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Abstract. We study Mercer’s theorem and feature maps for several
positive definite kernels that are widely used in practice. The smoothing
properties of these kernels will also be explored.

1 Introduction

Kernel-based methods have become increasingly popular and important in ma-
chine learning. The central idea behind the so-called “kernel trick” is that a
closed form Mercer kernel allows one to efficiently solve a variety of non-linear
optimization problems that arise in regression, classification, inverse problems,
and the like. It is well known in the machine learning community that kernels are
associated with “feature maps” and a kernel based procedure may be interpreted
as mapping the data from the original input space into a potentially higher di-
mensional “feature space” where linear methods may then be used. One finds
many accounts of this idea where the input space X is mapped by a feature map
Φ : X → H (where H is a Hilbert space) so that for any two points x, y ∈ X, we
have K(x, y) = 〈φ(x), φ(y)〉H.

Yet, while much has been written about kernels and many different kinds
of kernels have been discussed in the literature, much less has been explicitly
written about their associated feature maps. In general, we do not have a clear
and concrete understanding of what exactly these feature maps are. Our goal
in this paper is to take steps toward a better understanding of feature maps
by explicitly computing them for a number of popular kernels for a variety of
domains. By doing so, we hope to clarify the precise nature of feature maps in
very concrete terms so that machine learning researchers may have a better feel
for them.

Following are the main points and new results of our paper:

1. As we will illustrate, feature maps and feature spaces are not unique. For a
given domain X and a fixed kernel K on X×X, there exist in fact infinitely
many feature maps associated with K. Although these maps are essentially
equivalent, in a sense to be made precise in Section 4.3, there are subtleties



that we wish to emphasize. For a given kernel K, the feature maps of K
induced by Mercer’s theorem depend fundamentally on the domain X, as
will be seen in the examples of Section 2. Moreover, feature maps do not
necessarily arise from Mercer’s theorem, examples of which will be given in
Section 4.2. The importance of Mercer’s theorem, however, goes far beyond
the feature maps that it induces: the eigenvalues and eigenfunctions asso-
ciated with K play a central role in obtaining error estimates in learning
theory, see for example [8], [4]. For this reason, the determination of the
spectrum of K, which is highly nontrivial in general, is crucially important
in its own right. Theorems 2 and 3 in Section 2 give the complete spectrum
of the polynomial and Gaussian kernels on Sn−1, including sharp rates of
decay of their eigenvalues. Theorem 4 gives the eigenfunctions and a recur-
sive formula for the computation of eigenvalues of the polynomial kernel on
the hypercube {−1, 1}n.

2. One domain that we particularly focus on is the unit sphere Sn−1 in Rn,
for several reasons. First, it is a special example of a compact Riemannian
manifold and the problem of learning on manifolds has attracted attention
recently, see for example [2], [3]. Second, its symmetric and homogeneous
nature allows us to obtain complete and explicit results in many cases. We
believe that Sn−1 together with kernels defined on it is a fruitful source
of examples and counterexamples for theoretical analysis of kernel-based
learning. We will point out that intuitions based on low dimensions such as
n = 2 in general do not carry over to higher dimensions - Theorem 5 in
Section 3 gives an important example along this line. We will also consider
the unit ball Bn, the hypercube {−1, 1}n, and Rn itself.

3. We will also try to understand the smoothness property of kernels on Sn−1.
In particular, we will show that the polynomial and Gaussian kernels define
Hilbert spaces of functions whose norms may be interpreted as smoothness
functionals, similar to those of splines on Sn−1. We will obtain precise and
sharp results on this question in the paper. This is the content of Section 5.
The smoothness implications allow us to better understand the applicability
of such kernels in solving smoothing problems.

Notation: For X ⊂ Rn and µ a Borel measure on X, L2
µ(X) = {f : X →

C :
∫

X
|f(x)|2dµ(x) < ∞}. We will also use L2(X) for L2

µ(X) and dx for dµ(x)
if µ is the Lebesgue measure on X. The surface area of the unit sphere Sn−1 is
denoted by |Sn−1| = 2π

n
2

Γ ( n
2 ) .

2 Mercer’s Theorem

One of the fundamental mathematical results underlying learning theory with
kernels is Mercer’s theorem. Let X be a closed subset of Rn, n ∈ N, µ a Borel
measure on X, and K : X × X → R a symmetric function satisfying: for any



finite set of points {xi}N
i=1 in X and real numbers {ai}N

i=1

N∑
i,j=1

aiajK(xi, xj) ≥ 0 (1)

K is said to be a positive definite kernel on X. Assume further that∫
X

∫
X

K(x, t)2dµ(x)dµ(t) < ∞ (2)

Consider the induced integral operator LK : L2
µ(X) → L2

µ(X) defined by

LKf(x) =
∫

X

K(x, t)f(t)dµ(t) (3)

This is a self-adjoint, positive, compact operator with a countable system of non-
negative eigenvalues {λk}∞k=1 satisfying

∑∞
k=1 λ2

k < ∞. LK is said to be Hilbert-
Schmidt and the corresponding L2

µ(X)-normalized eigenfunctions {φk}∞k=1 form
an orthonormal basis of L2

µ(X). We recall that a Borel measure µ on X is said
to be strictly positive if the measure of every nonempty open subset in X is
positive, an example being the Lebesgue measure in Rn.

Theorem 1 (Mercer). Let X ⊂ Rn be closed, µ a strictly positive Borel mea-
sure on X, K a continuous function on X ×X satisfying (1) and (2). Then

K(x, t) =
∞∑

k=1

λkφk(x)φk(t) (4)

where the series converges absolutely for each pair (x, t) ∈ X×X and uniformly
on each compact subset of X.

Mercer’s theorem still holds if X is a finite set {xi}, such as X = {−1, 1}n, K
is pointwise-defined positive definite and µ(xi) > 0 for each i.

2.1 Examples on the Sphere Sn−1

We will give explicit examples of the eigenvalues and eigenfunctions in Mercer’s
theorem on the unit sphere Sn−1 for the polynomial and Gaussian kernels. We
need the concept of spherical harmonics, a modern and authoritative account of
which is [6]. Some of the material below was first reported in the kernel learning
literature in [9], where the eigenvalues for the polynomial kernels with n = 3,
were computed. In this section, we will carry out computations for a general
n ∈ N, n ≥ 2.

Definition 1 (Spherical Harmonics). Let ∆n = −
[

∂2

∂x2
1

+ . . . + ∂2

∂x2
n

]
denote

the Laplacian operator on Rn. A homogeneous polynomial of degree k in Rn

whose Laplacian vanishes is called a homogeneous harmonic of order k. Let Yk(n)



denote the subspace of all homogeneous harmonics of order k on the unit sphere
Sn−1 in Rn. The functions in Yk(n) are called spherical harmonics of order k.
We will denote by {Yk,j(n;x)}N(n,k)

j=1 any fixed orthonormal basis for Yk(n) where

N(n, k) = dimYk(n) = (2k+n−2)(k+n−3)!
k!(n−2)! , k ≥ 0.

Theorem 2. Let X = Sn−1, n ∈ N, n ≥ 2. Let µ be the uniform probability
distribution on Sn−1. For K(x, t) = exp(− ||x−t||2

σ2 ), σ > 0

λk = e−2/σ2
σn−2Ik+n/2−1(

2
σ2

)Γ (
n

2
) (5)

for all k ∈ N ∪ {0}, where I denotes the modified Bessel function of the first
kind, defined below. Each λk occurs with multiplicity N(n, k) with the corre-
sponding eigenfunctions being spherical harmonics of order k on Sn−1. The λk’s
are decreasing if σ ≥ ( 2

n )1/2. Furthermore

(
2e

σ2
)k A1

(2k + n− 2)k+ n−1
2

< λk < (
2e

σ2
)k A2

(2k + n− 2)k+ n−1
2

(6)

for A1, A2 depending on σ and n given below.

Remark 1. A1 = e−2/σ2−1/12 1√
π
(2e)

n
2−1Γ (n

2 ), A2 = e−2/σ2+1/σ4 1√
π
(2e)

n
2−1Γ (n

2 ).

For ν, z ∈ C, Iν(z) =
∑∞

j=0
1

j!Γ (ν+j+1)

(
z
2

)ν+2j .

Theorem 3. Let X = Sn−1, n ∈ N, n ≥ 2, and d ∈ N. Let µ be the uni-
form probability distribution on Sn−1. For K(x, t) = (1 + 〈x, t〉)d, the nonzero
eigenvalues of LK : L2

µ(X) → L2
µ(X) are

λk = 2d+n−2 d!
(d− k)!

Γ (d + n−1
2 )Γ (n

2 )
√

πΓ (d + k + n− 1)
(7)

for 0 ≤ k ≤ d. Each λk occurs with multiplicity N(n, k), with the corresponding
eigenfunctions being spherical harmonics of order k on Sn−1. Furthermore, the
λk’s form a decreasing sequence and

B1

(k + d + n− 2)2d+n− 3
2

< λk <
B2

(k + d + n− 2)d+n− 3
2

(8)

where 0 ≤ k ≤ d, for B1, B2 depending on d, n given below.

Remark 2. B1 = ed(2e)d+n−2d!Γ (d+ n−1
2 )Γ ( n

2 )

2π
√

πe1/6dd+ 1
2

, B2 = ed(2e)d+n−2d!Γ (d+ n−1
2 )Γ ( n

2 )√
2π

.

2.2 Example on the Hypercube {−1, 1}n

We will now give an example with the hypercube {−1, 1}n. Let Mk = {α =
(αi)n

i=1, αi ∈ {0, 1}, |α| = α1 + · · · + αn = k}, then the set {xα}α∈Mk,0≤k≤n,
consists of multilinear mononomials {1, x1, x1x2, . . . , x1 . . . xn}.



Theorem 4. Let X = {−1, 1}n. Let d ∈ N, d ≤ n be fixed. Let K(x, t) =
(1+ 〈x, t〉)d on X×X. Let µ be the uniform distribution on X, then the nonzero
eigenvalues λd

k’s of LK : L2
µ(X) → L2

µ(X) satisfy

λd+1
k = kλd

k−1 + λd
k + (n− k)λd

k+1 (9)

λd
0 ≥ λd

1 ≥ . . . ≥ λd
d−1 = λd

d = d! (10)

and λd
k = 0 for k > d. The corresponding L2

µ(X)-normalized eigenfunctions for
each λk are {xα}α∈Mk

.

Example 1 (d = 2). The recurrence relation (9) is nonlinear in two indexes
and hence a closed analytic expression for λd

k is hard to find for large d. It is
straightforward, however, to write a computer program for computing λd

k. For
d = 2

λ2
0 = n + 1 λ2

1 = 2 λ2
2 = 2

with corresponding eigenfunctions 1, {x1, . . . , xn}, and {x1x2, x1x3, . . . , xn−1xn},
respectively.

2.3 Example on the Unit Ball Bn

Except for the homogeneous polynomial kernel K(x, t) = 〈x, t〉d, the computa-
tion of the spectrum of LK on the unit ball Bn is much more difficult analytically
than that on Sn−1. For K(x, t) = (1 + 〈x, t〉)d and small values of d, it is still
possible, however, to obtain explicit answers.

Example 2 (X = Bn, K(x, t) = (1 + 〈x, t〉)2). Let µ be the uniform measure on
Bn. The eigenspace spanned by {x1, . . . , xn} corresponds to the eigenvalue λ1 =

2
(n+2) . The eigenspace spanned by {||x||2Y2,j(n; x

||x|| )}
N(n,2)
j=1 corresponds to the

eigenvalue λ2 = 2
(n+2)(n+4) . The eigenvalues that correspond to span{1, ||x||2}

are

λ0,1 =
(n + 2)(n + 5) +

√
D

2(n + 2)(n + 4)
λ0,2 =

(n + 2)(n + 5)−
√

D

2(n + 2)(n + 4)

where D = (n + 2)2(n + 5)2 − 16(n + 4).

3 Unboundedness of Normalized Eigenfunctions

It is known that the L2
µ-normalized eigenfunctions {φk} are generally unbounded,

that is in general

supk∈N ||φk||∞ = ∞

This was first pointed out by Smale, with the first counterexample given in [14].
This phenomenon is very common, however, as the following result shows.



Theorem 5. Let X = Sn−1, n ≥ 3. Let µ be the Lebesgue measure on Sn−1.
Let f : [−1, 1] → R be a continuous function, giving rise to a Mercer kernel
K(x, t) = f(〈x, t〉) on Sn−1 × Sn−1. If infinitely many of the eigenvalues of
LK : L2

µ(Sn−1) → L2
µ(Sn−1) are nonzero, then for the set of corresponding

L2
µ-normalized eigenfunctions {φk}∞k=1

sup
k∈N

||φk||∞ = ∞ (11)

Remark 3. This is in sharp contrast with the case n = 2, where we will show
that

sup
k
||φk||∞ ≤ 1√

π

with the supremum attained on the functions { cos kθ√
π

, sin kθ√
π
}k∈N. Theorem 5 ap-

plies in particular to the Gaussian kernel K(x, t) = exp(− ||x−t||2
σ2 ). Hence care

needs to be taken in applying analysis that requires CK = supk ||φk||∞ < ∞, for
example [5].

4 Feature Maps

4.1 Examples of Feature Maps via Mercer’s Theorem

A natural feature map that arises immediately from Mercer’s theorem is

Φµ : X → `2 Φµ(x) = (
√

λkφk(x))∞k=1 (12)

where if only N < ∞ of the eigenvalues are strictly positive, then Φµ : X → RN .
This is the map that is often covered in the machine learning literature.

Example 3 (n = d = 2,X = Sn−1). Theorem 3 gives the eigenvalues (3π, 2π, π
2 ),

with eigenfunctions ( 1√
2π

, x1√
π
, x2√

π
, 2x1x2√

π
,

x2
1−x2

2√
π

) = ( 1√
2π

, cos θ√
π

, sin θ√
π

, sin 2θ√
π

, cos 2θ√
π

),
where x1 = cos θ, x2 = sin θ, giving rise to the feature map

Φµ(x) = (

√
3
2
,
√

2x1,
√

2x2,
√

2x1x2,
x2

1 − x2
2√

2
)

Example 4 (n = d = 2, X = {−1, 1}2). Theorem 4 gives

Φµ(x) = (
√

3,
√

2x1,
√

2x2,
√

2x1x2)

Observation 1 (i) As our notation suggests, Φµ depends on the particular mea-
sure µ that is in the definition of the operator LK and thus is not unique. Each
measure µ gives rise to a different system of eigenvalues and eigenfunctions
(λk, φk)∞k=1 and therefore a different Φµ.

(ii) In Theorem 3 and 2, the multiplicity of the λk’s means that for each choice
of orthonormal bases of the space Yk(n) of spherical harmonics of order k, there
is a different feature map. Thus are infinitely many feature maps arising from
the uniform probability distribution on Sn−1 alone.



4.2 Examples of Feature Maps not via Mercer’s Theorem

Feature maps do not necessarily arise from Mercer’s theorem. Consider any set
X and any pointwise-defined, positive definite kernel K on X × X. For each
x ∈ X, let Kx : X → R be defined by Kx(t) = K(x, t) and

HK = span{Kx : x ∈ X} (13)

be the Reproducing Kernel Hilbert Space (RKHS) induced by K, with the in-
ner product 〈Kx,Kt〉K = K(x, t), see [1]. The following feature map is then
immediate:

ΦK : X → HK ΦK(x) = Kx (14)

In this section we discuss, via examples, two other methods for obtaining
feature maps. Let X ⊂ Rn be any subset. Consider the Gaussian kernel K(x, t) =
exp(− ||x−t||2

σ2 ) on X ×X, which admits the following expansion

K(x, t) = exp(−||x− t||2

σ2
) = e−

||x||2

σ2 e−
||t||2

σ2

∞∑
k=0

(2/σ2)k

k!

∑
|α|=k

Ck
αxαtα (15)

where Ck
α = k!

(α1)!...(αn)! , which implies the feature map: Φg : X → `2 where

Φg(x) = e−
||x||2

σ2 (
√

(2/σ2)kCk
α

k! xα)∞|α|=k,k=0

Remark 4. The standard polynomial feature maps in machine learning, see for
example ([7], page 28), are obtained exactly in the same way.

Consider next a special class of kernels that is widely used in practice, called
convolution kernels. We recall that for a function f ∈ L1(Rn), its Fourier
transform is defined to be

f̂(ξ) =
∫

Rn

f(x)e−i〈ξ,x〉dx

By Fourier transform computation, it may be shown that if µ : Rn → R is even,
nonnegative, such that µ,

√
µ ∈ L1(Rn), then the kernel K : Rn × Rn → R

defined by

K(x, t) =
∫

Rn

µ(u)e−i〈x−t,u〉du (16)

is continuous, symmetric, positive definite. Further more, for any x, t ∈ Rn

K(x, t) =
1

(2π)n

∫
Rn

√̂
µ(x− u)

√̂
µ(t− u)du (17)

The following then is a feature map of K on X ×X

Φconv : X → L2(Rn) (18)



Φconv(x)(u) = 1

(2π)
n
2

√̂
µ(x− u)

For the Gaussian kernel e−
||x−t||2

σ2 = ( σ
2
√

π
)n

∫
Rn e−

σ2||u||2
4 e−i〈x−t,u〉du and

(Φconv(x))(u) = ( 2
σ
√

π
)

n
2 e−

2||x−u||2

σ2

One can similarly obtain feature maps for the inverse multiquadric, exponential,

or B-spline kernels. The identity e−
||x−t||2

σ2 = ( 4
πσ2 )

n
2

∫
Rn e−

2||x−u||2

σ2 e−
2||t−u||2

σ2 du
can also be verified directly, as done in [10], where implications of the Gaussian
feature map Φconv(x) above are also discussed.

4.3 Equivalence of Feature Maps

It is known ([7], page 39) that, given a set X and a pointwise-defined, symmetric,
positive definite kernel K on X×X, all feature maps from X into Hilbert spaces
are essentially equivalent. In this section, we will make this statement precise.
Let H be a Hilbert space and Φ : X → H be such that 〈Φx, Φt〉H = K(x, t) for
all x, t ∈ X, where Φx = Φ(x). The evaluation functional Lx : H → R given by
Lxv = 〈v, Φx〉H, where x varies over X, defines an inclusion map

LΦ : H → RX (LΦv)(x) = 〈v, Φx〉H

where RX denotes the vector space of pointwise-defined, real-valued functions
on X. Observe that as a vector space of functions, HK ⊂ RX .

Proposition 1. Let HΦ = span{Φx : x ∈ X}, a subspace of H. The restriction
of LΦ on HΦ is an isometric isomorphism between HΦ and HK .

Proof. First, LΦ is bijective from HΦ to the image LΦ(HΦ), since kerLΦ =
H⊥Φ . Under the map LΦ, for each x, t ∈ X, (LΦΦx)(t) = 〈Φx, Φt〉 = Kx(t),
thus Kx ≡ LΦΦx as functions on X. This implies that span{Kx : x ∈ X} is
isomorphic to span{Φx : x ∈ X} as vector spaces. The isometric isomorphism
of HΦ = span{Φx : x ∈ X} and HK = span{Kx : x ∈ X} then follows from
〈Φx, Φt〉H = K(x, t) = 〈Kx,Kt〉K . This completes the proof.

Remark 5. Each choice of Φ is thus equivalent to a factorization of the map
ΦK : x → Kx ∈ HK , that is the following diagram is commutative

x ∈ X

Φ

%%KKKKKKKKKK
ΦK // Kx ∈ HK

Φx ∈ HΦ

LΦ

88qqqqqqqqqqq

(19)

We will call ΦK : x → Kx ∈ HK the canonical feature map associated with K.



5 Smoothing Properties of Kernels on the Sphere

Having discussed feature maps, we will in this section analyze the smoothing
properties of the polynomial and Gaussian kernels and compare them with those
of spline kernels on the sphere Sn−1. In the spline smoothing problem on S1 as
described in [11], one solves the minimization problem

1
m

m∑
i=1

(f(xi)− yi)2 + λ

∫ 2π

0

(f (m)(t))2dt (20)

for xi ∈ [0, 2π] and f ∈ Wm, where Jm(f) =
∫ 2π

0
(f (m)(t))2dt is the square norm

of the RKHS

W 0
m = {f : f, f

′
, . . . , f (m−1) absolutely continuous, f (m) ∈ L2[0, 2π],

f (j)(0) = f (j)(2π), j = 0, 1, . . . ,m− 1}

The space Wm is then the RKHS defined by

Wm = {1} ⊕W 0
m = {f : ||f ||2K = 1

4π2

(∫ 2π

0
f(t)dt

)2

+
∫ 2π

0
(f (m)(t))2dt < ∞}

induced by a kernel K. One particular feature of spline smoothing, on S1, S2,
or Rn, is that in general the RKHS Wm does not have a closed form kernel K
that is efficiently computable. This is in contrast with the RKHS that are used
in kernel machine learning, all of which correspond to closed-form kernels that
can be evaluated efficiently. It is not clear, however, whether the norms in these
RKHS correspond to smoothness functionals. In this section, we will show that
for the polynomial and Gaussian kernels on Sn−1, they do.

5.1 The Iterated Laplacian and Splines on the Sphere Sn−1

Splines on Sn−1 for n = 2 and n = 3, as treated by Wahba [11], [12], can be
generalized to any n ≥ 2, n ∈ N, via the iterated Laplacian (also called the
Laplace-Beltrami operator) on Sn−1. The RKHS corresponding to Wm in (20)
is a subspace of L2(Sn−1) described by

HK = {f : ||f ||2K =
1

|Sn−1|2

(∫
Sn−1

f(x)dx

)2

+
∫

Sn−1
f(x)∆mf(x)dx < ∞}

The Laplacian ∆ on Sn−1 has eigenvalues λk = k(k + n− 2), k ≥ 0, with corre-
sponding eigenfunctions {Yk,j(n;x)}N(n,k)

j=1 , which form an orthonormal basis in
the space Yk(n) of spherical harmonics of order k . For f ∈ L2(Sn−1), if we use
the expansion f = a0√

|Sn−1|
+

∑∞
k=1

∑N(n,k)
j=1 ak,jYk,j(n;x) then the space HK

takes the form

HK = {f ∈ L2(Sn−1) : ||f ||2K =
a2
0

|Sn−1|
+

∞∑
k=1

[k(k + n− 2)]m
N(n,k)∑

j=1

a2
k,j < ∞}



and thus the corresponding kernel is

K(x, t) = 1 +
∞∑

k=1

1
[k(k + n− 2)]m

N(n,k)∑
j=1

Yk,j(n;x)Yk,j(n; t) (21)

which is well-defined iff m > n−1
2 . Let Pk(n; t) denote the Legendre polynomial

of degree k in dimension n, then (21) takes the form

K(x, t) = 1 +
1

|Sn−1|

∞∑
k=1

N(n, k)
[k(k + n− 2)]m

Pk(n; 〈x, t〉) (22)

which does not have a closed form in general - for the case n = 3, see [11].

Remark 6. Clearly m can be replaced by any real number s > n−1
2 .

5.2 Smoothing Properties of Polynomial and Gaussian Kernels

Let ∇∗n−1 denote the gradient operator on Sn−1 (also called the first-order Bel-
trami operator, see [6] page 79 for a definition). Let Yk ∈ Yk(n), k ≥ 0, then

||∇∗n−1Yk||2L2(Sn−1) =
∫

Sn−1
|∇∗n−1Yk(x)|2dSn−1(x) = k(k + n− 2) (23)

This shows that spherical harmonics of higher-order are less smooth. This is
particularly straightforward in the case n = 2 with the Fourier basis functions
{1, cos kθ, sin kθ}k∈N - as k increases, the functions oscillate more rapidly.

It follows that any regularization term ||f ||2K in problems such as (20), where
K possesses a decreasing spectrum λk - k corresponds to the order of the spher-
ical harmonics - will have a smoothing effect. That is, the higher-order spherical
harmonics, which are less smooth, will be penalized more. The decreasing spec-
trum property is true for the spline kernels, the polynomial kernel (1 + 〈x, t〉)d,
and the Gaussian kernel for σ ≥ ( 2

n )1/2, as we showed in Theorems 2 and 3.
Hence all these kernels possess smoothing properties on Sn−1.

Furthermore, Theorem 2 shows that for the Gaussian kernel, for all k ≥ 1

(
2e

σ2
)k A1

(2k + n− 2)k+ n−1
2

< λk < (
2e

σ2
)k A2

(2k + n− 2)k+ n−1
2

and Theorem 3 shows that for the polynomial kernel (1 + 〈x, t〉)d

B1

(k + d + n− 2)2d+n− 3
2

< λk <
B2

(k + d + n− 2)d+n− 3
2

for 0 ≤ k ≤ d. Compare these with the eigenvalues of the spline kernels

λk =
1

[k(k + n− 2)]m



for k ≥ 1, we see that the Gaussian kernel has the sharpest smoothing property,
as can be seen from the exponential decay of the eigenvalues.

For K(x, t) = (1+ 〈x, t〉)d , if d > 2m−n+ 3
2 , then K has sharper smoothing

property than a spline kernel of order m. Moreover, all spherical harmonics of
order greater than d are filtered out, hence choosing K amounts to choosing a
hypothesis space of bandlimited functions on Sn−1.

A Proofs of Results

The proofs for results on Sn−1 all make use of properties of spherical harmonics
on Sn−1, which can be found in [6]. We will prove Theorem 2 (Theorem 3 is
similar) and Theorem 5.

A.1 Proof of Theorem 2

Let f : [−1, 1] → R be a continuous function. Let Yk ∈ Yk(n) for k ≥ 0. Then
the Funk-Hecke formula ([6], page 30) states that for any x ∈ Sn−1:∫

Sn−1
f(〈x, t〉)Yk(t)dSn−1(t) = λkYk(x) (24)

where

λk = |Sn−2|
∫ 1

−1

f(t)Pk(n; t)(1− t2)
n−3

2 dt (25)

and Pk(n; t) denotes the Legendre polynomial of degree k in dimension n. Since
the spherical harmonics {{Yk,j(n;x)}N(n,k)

j=1 }∞k=0 form an orthonormal basis for
L2(Sn−1), an immediate consequence of the Funk-Hecke formula is that if K on
Sn−1 × Sn−1 is defined by K(x, t) = f(〈x, t〉), and µ is the Lebesgue measure
on Sn−1, then the eigenvalues of LK : L2

µ(Sn−1) → L2
µ(Sn−1) are given pre-

cisely by (25), with the corresponding orthonormal eigenfunctions of λk being
{Yk,j(n;x)}N(n,k)

j=1 . The multiplicity of λk is therefore N(n, k) = dim(Yk(n)).

On Sn−1 e−
||x−t||2

σ2 = e−
2

σ2 e
2〈x,t〉

σ2 . Thus

λk = e−
2

σ2 |Sn−2|
∫ 1

−1
e

2t
σ2 Pk(n; t)(1− t2)

n−3
2 dt

= e−
2

σ2 |Sn−2|
√

πΓ (n−1
2 )(σ2)n/2−1Ik+n/2−1( 2

σ2 ) by Lemma 1

= e−2/σ2
σn−2Ik+n/2−1( 2

σ2 )Γ (n
2 )|Sn−1|

Normalizing by setting |Sn−1| = 1 gives the required expression for λk as in (5).

Lemma 1. Let f(t) = ert, then∫ 1

−1

f(t)Pk(n; t)(1− t2)
n−3

2 dt =
√

πΓ (
n− 1

2
)
(

2
r

)n/2−1

Ik+n/2−1(r) (26)



Proof. We apply the following which follows from ([13], page 79, formula 9)∫ 1

−1

ert(1− t2)ν−1dt =
√

π

(
2
r

)ν−1/2

Γ (ν)Iν−1/2(r) (27)

and Rodrigues’ rule ([6], page 23), which states that for f ∈ Ck([−1, 1])∫ 1

−1

f(t)Pk(n; t)(1− t2)
n−3

2 dt = Rk(n)
∫ 1

−1

f (k)(t)(1− t2)k+ n−3
2 dt (28)

where Rk(n) = 1
2k

Γ ( n−1
2 )

Γ (k+ n−1
2 )

. For f(t) = ert, we have∫ 1

−1
ertPk(n; t)(1− t2)

n−3
2 dt = Rk(n)rk

∫ 1

−1
ert(1− t2)k+ n−3

2

= Rk(n)rk
√

π
(

2
r

)k+n/2−1
Γ (k + n−1

2 )Ik+n/2−1(r)

Substituting in the values of Rk(n) gives the desired answer. ut

Lemma 2. The sequence {λk}∞k=0 is decreasing if σ ≥
(

2
n

)1/2.

Proof. We will first prove that λk

λk+1
> (k + n/2)σ2. We have

Ik+n/2( 2
σ2 ) = ( 1

σ2 )k+n/2
∑∞

j=0

( 1
σ2 )2j

j!Γ (j+k+n/2+1)

= ( 1
σ2 )k+n/2

∑∞
j=0

( 1
σ2 )2j

j!(j+k+n/2)Γ (j+k+n/2)

< ( 1
σ2 )k+n/2 1

k+n/2

∑∞
j=0

( 1
σ2 )2j

j!Γ (j+k+n/2) = 1
σ2(k+n/2)Ik+n/2−1( 2

σ2 )

which implies λk

λk+1
> (k + n/2)σ2. The inequality λk

λk+1
≥ 1 thus is satisfied if

σ2(k + n/2) ≥ 1 for all k ≥ 0. It suffices to require that it holds for k = 0, that
is σ2n/2 ≥ 1 ⇐⇒ σ ≥

(
2
n

)1/2. ut
Proof (of (6)). By definition of Iν(z), we have for z > 0

Iν(z) <
( z
2 )ν

Γ (ν+1)

∑∞
j=0

( z
2 )2j

j! = ( z
2 )ν

Γ (ν+1)e
z2/4

Then for ν = k + n
2 − 1 and z = 2

σ2 : Ik+ n
2−1( 2

σ2 ) < 1
Γ (k+ n

2 ) (
1
σ )2k+n−2e1/σ4

.
Consider Stirling’s series for a > 0

Γ (a + 1) =
√

2πa
(a

e

)a
[
1 +

1
12a

+
1

288a2
− 139

51840a3
+ . . .

]
(29)

Thus for all a > 0 we can write Γ (a+1) = eA(a)
√

2πe
(

a
e

)a+ 1
2 where 0 < A(a) <

1
12a . Hence for all k ≥ 1

Γ (k +
n

2
) = eA(k,n)

√
2πe(

k + n
2 − 1
e

)k+ n−1
2 = eA(k,n)

√
2πe(

2k + n− 2
2e

)k+ n−1
2

where 0 < A(k, n) < 1
12(k+ n

2−1) ≤
1
12 . Then

Ik+ n
2−1( 2

σ2 ) < 1√
π

(2e)k+ n
2 −1

(2k+n−2)k+ n−1
2

( 1
σ )2k+n−2e1/σ4

implying (6).

The other direction is obtained similarly. ut



A.2 Proof of Theorem 5

We will first show an upper bound for ||Yk||∞, where Yk is any L2(Sn−1)-
normalized function in Yk(n), then exhibit a one-dimensional subspace of func-
tions in Yk(n) that attain this upper bound. Observe that Yk belongs to an
orthonormal basis {Yk,j(n;x)}N(n,k)

j=1 of Yk(n). The following highlights the cru-
cial difference between the case n = 2 and n ≥ 3.

Lemma 3. For any n ≥ 2, k ≥ 0, for all j ∈ N, 1 ≤ j ≤ N(n, k)

||Yk,j(n; .)||∞ ≤

√
N(n, k)
|Sn−1|

(30)

In particular, for n = 2 and all k ≥ 0: ||Yk,j(n; .)||∞ ≤ 1√
π
.

Proof. The Addition Theorem for spherical harmonics ([6], page 18) states that
for any x, α ∈ Sn−1

N(n,k)∑
j=1

Yk,j(n;x)Yk,j(n;α) =
N(n, k)
|Sn−1|

Pk(n; 〈x, α〉)

which implies that for any x ∈ Sn−1

|Yk,j(n;x)|2 ≤ N(n, k)
|Sn−1|

Pk(n; 〈x, x〉) =
N(n, k)
|Sn−1|

Pk(n; 1) =
N(n, k)
|Sn−1|

giving us the first result. For n = 2, we have N(n, k) = 1 for k = 0, N(n, k) = 2
for k ≥ 1, and |S1| = 2π, giving us the second result. ut

Definition 2. Consider the group O(n) of all orthogonal transformations in Rn,
that is O(n) = {A ∈ Rn×n : AT A = AAT = I}. A function f : Sn−1 → R is said
to be invariant under a transformation A ∈ O(n) if fA(x) = f(Ax) = f(x) for
all x ∈ Sn−1. Let α ∈ Sn−1. The isotropy group Jn,α is defined by Jn,α = {A ∈
O(n) : Aα = α}.

Lemma 4. Assume that Yk ∈ Yk(n) is invariant with respect to Jn,α and satis-
fies

∫
Sn−1 |Yk(x)|2dSn−1(x) = 1. Then Yk is unique up to a multiplicative con-

stant Cα,n,k with |Cα,n,k| = 1 and

||Yk||∞ = |Yk(α)| =

√
N(n, k)
|Sn−1|

(31)

Proof. If Yk is invariant with respect to Jn,α, then by ([6], Lemma 3, page 17),
it must satisfy Yk(x) = Yk(α)Pk(n; 〈x, α〉), showing that the subspace of Yk(n)
invariant with respect to Jn,α is one-dimensional. The Addition Theorem implies
that for any α ∈ Sn−1



∫
Sn−1 |Pk(n; 〈x, α〉)|2dSn−1(x) = |Sn−1|

N(n,k)

By assumption, we then have

1 =
∫

Sn−1 |Yk(x)|2dSn−1(x) = |Yk(α)|2
∫

Sn−1 |Pk(n; 〈x, α〉)|2dSn−1(x)

= |Yk(α)|2 |S
n−1|

N(n,k) , giving us |Yk(α)| =
√

N(n,k)
|Sn−1| . Thus we for all x ∈ Sn−1

|Yk(x)| =
√

N(n,k)
|Sn−1| |Pk(n; 〈x, α〉)| ≤

√
N(n,k)
|Sn−1|

by the property |Pk(n; t)| ≤ 1 for |t| ≤ 1. Thus ||Yk||∞ =
√

N(n,k)
|Sn−1| as desired. ut

Proposition 2 (Orthonormal basis of Yk(n) [6]). Let n ≥ 3. Let e1, . . . , en

be the canonical basis of Rn. Let x ∈ Sn−1. We write x = ten+
√

1− t2
(

x(n−1)

0

)
where t ∈ [−1, 1] and x(n−1) ∈ Sn−2, (x(n−1), 0)T ∈ span{e1, . . . , en−1}. Suppose
that for m = 0, 1, . . . , k, the orthonormal bases Ym,j, j = 1, . . . , N(n − 1,m) of
Ym(n− 1) are given, then an orthonormal basis for Yk(n) is

Yk,m,j(n;x) = Am
k (n; t)Ym,j(n− 1;x(n−1)) : j = 1, 2 . . . , N(n− 1,m) (32)

starting with the Fourier basis for n = 2, where

Am
k (n; t) =

√
22−n(2k + n− 2)(k −m)!(k + n + m− 3)!

k!Γ (n−1
2 )

Pm
k (n; t) (33)

Proposition 3. Let n ∈ N, n ≥ 3. Let µ be the Lebesgue measure on Sn−1. For
each k ≥ 0, any orthonormal basis of the space Yk(n) of spherical harmonics of
order k contains an L2

µ-normalized spherical harmonic Yk such that

||Yk||∞ =

√
N(n, k)
|Sn−1|

=

√
(2k + n− 2)(k + n− 3)!

k!(n− 2)!|Sn−1|
→ ∞ (34)

as k →∞, where |Sn−1| = 2π
n
2

Γ ( n
2 ) is the surface area of Sn−1.

Proof. Let x = ten +
√

1− t2
(

x(n−1)

0

)
, −1 ≤ t ≤ 1. For each k ≥ 0, the

orthonormal basis for Yk(n) in Proposition 2 contains the function

Yk,0,1(n;x) = A0
k(t)Y0,1(n− 1;x(n−1)) = A0

k(t)
1√
|Sn−2|

(35)

Yk,0,1(n;x) = 1
Γ ( n−1

2 )

√
(2k+n−2)(k+n−3)!

2n−2k!|Sn−2| Pk(n; t) =
√

N(n,k)
|Sn−1|Pk(n; t)

Then Yk,0,1(n;x) is invariant with respect to Jn,α where α = (0, . . . , 0, 1). Thus
Yk = Yk,0,1 is the desired function for the current orthonormal basis. For any
orthonormal basis of Yk(n), the result follows by Lemma 4 and rotational sym-
metry on the sphere. ut



Proof (of Theorem 5). By the Funk-Hecke formula, all spherical harmonics of
order k are eigenfunctions corresponding to the eigenvalue λk as given by (25). If
infinitely many of the λk’s are nonzero, then the corresponding set of L2(Sn−1)-
orthonormal eigenfunctions {φk}, being an orthonormal basis of L2(Sn−1), con-
tains a spherical harmonic Yk satisfying (34), for infinitely many k. It follows
from Proposition 3 then that supk ||φk||∞ = ∞. ut
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