularization path λ → fλ,
in HK -norm or L 2

ρX
-norm, assuming that L−r

K fρ ∈ L 2
ρX

for some r > 0. These estimates enable us to upper bound
on the one hand the approximation error ‖ fλ − fρ‖ (when
specialized to μ = 0), and on the other hand the drift error in
the martingale and reversed martingale decompositions.

Note that the estimate ‖ fλ − fμ‖K = O(|λ − μ|) in the
case r = 1 is not improved by increasing r . This is related to
a phenomenon usually refered to as the saturation problem in
regularizations [13].

Theorem IV.1: Let λ > μ ≥ 0. Assume that L−r
K fρ ∈ L 2

ρX

for some r ≥ −1.
(A) If r ∈ [−1, 1] \ {0}, then

‖ fλ − fμ‖ρ ≤ |λr − μr | ‖L−r
K fρ‖ρ

|r | ;
(B) If r ≥ 1, then for any 1 ≤ s ≤ r ,

‖ fλ − fμ‖ρ ≤ κ2(s−1)|λ − μ|‖L−s
K fρ‖ρ;

(C) If r ≥ 1/2, then

‖ fλ − fμ‖K ≤ |λ − μ|
λ

‖ fρ‖K ;
If r = 1/2, then ‖ fλ − fρ‖K → 0 as λ → 0.
(D) If r ∈ [−1/2, 3/2] \ {1/2}, then

‖ fλ − fμ‖K ≤ |λr−1/2 − μr−1/2| ‖L−r
K fρ‖ρ

|r − 1
2 | ;

(E) If r ≥ 3/2, then for any 3/2 ≤ s ≤ r ,

‖ fλ − fμ‖K ≤ κ2(s−3/2)|λ − μ|‖L−s
K fρ‖ρ.

Proof: Fix λ > μ, assume L−r
K fρ ∈ L 2

ρX
for some

r ∈ [−1, 1] and let ‖.‖ := ‖.‖L 2
ρX

→L 2
ρX

. We first prove
that, for all u ≥ −1, if we let

Ju,λ,μ := (μ − λ)(L K + λI )−1(L K + μI )−1 L1+u
K

then, for all t ∈ [−1, 1] \ {0}, u ≥ t ,

‖Ju,λ,μ‖ ≤ κ2(u−t)|λt − μt |/|t|. (23)

This will be useful, since

fλ − fμ = (μ − λ)(L K + λI )−1(L K + μI )−1 L K fρ
= Jr,λ,μL−r

K fρ, (24)

using that

(L K + λI ) fλ = L K fρ, (L K + μI ) fμ = L K fρ .

Let us prove (23): using ‖Lu−t
K ‖ = ‖L K ‖u−t ≤ κ2(u−t)

by (4), and max(t, 0) + min(0, t) = t ,

‖Ju,λ,μ‖ ≤ |λ − μ|‖(L K + λI )max(t,0)−1 · · ·
·(L K + μI )min(t,0)L−(t+1)

K L1+u
K ‖

≤ |λ − μ|λ−1λmax(t,0)μmin(t,0)‖Lu−t
K ‖

≤ κ2(u−t)|λ − μ|λ−1 max(λt , μt )

= κ2(u−t)�(μ)|λt − μt |,
where

�(μ) :=
⎧⎨
⎩

1 − μ/λ
1−(μ/λ)t if t > 0
1 − μ/λ
1−(λ/μ)t if t < 0

Now

�(μ) ≤ 1

|t| .
Indeed, if t > 0, then this is a consequence of x ≤ (1 − (1 −
x)t )/t applied to x := 1−μ/λ, using that x �→ (1−(1−x)t)/t
(defined on (−∞, 1]) is convex and thus remains above the
tangent line at 0. Similarly, we use x ≤ (1 − (1 − x)−t )/(−t)
if t < 0.

Now (23)-(24) implies (A) with u := r and t := r , and (B)
with u := s and t := 1, since L−r

K fρ ∈ L 2
ρX

implies L−s
K fρ ∈

L 2
ρX

for any s ≤ r . Similarly, (D) (resp. (E)) follows from

L−1/2
K ( fλ − fμ) = Jr−1/2,λ,μL−r

K fρ,

and (23) applied to u := r −1/2 and t := u (resp. u := s−1/2
and t := 1).
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Let us now prove (C): if r ≥ 1/2, then fρ ∈ HK , and the
first part of equality (24) implies

‖ fλ − fμ‖K

≤ |μ − λ|‖(L K + λI )−1‖‖(L K + μI )−1 L K ‖‖L−1/2
K fρ‖ρ

≤ |μ − λ|
λ

‖ fρ‖K .

It remains to show the second part of (C): let us use again
the notation (μα, φα)α∈N for the orthonormal eigensystem
in L 2

ρX
. Now, fλ − fρ = −λ(L K + λI )−1 fρ , so that

‖ fλ − fρ‖2
K =

∑
α∈N

a2
α

μα

(
λ

μα + λ

)2

≤
∑

α≥N0

a2
α

μα
+ λ2

∑
α<N0

a2
α

μ3
α

; (25)

we choose N0 so that for any given ε > 0,
∑

α≥N0
a2
α/μα ≤

ε/2, using ‖ fρ‖2
K = ∑

α∈N
a2
α/μα < ∞. For such fixed N0,

fix λε such that λ2
ε

∑
α<N0

a2
α

μ3
α

< ε/2. Then, for any λ ≤ λε ,

‖ fλ − fρ‖2
K < ε

which establishes the convergence. Note that this conver-
gence can also be derived, using an RKHS density argument,
see [38].

V. UPPER BOUNDS FOR CONVERGENCE IN HK

Throughout this section, we assume that L−r
K fρ ∈ L 2

ρX
for

some r ∈ (1/2, 3/2], which implies fρ ∈ HK with additional
regularity, and assume that the sequences (γt )t∈N and (λt )t∈N

are chosen in (20).
Our goal is to provide a probabilistic upper bound for

‖ ft − fρ‖K ,

in order to prove Theorem B. We start with the triangle
inequality

‖ ft − fρ‖K ≤ ‖ ft − fλt ‖K + ‖ fλt − fρ‖K ,

and apply the reversed martingale decomposition of ( ft )t∈N

developed in Section III, Theorem III.1:

rt = �t
1r0 −

t∑
j=1

γ j�
t
j+1(A j w̄ j − b j ) −

t∑
j=1

�t
j � j . (26)

We make use of the corresponding notation of Section III,
in particular Section III-C, so that

A j w̄ j − b j = (Lt + λt I ) fλt − yt Kxt ,

and

�t
j (x j , . . . , xt ) =

⎧⎪⎨
⎪⎩

t∏
i= j

(I − γi (Li + λi I )) if j ≤ t;

I otherwise.

Now

‖ ft − fρ‖K ≤ Einit (t) + Esamp(t) + Edri f t (t) + Eapprox(t),

where we define the errors as follows:
(A) Initial Error: Einit (t) = ‖�t

1r0‖K comes from the initial
choice f0;
(B) Approximation Error: Eapprox(t) = ‖ fλt − fρ‖K , measures
the distance between the regression function and the regular-
ization path at time t ;
(C) Drift Error: Edri f t (t) = ‖∑t

j=1 �t
j� j‖K comes from the

drift along the regularization path t �→ fλt ;
(D) Sample Error: Esamp(t) = ‖∑t

j=1 γ j�
t
j+1(A j w̄ j −

b j )‖K , where ξ j = γ j�
t
j+1(A j w̄ j − b j ) is a reversed mar-

tingale difference sequence, reflecting the random fluctuation
caused by sampling.

In the remainder of this section, we are going to provide
upper bounds for each of the four errors, which, roughly
speaking when ab = 1, are

Einit (t) = O(t−1),

Eapprox(t) = O(t−(r−1/2)(1−θ)),

Edri f t (t) = O(t−(r−1/2)(1−θ)),

Esamp(t) = O(t
1
2 −θ ).

It is not surprising that the approximation error and drift
error have the same rate, as both of them come from
the estimates on drifts in Theorem IV.1. This suggests our
explanation that the bias = Eapprox(t) + Edri f t (t) and the
variance = Esamp(t). Theorem B then follows from these
bounds by setting θ = 2r/(2r + 1).

A. Initial Error

Theorem V.1 (Initial Error): Let tθ0 ≥ a(κ2 + b). Then for
all t ∈ N,

Einit (t) ≤ B3t−ab
,

where B3 = (t0 + 1)ab‖r0‖K .
Proof:

Einit (t) ≤ ‖�t
1‖‖r0‖K ≤

(
t0 + 1

t + 1

)ab

‖r0‖K

≤
(

t0 + 1

t

)ab

‖r0‖K

where the second last step uses Lemma III.8 (B) with
j = 1.

B. Approximation Error

The approximation error is derived from Theorem IV.1(D)
by setting λ = λt and μ = 0.

Theorem V.2 (Approximation Error): For r ∈ (1/2, 3/2]
and L−r

K fρ ∈ L 2
ρX

,

‖ fλt − fρ‖K ≤ B1br−1/2t−(r−1/2)(1−θ)
,

where B1 = (r − 1/2)−1‖L−r
K fρ‖ρ .
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C. Drift Error

Theorem V.3 (Drift Error): Let tθ0 ≥ [a(κ2 + b) ∨ 1]. Then
for r ∈ (1/2, 3/2] and L−r

K fρ ∈ L 2
ρX

,

Edri f t (t) ≤

⎧⎪⎪⎨
⎪⎪⎩

B2br−1/2t−(r−1/2)(1−θ), · · ·
if ab > (r − 1/2)(1 − θ),

B2br−1/2t−ab
, · · ·

if ab < (r − 1/2)(1 − θ),

where B2 = 4(1 − θ)

|ab − (r − 1/2)(1 − θ)| ‖L−r
K fρ‖ρ .

Proof: We are going to provide an upper bound of

Edri f t (t) = ‖
t∑

j=1

�t
j� j‖K .

First, Lemma III.8 implies, using (18), that for all j , t ∈ N,
t ≥ j ,

‖�t
j ‖ ≤

(
j + t0
t + 1

)ab

, (27)

if tθ0 ≥ a(κ2 + b) (and, therefore, γtαt = γtλt + γtκ
2 ≤

abt−1
0 + aκ2t−θ

0 ≤ 1).
Second, by Theorem IV.1(D),

‖�t‖K (28)

= ‖ fλt − fλt−1‖K ≤
∣∣∣λr−1/2

t − λ
r−1/2
t−1

∣∣∣ ‖L−r
K fρ‖ρ

r − 1
2

≤ br−1/2(1 − θ)(t − 1)−(r−1/2)(1−θ)−1‖L−r
K fρ‖ρ,

where we use

|λr−1/2
t − λ

r−1/2
t−1 | (29)

= br−1/2
∣∣∣t−(r−1/2)(1−θ) − (t − 1)−(r−1/2)(1−θ)

∣∣∣
≤ br−1/2(r − 1/2)(1 − θ)(t − 1)−(r−1/2)(1−θ)−1,

due to the Mean Value Theorem with h(x) = x−(r−1/2)(1−θ)

and h′(x) = −(r − 1/2)(1 − θ)x−(r−1/2)(1−θ)−1, such that for
some η ∈ (t − 1, t),

|h(t) − h(t − 1)| = |h′(η)| ≤ |h′(t − 1)|.
Now combining (27) and (28) gives

Edri f t (t) = ‖
t∑

j=1

�t
j � j‖K

≤ br−1/2(1 − θ)‖L−r
K fρ‖ρ · · ·

·
⎛
⎝ t∑

j=1

(
j + t0
t + 1

)ab

( j + t0 − 1)−(r−1/2)(1−θ)−1

⎞
⎠

≤ 4br−1/2(1 − θ)‖L−r
K fρ‖ρ

(t + 1)ab
· · ·

·
t∑

j=1

( j + t0)
ab−1−(r−1/2)(1−θ).

It suffices to bound
t∑

j=1

( j + t0)
ab−1−(r−1/2)(1−θ)

≤
∫ t+1

0
(x + t0)

ab−1−(r−1/2)(1−θ)dx =: It

Now, if ab > (r − 1/2)(1 − θ), then

It ≤ (t + 1)ab−(r−1/2)(1−θ)

ab − (r − 1/2)(1 − θ)
;

whereas ab < (r − 1/2)(1 − θ) implies

It ≤ tab−(r−1/2)(1−θ)
0

(r − 1/2)(1 − θ) − ab
≤ 1

|ab − (r − 1/2)(1 − θ)| ,
with t0 ≥ 1.

D. Sample Error

Theorem V.4 (Sample Error): Assume that tθ0 ≥ [a(κ2 + b)

∨ b ∨ 1], t1−θ
0 ≥ b and ab �= θ − 1/2 or (3θ − 1)/2. Then,

with probability at least 1 − δ (δ ∈ (0, 1)),

Esamp(t) ≤ B4ab−1/2t
−
[
ab∧ 3θ−1

2

]
+ B5at−[ab∧(θ−1/2)]

where B4 = 2(κ + 1)2 Mρ/3 log 2/δ and B5 = 8κ Mρ/√|ab − (θ − 1/2)| log 2/δ.
The proof of Theorem requires some auxilary estimates.

Recall that we assume here that

At w̄t − bt = ( fλt (xt ) − yt )Kxt + λt fλt .

Lemma V.5: We have
(A) ‖At w̄t − bt‖K ≤ (κ + 1)2 Mρ/

√
λt , if t1−θ

0 ≥ b;
(B) E[‖At w̄t − bt‖2

K ] ≤ 4κ2M2
ρ .

Proof: (A) Using ‖ fλ‖K ≤ Mρ/
√

λ in Lemma B.1(A),

‖At w̄t − bt‖
≤ ‖ fλt (xt )Kxt ‖K + |yt |‖Kxt ‖K + λt‖ fλt ‖K

≤ Mρκ2/
√

λt + Mρκ + Mρ

√
λt

since ‖ fλt (xt)Kxt ‖K = |〈 fλt , Kxt 〉|‖Kxt ‖K ≤
‖ fλt ‖K ‖Kxt ‖2

K ≤ Mρκ2/
√

λt . Now,

Mρκ2/
√

λt + Mρκ + Mρ

√
λt ≤ (κ2 + κ + 1)Mρ/

√
λt

≤ (κ + 1)2 Mρ/
√

λt

where the second last inequality is due to t1−θ
0 ≥ b ⇒ λt ≤ 1.

(B) Using λt fλ = L K fρ − L K fλ we obtain

( fλt (xt )−yt)Kxt + λt fλt = (Lt − L K ) fλt + L K fρ − yt Kxt .

E[‖At w̄t − bt‖2]
= E‖(Lt − L K ) fλt + L K fρ − yt Kxt ‖2

K

≤ 2E[‖(Lt − L K ) fλt ‖2
K + ‖L K fρ − yt Kxt ‖2

K ]
≤ 2E[‖Lt fλt ‖2

K + ‖yt Kxt ‖2
K ]

≤ 2κ2(‖ fλt ‖2
ρ + M2

ρ) = 4κ2M2
ρ

since E[Lt ] = L K , E[yt Kxt ] = L K fρ and ‖ fλ‖ρ ≤ Mρ by
Lemma B.1(B).
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Now we are ready to give the proof of the sample error
bounds, Theorem V-D.

Proof of Theorem V-D: We are going to bound

Esamp(t) =
∥∥∥∥∥∥

t∑
j=1

ξ j

∥∥∥∥∥∥
K

where ξ j = γ j�
t
j+1(A j w̄ j − b j ) is a reversed martingale

difference sequence. To apply the Pinelis-Bernstein inequality
in Proposition A.3, we need bounds on ‖ξ j ‖K and E j+1‖ξ j ‖2

K
where E j+1[·] is the expectation conditional on examples after
time j .

Notice that for tθ0 ≥ a(κ2 + b) and j ≥ 1, using 1 + x ≤ ex

for all x ∈ R,

‖γ j �
t
j+1‖ ≤ a

( j + t0)θ

(
j + t0 + 1

t + 1

)ab

≤ a( j + t0)ab−θ

(t + 1)ab
(1 + t−1

0 )ab

≤ ea( j + t0)ab−θ

(t + 1)ab
,

where e is the Euler constant.
Now Lemma V.5 (B) implies

E[‖At w̄t − bt‖2
K ] ≤ 4κ2M2

ρ .

Hence

E j+1‖ξ j‖2 ≤ 4e2(aκ Mρ)2( j + t0)2ab−2θ

(t + 1)2ab
,

so that, if t0 ≥ 2,

t∑
j=1

E j+1‖ξ j ‖2 (30)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2e2(aκ Mρ)2

ab − (θ − 1
2 )

(t + 1)−2θ−1, if ab > θ − 1
2 ;

2e2(aκ Mρ)2

(θ − 1
2 ) − ab

(t + 1)−2ab, if ab < θ − 1
2 .

On the other hand, if t1−θ
0 ≥ b, Lemma V.5 (A) implies

‖A j w̄ j − b j‖K ≤ (κ + 1)2 Mρ/
√

λ j ,

whence

‖ξ j‖K ≤ ea(κ + 1)2Mρ√
b

· ( j + t0)ab−(3θ−1)/2

(t + 1)ab

≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ea(κ + 1)2Mρ√
b

t−(3θ−1)/2
,

if ab ≥ (3θ − 1)/2;
ea(κ + 1)2Mρ√

b
t−ab

,

if ab ≤ (3θ − 1)/2.

(31)

The final bound is obtained by Pinelis-Bernstein inequality in
Proposition A.3 with (30) and (31). �

E. Proof of Theorem B

We choose θ = 2r/(2r + 1), a ≥ 1, b ≤ 1 such that
ab = 1, and assume tθ0 ≥ aκ2 + 1; hence the assumptions of
Theorems V.1–V.2 are satisfied. Let us check that the condi-
tions of Theorem V-D also hold: t0 ≥ 1, b ≤ 1 and θ < 1
readily imply t1−θ

0 ≥ b, and ab = 1 �= θ − 1/2 or (3θ − 1)/2.
Using theorems V.1–V-D, we deduce

‖ ft − fρ‖K

≤ Einit (t) + Eapprox(t) + Edri f t (t) + Esamp(t)

≤ B3t−ab + [(B1 + B2)a
1/2−r · · ·

+(B4t−θ
0

√
a + B5)a]t−(2r−1)/(4r+2)

.

Note that, by Lemma V.5(A) with f0 = 0,

B3 = (t0 + 1)‖r0‖ = (t0 + 1)‖ fλ0‖
≤ C0 := 2t0

Mρ√
λ0

= 2t
4r+3
4r+2

0 Mρ

On the other hand,

C1 := B1 + B2 =
(

2

2r − 1
+ 8

2r + 3

)
‖L−r

K fρ‖ρ

= 20r − 2

(2r − 1)(2r + 3)
‖L−r

K fρ‖ρ

and, using Â 
√

at−θ
0 ≤ κ−1 and t0 ≥ 1,

B4t−θ
0

√
a + B5 ≤ 2(κ + 1)2Mρ

3κ
+ 8κ Mρ√

3/4

≤ C2 := 20(κ + 1)2Mρ

κ
,

which concludes the proof of Theorem B.

VI. UPPER BOUNDS FOR CONVERGENCE IN L 2
ρX

Throughout this section, we assume that L−r
K fρ ∈ L 2

ρX

for some r ∈ [1/2, 3/2], which implies fρ ∈ HK with
additional regularity, and assume the sequences (γt )t∈N and
(λt )t∈N are chosen in (20). Note that the case r = 1/2 is
included here, whereas it was not in Section V and Theorem B.

Our goal is to provide a probabilistic upper bound of

‖ ft − fρ‖ρ,

in order to prove Theorem C. As in Section V, we start with
the triangle inequality

‖ ft − fρ‖ρ ≤ ‖ ft − fλt ‖ρ + ‖ fλt − fρ‖ρ,

but apply here the martingale decomposition of ( ft )t∈N0 in
L 2

ρX
developed in Theorem III.3 instead:

rt = �̄t
1r0 +

t∑
j=1

γ j �̄
t
j+1χ j −

t∑
j=1

�̄t
j � j .

We make use of the corresponding notation of Section III,
in particular III-C, so that

χt = (L K − Lt ) ft−1 + (yt Kxt − L K fρ),
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and

�̄t
j =

⎧⎪⎨
⎪⎩

t∏
i= j

(I − γi (L K + λi I )) if j ≤ t;

I otherwise.

(32)

The martingale decomposition enables us to make use of
the isometry L1/2

K : L 2
ρX

→ HK , in the sense that one

can benefit from the spectral decomposition of L1/2
K �̄t

j to get
a tighter estimate. This was not possible with the reversed
martingale decomposition, since L1/2

K �t
j does not have an

obvious spectral decomposition.
Note however that χt depends on ft−1, so that we need

preliminary estimates of ‖χt‖ρ , provided in Appendix B.
As in Section V, we introduce the following definitions for

convenience.
[Definitions of Errors]

(A) Initial Error: Einit (t) = ‖�̄t
1r0‖ρ , which reflects the

propagation error by the initial choice f0;
(B) Approximation Error: Eapprox(t) = ‖ fλt − fρ‖ρ , which
measures the distance between the regression function and the
regularization path at time t;
(C) Drift Error: Edri f t (t) = ‖∑t

j=1 �̄t
j � j‖ρ , which measures

the error caused by drifts from fλ j−1 to fλ j along the regular-
ization path;
(D) Sample Error: Esamp(t) = ‖∑t

j=1 γ j �̄
t
j+1χ j‖ρ , where

χ j is a martingale difference sequence, reflecting the random
fluctuation caused by sampling.

Our aim is to bound

‖ ft − fρ‖ρ ≤ Einit (t) + Esamp(t) + Edri f t (t) + Eapprox(t).

In the remainder of this section, we are going to provide upper
bounds for each of the four errors, which, roughly speaking
when ab = 1, are

Einit (t) = O(t−1)

Eapprox(t) = O(t−r(1−θ))

Edri f t (t) = O(t−r(1−θ))

Esamp(t) = O(t−θ/2)

This suggests our explanation that the bias = Eapprox(t) +
Edri f t (t) = O(t−r(1−θ)) and the variance = Esamp(t) =
O(t−θ/2) similar to the batch learning setting. Theorem C then
follows from these bounds by setting θ = 2r/(2r + 1).

A. Initial Error

Theorem VI.1 (Initial Error): Let tθ0 ≥ a(κ2 + b). Then for
all t ∈ N,

Einit (t) ≤ B6t−ab
,

where B6 = Mρ(t0 + 1)ab.
Proof: Lemma III.8(B) with j = 1 and (18) imply that,

if tθ0 ≥ a(κ2 + b),

Einit (t) ≤ ‖�̄t
1‖‖r0‖ ≤

(
t0 + 1

t + 1

)ab

‖r0‖.

For f0 = 0, using Lemma B.1(B), ‖r0‖ρ = ‖ fλ0‖ρ ≤ Mρ .

B. Approximation Error

Theorem VI.2 (Approximation Error): For r ∈ (0, 1] and
L−r

K fρ ∈ L 2
ρX

,

Eapprox(t) ≤ B7br t−r(1−θ)
,

where B7 = r−1‖L−r
K fρ‖ρ .

Proof: Follows from Theorem IV.1(A) with λ = λt and
μ = 0.

C. Drift Error

Theorem VI.3 (Drift Error): Assume tθ0 ≥ [a(κ2 + b) ∨ 1].
Then, if r ∈ (0, 1] and L−r

K fρ ∈ L 2
ρX

,

Edri f t (t) ≤
{

B8br t−r(1−θ)
, if ab > r(1 − θ);

B8br t−ab
, if ab < r(1 − θ),

where B8 = 4(1 − θ)

|ab − r(1 − θ)|‖L−r
K fρ‖ρ .

Proof: Similar to the proof of Theorem V.3, replacing
r − 1/2 with r .

D. Sample Error

In this section we assume b = a−1 for simplicity; this
is necessary for the bounds in Appendix B, in particular
Corollary B.7, and is enough to provide the optimal bounds
we need (see discussion after statement of Theorem A).

Theorem VI.4 (Sample Error): Assume that L−r
K fρ ∈

L 2
ρX

for some r ∈ [1/2, 1], θ ∈ [1/2, 2/3], ab = 1, a ≥ 4
and tθ0 ≥ 2 + 8κ2a. Then, for all t ∈ N, with probability at
least 1 − δ (δ ∈ (0, 1))

Esamp(t) ≤ √
aB9

log(2/δ)

tθ/2 · · ·

+
(

a3/2B10

√
log t + a5/2 B11

)
(log(2/δ))2

t (3θ−1)/2
,

where

B9 := 10κ Mρ, B10 := 63κ2Mρ , B11 := 50κ2Mρ t1/2−θ
0 .

Fix t ∈ N, δ ∈ [0, 1], and let

At,δ := κ Mρa

[
12at1/2−θ

0 + 15
√

log t

]
log

2

δ
. (33)

For all j ∈ N, let us define the martingale difference
sequence

X j := γ j�̄
t
j+1χ j 1{‖h j−1‖K ( j+t0)θ−1/2≤At,δ },

where we make use of the notation of Appendix B. Recall that
Corollary B.7 implies, with probability at least 1 − δ, all the
indicator function events for 1 ≤ j < t hold, which will be
assumed in the computation below.

Recall that

χ j = ( Ā j − A j )w j−1 + b j − b̄ j

= (L K − L j ) f j−1 + y j Kx j − L K fρ

where L j := 〈 , Kx j 〉Kx j .
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Using Lemma B.3 and the decomposition f j = fρ + g j +
h j in Appendix B, we deduce that, for all 1 ≤ j < t ,
if ‖h j−1‖K ( j + t0)θ−1/2 ≤ At,δ,

E j−1‖χ j ‖2
K

= E j−1‖y j Kx j − L j f j−1 − (L K fρ − L K f j−1)‖2
K

≤ E j−1‖y j Kx j − L j f j−1‖2
K

≤ E j−1‖(y j Kx j − L j fρ) − L j g j−1 − L j h j−1‖2
K

≤ 3κ2[E j−1|y j − fρ(x j )|2 + E j−1|g j−1(x j )|2 · · ·
· · · + E j−1|h j−1(x j )|2]

≤ 3κ2[4M2
ρ + ‖g j−1‖2

ρ + ‖h j−1‖2
ρ ]

≤ 3κ2[5M2
ρ + κ2( j + t0)

1−2θ A2
t,δ] =: A′

j,t,δ

Now, using the isometry L1/2
K : L 2

ρX
→ HK ,

t∑
j=1

E j−1‖X j ‖2
ρ

=
t∑

j=1

E j−1‖L1/2
K X j‖2

K =
t∑

j=1

γ 2
j E j−1‖L1/2

K �̄t
j+1χ j‖2

K

≤
t∑

j=1

(
γ 2

j ‖�̄t
j+1L K �̄t

j+1‖
)

E j−1‖χ j‖2
K

≤
t∑

j=1

γ 2
j A′

j,t,δ‖�̄t
j+1L K �̄t

j+1‖

In order to estimate
∑t

j=1 γ 2
j A′

j,t,δ‖�̄t
j+1L K �̄t

j+1‖, recall
that (μα, φα)α∈N is an orthonormal eigen-system of L K :
L 2

ρX
→ L 2

ρX
. Let ai = γiλi + γiμα for simplicity;

then

t∑
j=1

γ 2
j A′

j,t,δ‖�̄t
j+1L K �̄t

j+1‖

≤ sup
μα

t∑
j=1

γ 2
j A′

j,t,δμα

t∏
i= j+1

(1 − ai )
2

= sup
μα

t∑
j=1

⎡
⎣γ j A′

j,t,δ

t∏
i= j+1

(1 − ai )

⎤
⎦ ·
⎡
⎣γ jμα

t∏
i= j+1

(1 − ai)

⎤
⎦

≤ sup
μα

⎧⎨
⎩
⎡
⎣sup

j
γ j A′

j,t,δ

t∏
i= j+1

(1 − ai)

⎤
⎦ . . .

·
⎡
⎣ t∑

j=1

γ jμα

t∏
i= j+1

(1 − ai )

⎤
⎦
⎫⎬
⎭

where for large enough t0,

sup
j

γ j A′
j,t,δ

t∏
i= j+1

(1 − ai )

≤ sup
j

γ j A′
j,t,δ

t∏
i= j+1

(1 − γiλi )

≤ 3aκ2 sup
j

j + t0
t

·
(

5M2
ρ

( j + t0)θ
+ κ2 A2

t,δ

( j + t0)3θ−1

)

≤ 3aκ2

(
5M2

ρ

tθ
+ κ2 A2

t,δ

t3θ−1

)
,

and
t∑

j=1

γ jμα

t∏
i= j+1

(1 − ai )

≤
t∑

j=1

(1 − (1 − γ jμα))

t∏
i= j+1

(1 − γiμα)

= 1 −
t∏

i=1

(1 − γiμα) ≤ 1.

These two upper bounds give

t∑
j=1

E j−1‖X j ‖2
ρ ≤ 3aκ2

tθ

(
5M2

ρ + κ2 A2
t,δ

t2θ−1

)
=: σ 2

t . (34)

Moreover, again if ‖h j−1‖K ( j+t0)θ−1/2 ≤ At,δ, then, using
Lemma B.3 (B) and Corollary B.7, we deduce

‖y j Kx j − L j f j−1‖K

= ‖y j Kx j − L j ( fρ + g j−1 + h j−1)‖K

≤ κ Mρ + κ2 Mρ√
λ j

+ κ2 At,δ( j + t0)
1/2−θ =: C j,t,δ,

which implies

‖χ j‖K = ‖y j Kx j − L j f j−1 − E j [y j Kx j − L j f j−1]‖K

≤ 2C j,t,δ.

Therefore

‖X j ‖ρ ≤ γ j‖L1/2
K �̄t

j+1χ j‖K ≤ 2γ j C j,t,δ‖�̄t
j+1 L K �̄t

j+1‖1/2
K

≤ 2κ sup
j

γ j C j,t,δ

t∏
i= j+1

(1 − γiλi ), ‖L K ‖ ≤ κ2

≤ 2aκ2 sup
j

j + t0
t

·
(

Mρ

( j + t0)θ
. . .

. . . + κ Mρ
√

a

( j + t0)(3θ−1)/2
+ κ At,δ

( j + t0)2θ−1/2

)

≤ 2aκ2
(

Mρ

tθ
+ κ Mρ

√
a

t (3θ−1)/2
+ κ At,δ

t2θ−1/2

)

≤ 2
√

aκ

tθ/2

(
Mρ + κ

κ Mρa + At,δ

tθ−1/2

)
=: M,

where we use t0 ≥ κ2 twice in the last inequality.
Combining M and σt from (34), we obtain

2

(
M

3
+ σt

)

= 2
√

aκ

tθ/2

[(√
15+ 2

3

)
Mρ +κ

(
√

3+1/3)At,δ+κ Mρa/3

tθ−1/2

]

≤
√

aB9

tθ/2 +
(

a3/2B10

√
log t + a5/2 B11

)
log(2/δ)

t (3θ−1)/2
,
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where we use that

B9 = 10κ Mρ ≥ 2κ(
√

15 + 2/3)Mρ,

B10 = 63κ2Mρ ≥ κ2Mρ [30(
√

3 + 1/3) + 2/(3 log 2)],
B11 = 50κ2Mρ t1/2−θ

0 ≥ 24κ2Mρ t1/2−θ
0 (

√
3 + 1/3). �

E. Proof of Theorem C

We choose θ = 2r/(2r + 1), a ≥ 1, b ≤ 1 such that
ab = 1, and assume tθ0 ≥ 8aκ2 + 2; hence the assumptions of
Theorems VI.1–VI.4 are satisfied, and ab = 1 > r(1 − θ) in
Theorem VI.3. Using Theorems VI.1–VI.4, we deduce

‖ ft − fρ‖ρ

≤ Einit (t) + Eapprox(t) + Edri f t (t) + Esamp(t)

≤ B6

t
+
(

(B7 + B8)a
−r + √

a B9 log
2

δ

)(
1

t

) r
2r+1

. . .

. . . +
(

a3/2 B10

√
log t + a5/2B11

)
(log(2/δ)2

t
6r−1
4r+2

,

This enables us to conclude, with D0 := 2Mρ t0 ≥ B6 =
Mρ(t0 + 1),

D1 := B7 + B8 = 5r + 1

r(1 + r)
‖L−r

K fρ‖ρ,

D2 := B9, D3 := B10, and D4 := B11.

APPENDIX A
A PROBABILISTIC INEQUALITY

The following result is quoted from [Theorem 3.4 in [23]].
Lemma A.1 (Pinelis-Bennett): Let ξi be a martingale differ-

ence sequence in a Hilbert space. Suppose that almost surely
‖ξi‖ ≤ M and

∑t
i=1 Ei−1‖ξi‖2 ≤ σ 2

t . Then

Prob

{
sup

1≤k≤t

∥∥∥∥∥
k∑

i=1

ξi

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− σ 2

t

M2 g

(
Mε

σ 2
t

)}
,

where g(x) = (1 + x) log(1 + x) − x for x > 0.
Using the lower bound g(x) ≥ x2

2(1+x/3) , one may obtain
the following generalized Bernstein’s inequality.

Corollary A.2 (Pinelis-Bernstein): Let ξi be a martingale
difference sequence in a Hilbert space. Suppose that almost
surely ‖ξi‖ ≤ M and

∑t
i=1 Ei−1‖ξi‖2 ≤ σ 2

t . Then

Prob

{
sup

1≤k≤t

∥∥∥∥∥
k∑

i=1

ξi

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− ε2

2(σ 2
t + Mε/3)

}
.

(A-1)
The following result will be used as a basic probabilistic

inequality to derive various bounds.
Proposition A.3: Let ξi be a martingale difference sequence

in a Hilbert space. Suppose that almost surely ‖ξi‖ ≤ M
and

∑t
i=1 Ei−1‖ξi‖2 ≤ σ 2

t . Then the following holds with
probability at least 1 − δ (δ ∈ (0, 1)),

sup
1≤k≤t

∥∥∥∥∥
k∑

i=1

ξi

∥∥∥∥∥ ≤ 2

(
M

3
+ σt

)
log

2

δ
.

Proof: Taking the right hand side of (A-1) to be δ, then
we arrive at the following quadratic equation for ε,

ε2 − 2M

3
ε log

2

δ
− 2σ 2

t log
2

δ
= 0.

Note that ε > 0, then

ε = 1

2

⎧⎨
⎩

2M

3
log

2

δ
+
√

4M2

9
log2 2

δ
+ 8σ 2

t log
2

δ

⎫⎬
⎭

= M

3
log

2

δ
+
√(

M

3

)2

log2 2

δ
+ 2σ 2

t log
2

δ

≤ 2M

3
log

2

δ
+
√

2σ 2
t log

2

δ
,

where the second last step is due to
√

a2 + b2 ≤ a + b
(a, b > 0) with

a = M

3
log

2

δ
, and b =

√
2σ 2

t log
2

δ
.

We complete the proof by relaxing
√

2σ 2
t log 2/δ ≤

2σt log 2/δ since 2 log 2/δ > 1 for δ ∈ (0, 1).

APPENDIX B
PRELIMINARY UPPER BOUNDS

Appendix B is devoted to the proof of preliminary upper
bounds on the online learning sequence ( ft )t∈N defined in (7),
and on the regularization path λ �→ fλ. We make use of
the notation of Section III, in particular Section III-C. For
simplicity we assume f0 := 0; note that another choice would
correspond to adding �t

1 f0 to ft at time t . We assume that
the sequences (γt )t∈N and (λt )t∈N are chosen as in (20).

Firstly, Lemmas B.1 and B.2 provide deterministic upper
bounds. Then the rest of the Appendix aims at obtaining
probabilistic bounds of ( ft )t∈N, based on a decomposition of
ft − fρ into two parts in (B-2): gt is purely deterministic and
is upper bounded in L 2

ρX
-norm in Lemma B.3, and ht is

studied in detail in Lemmas B.4 and following. Lemma B.7
yields logarithmic estimates with large probability.

Lemma B.1: For any λ > 0,
(A) ‖ fλ‖K ≤ Mρ/

√
λ;

(B) ‖ fλ‖ρ ≤ Mρ .
Proof: (A) By definition,

fλ = arg min
f ∈HK

‖ f − fρ‖2
ρ + λ‖ f ‖2

K .

The term we minimize on the right-hand side takes the value
‖ fρ‖2

ρ at f = 0, so that

‖ fλ − fρ‖2
ρ + λ‖ fλ‖2

K ≤ ‖ fρ‖2
ρ ≤ M2

ρ, (B-1)

which yields the result.
(B) Using (6),

‖ fλ‖ρ = ‖(L K + λI )−1 L K fρ‖ρ

≤ ‖(L K + λI )−1 L K ‖‖ fρ‖ρ ≤ ‖ fρ‖ρ ≤ Mρ .
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Lemma B.2: Assume tθ0 ≥ a(κ2 + b). Then, for all t ∈ N,

‖ ft‖K ≤ κ Mρ

λt
.

Proof: Recall that ft = (I − γt At ) ft−1 + γt yt Kxt . Now
assume tθ0 ≥ a(κ2 + b): using Lemma III.8 (see also (21)),

‖ ft‖K ≤ ‖1 − γt At‖‖ ft−1‖K + γt‖yt Kxt ‖K

≤ (1 − γtλt )‖ ft−1‖K + γtκ Mρ .

By induction on t , we deduce

‖ ft‖K ≤ κ Mρ

t∑
j=1

γ j

t∏
i= j+1

(1 − γiλi )

≤ max
1≤ j≤t

(
1

λ j
)

t∑
j=1

γ jλ j

t∏
i= j+1

(1 − γiλi ) ≤ 1

λt
,

since
t∑

j=1

γ jλ j

t∏
i= j+1

(1 − γiλi ) = 1 −
t∏

i=1

(1 − γiλi ).

In the rest of Appendix, we prove probabilistic bounds of
( ft )t∈N0 . First, using Lt = 〈

, Kxt

〉
Kxt (Eq. (19)), observe

that the definition of the online learning sequence (7) can be
rewritten as,

ft − fρ = [I − γt (Lt + λt I )]( ft−1 − fρ) . . .

. . . + γt (yt Kxt − Lt fρ) − γtλt fρ .

Let us now define the following (Ft )t∈N0-adapted processes
(gt )t∈N0 and (ht )t∈N0 recursively by

g0 := − fρ, h0 := 0,

and

gt : = [I − γt (L K + λt I )]gt−1 − γtλt fρ,

ht : = [I − γt (Lt + λt I )]ht−1 . . .

. . . + γt (yt Kxt − Lt fρ) + γt (L K − Lt )gt−1.

We can easily prove by induction that

ft − fρ = gt + ht , (B-2)

using f0 = 0.
Lemma B.3: Assume tθ0 ≥ a(κ2 + b). Then, for all t ∈ N0,
(A) ‖gt‖ρ ≤ Mρ ;
(B) ‖gt + fρ‖K ≤ 3Mρ/

√
λt .

Proof: We prove (A) by induction: ‖g0‖ρ = ‖ fρ‖ρ ≤
Mρ and, for all t ∈ N, if we assume ‖gt−1‖ρ ≤ Mρ then,
using (22),

‖gt‖ρ ≤ ‖I − γt (L K + λt I )]‖‖gt−1‖ρ + γtλt‖ fρ‖ρ

≤ (1 − γtλt )‖gt−1‖ρ + γtλt Mρ ≤ Mρ .

To prove (B), observe that, for all t ∈ N,

gt + fρ = [I − γt (L K + λt I )]gt−1 + (1 − γtλt ) fρ
= [I − γt (L K + λt I )](gt−1 + fρ) + γt L K fρ
= [I −γt (L K +λt I )](gt−1 + fρ) + γt (L K + λt I ) fλt ,

so that

gt + fρ − fλt = [I − γt (L K + λt I )](gt−1 + fρ − fλt ).

Let, for all t ∈ N,

wt := gt + fρ − fλt .

Then it is easy to show by induction that

wt = �̄t
1w0 +

t∑
k=1

�̄t
k( fλk − fλk−1)

which implies, using Theorem IV.1 (D) with r = 0, and
Lemma B.1 (A) (w0 = − fλ0 ) that

‖wt‖ ≤ 2Mρ/
√

λt .

This enables us to conclude, using again Lemma B.1 (A).
For all t ∈ N0, Mt ∈ R+ ∪ {∞}, let

Lt : = 1{|ht−1(xt )|≤Mt }Lt , L̃t := 1{|ht−1(xt )|>Mt }Lt ,

L K : = Et−1[Lt ], L̃ K := Et−1[L̃t ].
Note that Lt = Lt + L̃t and L K = L K + L̃ K .

For all t ∈ N, let

ht := [I − γt (Lt + λt I )]ht−1 + γt (yt Kxt − Lt fρ)

+γt (L K − Lt )gt−1

= ht + γt L̃ t ht−1 (B-3)

kt := ht − (1 − γtλt )ht−1

= γt [−Lt ht−1 + (yt Kxt −Lt fρ) + (L K − Lt )gt−1]
(B-4)

= γt [−Lt ht−1 + yt Kxt + L K gt−1−Lt ( fρ + gt−1)].
(B-5)

In Lemma B.4 we upper bound ‖ht‖2
K in conditional

expectation; note that the result still holds when Mt = ∞.
We threshold ht into ht in order to limit its conditional vari-
ance, which will be necessary in order to obtain logarithmic
estimates with large probability in Lemma B.7, using on the
other hand Lemma B.6 showing that, if Mt is large enough,
‖ht‖K ≤ ‖ht‖K .

Lemma B.4: Assume tθ0 ≥ 2a(b + κ2). For all t ∈ N,
Mt ∈ R+ ∪ {∞}, we have

Et−1[‖ht‖2
K ] ≤ (1 − γtλt )

2‖ht−1‖2
K + 3κ2M2

ργ 2
t .

In particular, assume moreover that θ ≥ 1/2, ε := ab −
(θ − 1/2) > 0 and t0 ≥ max(2ab, 2ε, ε + (2θ − 1)/ε), and let
A := aκ Mρ

√
3/ε. Then ‖ht−1‖K ≥ At1/2−θ implies

tθ−1/2
Et−1[‖ht‖K ] ≤ (t − 1)θ−1/2‖ht−1‖K .

Proof: For all t ∈ N, let

ζt := (L K − Lt )ht−1 + (L K − Lt )gt−1 + (yt Kxt − Lt fρ),

so that

ht = [I − γt (L K + λt I )]ht−1 + γtζt .

Using Et−1[ζt ] = 0, we deduce that

Et−1[‖ht‖2
K ] (B-6)

= ‖[I − γt (L K + λt I )]ht−1‖2
K + γ 2

t Et−1[‖ζt‖2
K ].
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Let us now upper bound the two summands in the right-hand
side of equality (B-7). First,

‖[I − γt (L K + λt I )]ht−1‖2
K

= (1 − γtλt )
2‖ht−1‖2

K − 2γt (1 − γtλt ) . . .

. . . · Et−1[|ht−1(xt )|21{|ht−1(xt )|≤Mt }]

. . . + γ 2
t ‖Et−1[Lt ht−1]‖2

K ,

and

‖Et−1[Lt ht−1]‖2
K

≤ (
Et−1[|ht−1(xt )|1{|ht−1(xt )|≤Mt }‖Kxt ‖K ])2

≤ κ2
Et−1[|ht−1(xt )|21{|ht−1(xt )|≤Mt }],

using conditional Jensen’s inequality.
Second, using that E[yt Kxt − Lt fρ | σ(Ft−1, xt )] = 0,

Et−1[‖ζt‖2
K ]

= Et−1[‖(L K − Lt )ht−1 + (L K − Lt )gt−1‖2
K . . .

. . . + ‖yt Kxt − Lt fρ‖2
K ]

≤ Et−1[‖Lt ht−1 + Lt gt−1‖2
K + ‖yt Kxt ‖2

K ]
≤ κ2

(
2Et−1[|ht−1(xt )|21{|ht−1(xt )|≤Mt }] + 2‖gt−1‖2

ρ + M2
ρ

)

≤ κ2
(

2Et−1[|ht−1(xt )|21{|ht−1(xt )|≤Mt }] + 3M2
ρ

)
,

where we use Lemma B.3 (A) in the last inequality.
In summary, we obtain that

Et−1[‖ht‖2
K ]

≤ (1 − γtλt )
2‖ht−1‖2

K − γt (2 − 2γtλt − 3γtκ
2) . . .

. . . · Et−1[|ht−1(xt )|21{|ht−1(xt )|≤Mt }] . . .

. . . + 3κ2M2
ργ 2

t .

Now, the assumption tθ0 ≥ 2a(b + κ2) implies 2 − 2γtλt −
3γtκ

2 ≥ 0 for all t ∈ N, which completes the proof of the
first statement.

Let us now prove the second statement:

�t : = Et−1

[(
1 − 1

t

)1−2θ

‖ht‖2 − ‖ht−1‖2

]

≤
(

1 − 1

t

)1−2θ (
1 − ab

t

)2

‖ht−1‖2 . . .

. . . − ‖ht−1‖2 + 3κ2M2
ρa2t−2θ

. (B-7)

Now, since t0 ≥ max(2ab, 2ε, ε + (2θ − 1)/ε) and θ ≥ 1/2,
we have

log

[(
1 − 1

t

)1−2θ (
1 − ab

t

)2 (
1 − ε

t

)−1
]

≤ −ε

t
+ 2θ − 1 + ε2

t2 ≤ 0.

using log(1 − x) ≤ −x for all x ∈ [0, 1] and log(1 − x) ≥
−x − x2 for all x ∈ [0, 1/2].

Therefore (B-7) implies

�t ≤ −ε

t
‖ht−1‖2 + 3κ2M2

ρa2t−2θ ≤ 0.

The conclusion follows by conditional Jensen’s inequality.

Lemma B.5: Assume tθ0 ≥ a(κ2 + b) and t1−θ
0 ≥ b(2 +

Mt M−1
ρ ); then

‖kt‖K ≤ 2κ Mρab−1t1−2θ and Et−1[‖kt‖2
K ] ≤ 9γ 2

t M2
ρκ2.

Proof: By definition (B-5), using ‖Kxt ‖K ≤ κ , ‖L K

fρ‖K ≤ κ‖L1/2
K fρ‖K = κ‖ fρ‖ρ ≤ κ Mρ and Lemma B.3

(A)-(B), we deduce

‖kt‖K ≤ γt
[
κ(Mt + 2Mρ) + ‖Lt ( fρ + gt−1)‖K

]

≤ κγt

(
Mt + 2Mρ + Mρ

λt

)
≤ 2κγt Mρ

λt

= 2κ Mρab−1

t2θ−1 ,

where we use t1−θ
0 ≥ b(2 + Mt M−1

ρ ) in the last inequality.
Now, using (B-3), we obtain

Et−1[‖kt‖2
K ]

≤ 3γ 2
t

[
Et−1[‖Lt ht−1‖2

K ] . . .

. . . + Et−1[‖yt Kxt ‖2
K ] + Et−1[‖Lt gt−1‖2

K ]
]

≤ 3γ 2
t [2M2

ρκ2 + ‖gt−1‖ρκ2] ≤ 9γ 2
t M2

ρκ2.

Lemma B.6: For all t ∈ N, assume Mt ≥ 4κ Mρab−1t1−2θ ,
tθ0 ≥ 2a(κ2 + b) and t1−θ

0 ≥ b(2 + Mt M−1
ρ ); then

‖ht‖K ≤ ‖ht‖K .
Proof: Assume ht−1(xt ) ≥ Mt for instance; the other case

is similar. By definition,

ht = ht − γt ht−1(xt )Kxt

so that

‖ht‖2
K = ‖ht‖2

K − 2γtht−1(xt )ht (xt ) . . .

. . . + γ 2
t (ht−1(xt ))

2 K (xt , xt ) ≤ ‖ht‖2
K

if ht (xt ) ≥ κ2γt ht−1(xt)/2.
But, using Lemma B.5,

ht (xt ) = (1 − γtλt )ht−1(xt ) + kt (xt )

≥ (1 − γtλt )ht−1(xt ) − 2κ Mρab−1t1−2θ

≥ κ2γt ht−1(xt )/2,

if 2κ Mρab−1t1−2θ ≤ ht−1(xt )/2 ≤ ht−1(xt )(1 − γtλt −
κ2γt/2), since the assumption tθ0 ≥ 2a(κ2 + b) implies
1 − γtλt − κ2γt/2 ≥ 1/2.

The following logarithmic upper bound holds under the
assumptions ab−(θ−1/2) > 0, θ ∈ [1/2, 1] and t0 sufficiently
large, but we assume b = a−1 in its statement, for notational
reasons.

Corollary B.7: Assume θ ∈ [1/2, 1], b = a−1, tθ0 ≥ 2 +
8κ2a and t1−θ

0 ≥ 4b. Then, with probability at least 1 − δ,

sup
0≤k≤t

‖hk‖K (k + t0 + 1)θ−1/2

≤ κ Mρa

[
12at1/2−θ

0 + 15
√

log t

]
log

2

δ
.

Proof: Let us first check that the assumptions of
Lemmas B.4, B.5 and B.6 are satisfied, and apply these
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lemmas: tθ0 ≥ 3 + 8κ2a ≥ 2a(κ2 + b). Now ε = ab − (θ −
1/2) ∈ [1/2, 1], and the hypothesis t0 ≥ max(2ab, 2ε, ε +
(2θ −1)/ε) is satisfied as long t0 ≥ 3, which is assumed here.
We choose Mt = 4κ Mρab−1t1−2θ ; now tθ0 ≥ 8κa and t1−θ

0 ≥
4b imply t1−θ

0 ≥ b(2 + 4κab−1t1−2θ
0 ) ≥ b(2 + Mt M−1

ρ ).
For all i ∈ N, if ‖hi−1‖K ≥ A(i + t0)1/2−θ , A :=

aκ Mρ
√

3/ε, then

‖hi‖K ≤ ‖h̄i‖K , (Lemma B.6)

≤ ‖h̄i‖K + Ei−1(‖h̄i‖K ) − Ei−1(‖h̄i‖K )

≤
(

1 − 1

i + t0

)θ−1/2

‖hi−1‖K + εi ,

(Lemma B.4)

where

εi := ‖hi‖K − Ei−1(‖hi‖K )

satisfies

‖εi‖K ≤ 4κ Mρab−1(i + t0)
1−2θ , and

Ei−1[‖εi‖2] ≤ 9γ 2
i M2

ρκ2.

Let, for all i ∈ N,

ηi :=
i∑

k=1

εk(k + t0)
θ−1/21{‖hk−1‖K ≥A(k+t0)1/2−θ }.

Fix t ∈ N. For all 0 ≤ i < t , ‖ηi+1 −ηi‖ ≤ 4κ Mρa2t1/2−θ
0 ,

and
t∑

k=1

Ek−1‖ηk‖2 ≤ 9κ2M2
ρa2

t∑
k=1

(k + t0)
−1

≤ 9κ2M2
ρa2 log(1 + t/t0).

Let

� :=
{

sup
1≤i≤t

‖ηi‖ . . .

. . . ≤ 2κ Mρa

[
4at1/2−θ

0

3
+ 3

√
log

(
1 + t

t0

)]
log

2

δ

}
.

By Proposition A.3, P(�) ≥ 1 − δ.
Now assume � holds. Let, for all k ∈ N,

xk := ‖hk‖K (k + t0 + 1)θ−1/2.

For all k ≤ t , let

m := max{ j ≤ k : ‖h j ‖K < A( j + t0 + 1)1/2−θ }.
If m < k, then

xm+1 ≤ [A(m + t0 + 1)1/2−θ + 2κ Mρa2 . . .

. . . · (m + t0 + 1)1−2θ ](m + t0 + 2)θ−1/2

≤
√

5

2
[A + 2κ Mρa2t1/2−θ

0 ]

≤
√

5

2
[√6aκ Mρ + 2κ Mρa2t1/2−θ

0 ];
the second inequality comes from [(m + t0 + 2)/(m + t0 +
1)]θ−1/2 ≤ √

5/4, since t0 ≥ 3.

On the other hand it is easy to prove by induction that, for
all k ≤ t ,

xk ≤ xm+1 + ηk − ηm+1

and, therefore,

xk ≤ κ Mρa

[(√
5 + 16

3

)
at1/2−θ

0 +
√

30

2
. . .

. . . +12

√
log

(
1 + t

t0

)]
log

2

δ

≤ 12κ Mρa

[
at1/2−θ

0 + 1

4
+
√

log

(
1 + k

t0

)]
log

2

δ

≤ κ Mρa
[
12at1/2−θ

0 + 15
√

log t
]

log
2

δ
,

using in the last inequality that, for all t ≥ 1 and t0 ≥ 2,
1
4 +√log(1 + t/t0) ≤ 1

4 +√log(t + t0) ≤ 5
4

√
log(t + t0).

APPENDIX C
PROOF OF RESULTS OF SECTION III-B

Proof of Lemma III.8: Assume t ≥ j0. The spectral Theorem
for compact operators implies that there is an orthonormal
basis of W consisting of eigenvectors of At , so that, if
(αt,k)k∈N are the eigenvalues of At , then

‖A−1
t ‖−1 = min

k≥1
αt,k ≥ αt ,

‖I − γt At‖ = max
k≥1

(1 − γtαt,k) ≥ 0,

where we use that, for all k ∈ N, γtαt,k ≤ γtαt ≤ 1.
But mink≥1 αt,k ≥ αt implies maxk≥1(1−γtαt,k) ≤ 1−γtαt ,

thus (A).
The last claim follows from the inequality

t∏
i= j

(
1 − c

i + t0

)
≤ exp

⎛
⎝−

t∑
i= j

c

i + t0

⎞
⎠

≤ exp

(
−c log

(
t + 1

j + t0

))

=
(

j + t0
t + 1

)c

.

�
Proof of Theorem III.5: First, γtαt → 0 implies that there

exists j0 ∈ N such that γtαt ≤ 1 for all t ≥ j0. Hence Lemma
III.8 (B) applies, so that

‖�t
j ‖ ≤

t∏
i= j

(1 − γiαi ). (C-1)

Let us use the reversed martingale decomposition of r., from
times j0 to t :

‖rt‖ ≤ Einit (t) + Esamp(t) + Edri f t (t),
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where

Einit (t) : = ‖�t
j0+1r j0‖,

Esamp(t) : = ‖
t∑

j= j0+1

γ j�
t
j+1(A j w̄ j − b j )‖,

Edri f t (t) : = ‖
t∑

j= j0+1

�t
j� j‖.

Now, by (C-1),

E(Einit (t)
2) ≤ exp

⎛
⎝−2

t∑
i= j0+1

γiαi

⎞
⎠E(‖r j0‖2) →t→∞ 0

since
∑

t γtαt = ∞, and

Edri f t (t) ≤
t∑

j= j0+1

‖� j‖
t∏

i= j

(1 − γiαi ) →t→∞ 0

by assumption (C). Now consider the sample error. Using the
independence of (zt )t∈N (see Remark III.2),

E(Esamp(t)
2) = E

∥∥∥∥∥∥
t∑

j= j0+1

γ j�
t
j+1(A j w̄ j − b j )

∥∥∥∥∥∥
2

=
t∑

j= j0+1

γ 2
j E‖�t

j+1(A j w̄ j − b j )‖2

≤ C
t∑

j= j0+1

γ 2
j

t∏
i= j+1

(1 − γiαi )
2,

where C := supt∈N E‖At w̄t − bt‖2 < ∞ by assumption. This
completes the proof, using (B). �

Proof of Lemma III.6: Let ε > 0. The assumptions
lim supt→∞ at/bt = 0 and bt →t→∞ 0 imply that there exists
N ∈ N such that at ≤ εbt/2 and bt ≤ 1 for all t > N . On the
other hand,

∑
t∈N

bt = ∞ implies that there exists N1 ∈ N

such that, for all n ≥ N1,

N∑
k=1

ak

n∏
i=k+1

(1 − bi ) <
ε

2
.

Now

n∑
k=N+1

ak

n∏
i=k+1

(1 − bi ) ≤ ε

2

n∑
k=N+1

bk

n∏
i=k+1

(1 − bi ),

and we can write the right-hand side of this last inequality as
a telescopic sum, i.e.

n∑
k=N+1

bk

n∏
i=k+1

(1 − bi ) =
n∑

k=N+1

[1 − (1 − bk)]
n∏

i=k+1

(1 − bi )

= 1 −
n∏

i=N+1

(1 − bi ) ≤ 1,

which enables us to conclude. �
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