
Chapter 1
A Tutorial on Libra: R package for the Linearized
Bregman Algorithm in High Dimensional Statistics

Jiechao Xiong, Feng Ruan, and Yuan Yao

Abstract The R package, Libra, stands for the LInearized BRegman Al-
gorithm in high dimensional statistics. The Linearized Bregman Algorithm
is a simple iterative procedure to generate sparse regularization paths of
model estimation, which are firstly discovered in applied mathematics for
image restoration and particularly suitable for parallel implementation in
large scale problems. The limit of such an algorithm is a sparsity-restricted
gradient descent flow, called the Inverse Scale Space, evolving along a par-
simonious path of sparse models from the null model to overfitting ones. In
sparse linear regression, the dynamics with early stopping regularization can
provably meet the unbiased Oracle estimator under nearly the same condition
as LASSO, while the latter is biased. Despite their successful applications,
statistical consistency theory of such dynamical algorithms remains largely
open except for some recent progress on linear regression. In this tutorial,
algorithmic implementations in the package are discussed for several widely
used sparse models in statistics, including linear regression, logistic regres-
sion, and several graphical models (Gaussian, Ising, and Potts). Besides the
simulation examples, various application cases are demonstrated, with real
world datasets from diabetes, publications of COPSS award winners, as well
as social networks of two Chinese classic novels, Journey to the West and
Dream of the Red Chamber.
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1.1 Introduction to Libra

The free R package, Libra, has its name as the acronym for the LInearized
BRegman Algorithm (also known as Linearized Bregman Iteration in litera-
ture) in high dimensional statistics. It can be downloaded at

https://cran.r-project.org/web/packages/Libra/index.html

A parsimonious model selection with sparse parameter estimation has been
a central topic in high dimensional statistics in the past two decades. For
example, the following models are included in the package:

• sparse linear regression,
• sparse logistic regression (binomial, multinomial),
• sparse graphical models (Gaussian, Ising, Potts).

A widespread traditional approach is based on optimization to look for pe-
nalized M-estimators, i.e.

min
θ

L(θ)+λP(θ), L(θ) :=
1
n

n

∑
i=1

l((xi,yi),θ), (1.1)

where l((xi,yi),θ) measures the loss of θ at sample (xi,yi) and P(θ) is a
sparsity-enforced penalty function on θ such as the l1-penalty in LASSO [Tib-
shirani(1996)] and the nonconvex SCAD [Fan and Li(2001)], etc. However,
there are several shortcomings known in this approach: a convex penalty
function will introduce bias to the estimators, while a nonconvex penalty,
which may reduce the bias, yet suffers the computational hurdle to locate
the global optimizer. Moreover, in practice a regularization path is desired
which needs to search many optimizers θλ over a grid of regularization pa-
rameters {λ j ≥ 0 : j ∈ N}.

In contrast, the Linearized Bregman (Iteration) Algorithm implemented
in Libra is based on the following iterative dynamics:

ρk+1 +
1
κ

θ k+1 −ρk − 1
κ

θ k =−αk∇θ L(θ k), (1.2a)

ρk ∈ ∂P(θ k), (1.2b)

with parameters αk,κ > 0, and initial choice θ 0 = ρ0 = 0. The second con-
straint requires that ρk must be a subgradient of the penalty function P at
θ k. The iteration above can be restated in the following equivalent format
with the aid of proximal map,

https://cran.r-project.org/web/packages/Libra/index.html
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zk+1 = zk −αt∇θ L(θ k), (1.3a)
θ k+1 = κ ·proxP(z

k+1), (1.3b)

where the proximal map associated with the penalty function P is given by

proxP(z) = argmin
u

(
1
2
∥u− z∥2 +P(u)

)
.

The Linearized Bregman Iteration (1.2) generates a parsimonious path of
sparse estimators, θ t , starting from a null model and evolving into dense mod-
els with different levels of sparsity until reaching overfitting ones. Therefore
the dynamics itself can be viewed as regularization paths. Such an itera-
tive algorithm was firstly introduced in [Yin et al.(2008)Yin, Osher, Darbon,
and Goldfarb] (Section 5.3, Equations (5.19) and (5.20)) as a scalable algo-
rithm for large-scale problems of image restoration with TV-regularization
and compressed sensing, etc. As κ → ∞ and αt → 0, the iteration has a limit
dynamics, known as Inverse Scale Space (ISS) [Burger et al.(2005)Burger,
Osher, Xu, and Gilboa] describing its evolution direction from the null model
to full ones,

dρ(t)
dt

=−∇θ L(θ(t)), (1.4a)

ρ(t) ∈ ∂P(θ(t)). (1.4b)

The computation of such ISS dynamics is discussed in [Burger et al.(2013)Burger,
Möller, Benning, and Osher]. With the aid of ISS dynamics, recently [Osher
et al.(2016)Osher, Ruan, Xiong, Yao, and Yin] establish the model selec-
tion consistency for early stopping regularization in both ISS and Linearized
Bregman Iterations for the basic linear regression models. In particular, under
nearly the same conditions as LASSO, ISS finds the oracle estimator which is
bias-free while the LASSO is biased. However, it remains largely open to ex-
plore the statistical consistency for general loss and penalty functions, despite
successful applications of (1.2) in a variety of fields such as image processing
and statistical modeling that will be illustrated below. As one purpose of this
tutorial, we hope more statisticians will benefit from the usage of this simple
algorithm with the aid of this R package, Libra, and eventually reach a deep
understanding of its statistical nature.

In the sequel we shall consider two types of parameters, (θ0,θ), where
θ0 denotes the unpenalized parameters (usually intercept in the model) and
θ represents all the penalized sparse parameters. Correspondingly, L(θ0,θ)
denotes the Loss function. In most cases, L(θ0,θ) is the same as the negative
log-likelihood function of the model.

Two types of sparsity-enforcement penalty functions will be studied here:

• LASSO (l1) penalty for entry-wise sparsity:
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P(θ) = ∥θ∥1 := ∑
j
|θ j|;

• Group LASSO (l1-l2) penalty for group-wise sparsity:

P(θ) = ∥θ∥1,2 = ∑
g
∥θg∥2 := ∑

g

√
∑

j:g j=g
θ 2

j ,

where we use G = {g j : g j is the group of θ j, j = 1,2, . . . , p} to denote a disjoint
partition of the index set {1,2, . . . , p}–that is, each group g j is a subset of the
index set. When G is degenerated, i.e, g j = j, j = 1,2, . . . , p, the Group Lasso
penalty is the same as the LASSO penalty. The proximal map for Group
LASSO penalty is given by

prox∥θ∥1,2
(z) j :=


(

1− 1√
∑i:gi=g j z2

i

)
z j, ∥zg j∥2 ≥ 1,

0, otherwise,
(1.5)

which is also called the Shrinkage operator in literature.
When the entry-wise sparsity is enforced, the parameters to be estimated in

the models are encouraged to be “sparse” and treated independently. On the
other hand, when the group-wise sparsity is enforced, it not only encourages
the estimated parameters to be sparse, but also expects variables within the
same group to be either selected or not selected at the same time. Hence, the
group-wise sparsity requires prior knowledge of the group information of the
correlated variables.

Once the parameters (θ0,θ), the loss function and group vectors are spec-
ified, the Linearized Bregman Iteration algorithm in (1.2) or (1.3) can be
adapted to the new setting with partial sparsity-enforcement on θ , as shown
in Algorithm 1. The iterative dynamics computes a regularization path for
the parameters at different levels of sparsity – starting from the null model
with (θ0,0), it evolves along a path of sparse models into the dense ones
minimizing the loss.

In the following Section 1.2, 1.3, and 1.4, we shall specialize such a gen-
eral algorithm in linear regression, logistic regression, and graphical models,
respectively. Section 1.5 includes a discussion on some universal parameter
choices. Application examples will be demonstrated along with source codes.

1.2 Linear Model

In this section, we are going to show how the Linearized Bregman (LB)
algorithm and the Inverse Scale Space (ISS) fit sparse linear regression model.
Suppose we have some covariates xi ∈ Rp for i = 1,2, . . . ,n. The responses yi
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Algorithm 1: Linearized Bregman Algorithm.
1 Input: Loss function L(θ0,θ), group vector G , damping factor κ, step

size α.
2 Initialize: k = 0, tk = 0,θ k = 0,zk = 0,θ k

0 = argminθ0 L(θ0,0).
3 for k = 1, . . . ,K do

• zk+1 = zk −α∇θ L(θ k
0 ,θ

k).
• θ k+1 = κ ·Shrinkage(zk+1,G ).
• θ k+1

0 = θ k
0 −κα∇θ0L(θ k

0 ,θ
k).

• tk+1 = (k+1)α.

end for
4 Output: Solution path {tk,θ k

0 ,θ
k}k=0,1,...,K .

where θ = Shrinkage(z,G ) is defined as: θ j = max

(
0,1− 1√

∑i:gi=g j z2
i

)
z j.

with respect to xi, where i = 1,2, . . . ,n, are assumed to follow the linear model
below:

yi = θ0 + xT
i θ + ε,ε ∼ N (0,σ2).

Here, we allow the dimensionality of covariates p to be either smaller or
greater than the sample size n. Note that, in latter case, we need to make
additional sparsity assumptions on θ in order to make the model identifiable
(and also, make recovery of θ possible). Both the Linearized Bregman Al-
gorithm and ISS compute their own “regularization paths” for the (sparse)
linear model. The statistical properties for the two regularization paths for
linear models are established in [Osher et al.(2016)Osher, Ruan, Xiong, Yao,
and Yin] where the authors show that under some natural conditions for
both regularization paths, some points on the paths determined by a data-
dependent early-stopping rule can be nearly unbiased and exactly recover
the support of signal θ . Note that the latter exact recovery of signal support
can have a significant meaning in the regime where p ≫ n, in which case, an
exact variable selection work is done simultaneously with the model fitting
process. In addition, the computational cost for regularization path gener-
ated by LB algorithm is relatively cheap in linear regression model case,
compared to many other existing methods. We refer the readers to [Osher
et al.(2016)Osher, Ruan, Xiong, Yao, and Yin] for more details. Owning both
statistical and computational advantages over other methods, the Linearized
Bregman Algorithm is strongly recommended for practitioners, especially for
those who are dealing with computationally heavy tasks.

Here, we give a more detailed illustration on how the Linearized Bregman
Algorithm computes the solution path for the linear model. We use negative
log-likelihood as our loss function,
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L(θ0,θ) =
1
2n

n

∑
i=1

(yi −θ0 − xT
i θ)2.

To compute the regularization path, we need to compute the gradient of loss
with respect to its parameters θ0 and θ , as is shown in Algorithm 1,

∇θ0L(θ0,θ) = 1
n ∑n

i=1−(yi −θ0 − xT
i θ),

∇θ L(θ0,θ) = 1
n ∑n

i=1−xi(yi −θ0 − xT
i θ).

In linear model, each iteration of the Linearized Bregman Algorithm requires
O(np) FLOPs in general (and the cost can be cheaper if additional sparsity
structure on parameters are known), and the overall time complexity for the
entire regularization path is O(npk), where k is the number of iterations. The
number of iterations in the Linearized Bregman Algorithm is dependent on
the underlying step-size α, which can be understood as the counterpart of
learning rate that appear in the standard gradient descent algorithms. For
practitioners, choosing parameters α needs a trade off between statistical
and computational issues here. For example, with a large learning rate α, the
Linearized Bregman Algorithm can generate a “coarse” regularization path
in only a few iterations. Yet such a “coarse” path might be highly biased
since it can not cannot approximate well the continuous solution path of ISS;
hence with only a few points on the path, users may not be able to recover
the true support of the unknown signal �from these coarse estimates. On
the other hand, a “denser” solution path generated by low learning rate α
provides more information about the true signal θ , yet it might lose some
computational efficiency of the algorithm itself.

In addition to the parameter α, another parameter κ is needed in the
algorithm. As κ → ∞ and α → 0, the Linearized Bregman Algorithm (1.2)
will converge to its limit ISS (1.4). Therefore, with a higher value of κ, the
Linearized Bregman Algorithm will have a stronger effect on “debiasing” the
path, and hence give a better estimate of the underlying signal at a cost of
possible high variance. Moreover, the parameters α and κ need to satisfy

ακ∥Sn∥ ≤ 2, Sn =
1
n

n

∑
i=1

xixT
i , (1.6)

otherwise the Linearized Bregman iterations might oscillate and suffer nu-
merical convergence issues [Osher et al.(2016)Osher, Ruan, Xiong, Yao, and
Yin]. Therefore in practice, one typically first chooses κ which might be large
enough, then follows a large enough α according to (1.6). In this sense, κ is
the essential free parameter.

Knowing how the Linearized Bregman Algorithm works in linear model,
we are ready to introduce the command in Libra that can be used to generate
the path,

lb(X,y,kappa,alpha,tlist,family= “gaussian”,group= FALSE,index= NA)
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In using the command above, the user must give inputs for the design matrix
X ∈ Rn×p, the response vector y ∈ Rn and the parameter kappa. Notably, the
parameter alpha is not required to be given in the use of such command, and
in the case when it’s missing, an internal value for alpha satisfying (1.6) would
be used and this internally-generated alpha would guarantee the convergence
of the algorithm. The tlist is a group of parameters t that determine the
output of the above command. When the tlist is given, only points at the
pre-decided set of tlist on the regularization path will be returned. When
it is missing, then a data dependent tlist will be calculated. See Section 1.5
for more details on the tlist. Finally, when group sparsity is considered, the
user needs to input an additional argument index to the algorithm so that
it can know the group information on the covariates.

As the limit of Linearized Bregman iterations when κ → ∞,α → 0, the
Inverse Scale Space for linear model with l1-penalty is also available in our
Libra package:

iss(X,y,intercept= TRUE,normalize= TRUE).

As is suggested by the previous discussion on the effect of κ on the reg-
ularization path, the ISS has the strongest power of “debiasing” the path;
once the model selection consistency is reached, it can return the “oracle”
unbiased estimator! Yet one disadvantage of ISS solution path is its relative
computational inefficiency compared to the Linearized Bregman Algorithm.

1.2.1 Example: Simulation Data

Here is the example in [Osher et al.(2016)Osher, Ruan, Xiong, Yao, and
Yin]. A comparison of regularization paths generated by LASSO, ISS, and
the Linearized Bregman iterations is shown in Figure 1.1.
# The fo l l ow ing reproduces Fig . 1 in the paper
#
# Sparse recovery via d i f f e r e n t i a l i n c l u s i on s
# Stanley Osher , Feng Ruan , Jiechao Xiong , Yuan Yao , and Wotao

Yin
# Applied and Computational Harmonic Analysis , Volume 41 , I s sue

2 ,  September 2016 , Pages 436 -469
# https :// arx iv . org/pdf /1406.7728. pdf
#
# by Feng Ruan , Jiechao Xiong , and Yuan Yao
# Peking Univers ity , 2014

l i b r a r y (MASS)
l i b r a r y ( l a r s )
l i b r a r y ( Libra )

n = 80;p = 100; k = 30; sigma = 1
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Fig. 1.1: Regularization paths of LASSO, ISS, and LB with different choices
of κ (κ = 22,24,26,28, and ακ = 1/10). As κ grows, the paths of Linearized

Bregman iterations approach that of ISS. The x-axis is t.

Sigma = 1/(3*p)*matrix ( rep (1 ,p^2) ,p , p)
diag (Sigma) = 1
A = mvrnorm(n , rep (0 , p) , Sigma)
u_ref = rep (0 ,p)
supp_ref = 1 : k
u_ref [ supp_ref ] = rnorm(k)
u_ref [ supp_ref ] = u_ref [ supp_ref ]+ s ign ( u_ref [ supp_ref ] )
b = as . vector (A%*%u_ref + sigma*rnorm(n) )

# Compute the Lasso path
l a s s o = l a r s (A, b , normalize=FALSE, in t e r c ep t=FALSE,max . s teps=100)

# png ( ’ f i g 1 . png ’ )

par (mfrow=c (3 ,2) )
matplot (n/ lasso$lambda , la s so$beta [ 1 : 1 0 0 , ] , xlab = bquote (n/

lambda) ,
ylab = ” Coe f f i c i e n t s ” , xlim=c (0 ,3) , ylim=c ( range ( la s so$beta ) ) ,

type=’ l ’ , main=”Lasso ”)

# Compute the ISS path
object = i s s (A, b , i n t e r c ep t=FALSE, normalize=FALSE)
plot ( object , xlim=c (0 ,3) ,main=bquote (” ISS ”) )
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kappa_list = c (4 ,16 ,64 ,256)
a lpha_l i s t = 1/10/ kappa_list
f o r ( i in 1 : 4 ) {

# Compute the Linear i zed Bregman I t e r a t i on path
object <- lb (A, b , kappa_list [ i ] , a lpha_l i s t [ i ] , fami ly=”gauss ian ” ,

group=FALSE,
t ra t e=20, i n t e r c ep t=FALSE, normalize=FALSE)

plot ( object , xlim=c (0 ,3) ,main=bquote ( paste (”LB ” , kappa ,”=” , . (
kappa_list [ i ] ) ) ) )

}

# dev . o f f ( )

1.2.2 Example: Diabetes Data

A diabetes dataset is used as an example in [Efron et al.(2004)Efron, Hastie,
Johnstone, and Tibshirani] to illustrate the lars algorithm. The dataset con-
tains 442 samples (diabetes patients) with 10 baseline variables. Here, we
show the solution paths of both the Linearized Bregman Algorithm and ISS
on the data, assuming a sparse linear regression model between the baseline
variables and the response. The LASSO regularization path is computed by
R-package lars. Figure 1.2 shows the comparison of different paths. It can
be seen that the LASSO path is continuous, while the ISS path is piece-wise
constant exhibiting the strong ‘debiasing’ effect. The paths generated by dis-
crete Linearized Bregman iterations somehow lie between them. It is easy to
see the sudden “shocks” in the figure when the variables are picked up in the
regularization path of the ISS or in the paths of Linearized Bregman itera-
tions with large κ. These “shocks” correspond to the stronger debiasing effect
of the Linearized Bregman Algorithm and ISS than LASSO. Hence our algo-
rithm can fit the signals more “aggressively” compared to the LASSO when
we use strong regularization. Although the curve shapes of these paths are
different, it is noticeable that the order of those paths entering into nonzero
regimes bears a great similarity, which implies that the model selection effects
of these algorithms are similar in this dataset.
l i b r a r y ( l a r s )
l i b r a r y ( Libra )
data ( d iabetes )
attach ( d iabetes )

# Compute the LASSO regu l a r i z a t i on path
l a s s o <- l a r s (x , y)

par (mfrow=c (2 ,2) )
p lot ( l a s s o ) # Plot LASSO path



10 Jiechao Xiong, Feng Ruan, and Yuan Yao

** * * * ** * ** ** *

0.0 0.2 0.4 0.6 0.8 1.0
-5
00

0
50
0

|beta|/max|beta|

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

** * * * **
* ** ** *

**

* *
* ** * ** ** *

** *
*

* **
* ** ** *

** * * * **
*
**

**

*

** * * * ** * **

**
*

** * *
* ** * *

*
**

*
** * * * ** *

** ** *
**

* *
* ** * **

**
*

** * * * ** * ** ** *

LASSO

5
2

1
8

6
9

0 2 4 7 10 12

0.0 0.2 0.4 0.6 0.8 1.0

-5
00

0
50
0

10
00

Solution-Path

C
oe
ffi
ci
en
ts

1 2 3 6 9 10 12

5
2

1
8

6
9

ISS

0.0 0.2 0.4 0.6 0.8 1.0

-5
00

0
50
0

Solution-Path

C
oe
ffi
ci
en
ts

1 2 4 7 30 41 78 92

5
2

1
8

6
9

LBI:kappa = 100

0.0 0.2 0.4 0.6 0.8 1.0
-5
00

0
50
0

Solution-Path

C
oe
ffi
ci
en
ts

1 2 4 30 76 90

5
2

1
8

6
9

LBI:kappa = 500

Fig. 1.2: Regularization paths of LASSO, ISS, and Linearized Bregman
Iterations on diabetes data. The piecewise constant regularization path of
ISS exhibits strong debiasing effect. The orders of variables entering into

nonzero regimes are similar in different paths. The x-axis is ∥θ∥1.

# Compute the ISS path
i s s o b j e c t <- i s s (x , y)
p lot ( i s s ob j e c t , xtype=”norm”) # plot the ISS path
t i t l e (” ISS ” , l i n e = 2 .5 )

# Compute the Linear i zed Bregman I t e r a t i on ( l b i ) Path
kappa <- c (100 ,500)
f o r ( i in 1 : 2 ) {

ob ject <- lb (x , y , kappa [ i ] , fami ly=”gauss ian ” , t r a t e =1000)
p lot ( object , xtype=”norm”) # plot the lb path
t i t l e ( paste (”LBI : kappa =”,kappa [ i ] ) , l i n e = 2 .5 )

}
detach ( l a s s o )
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1.3 Logistic Model

1.3.1 Binomial Logistic Model

In binary classification task, one of the mostly widely used model is the bino-
mial logistic model, see [Hastie et al.(2009)Hastie, Tibshirani, and Friedman].
Given the i.i.d data (xi,yi) ∈Rp×{±1}, the standard binomial logistic model
assumes the following predictive relationship between the covariates xi ∈ Rp

and their response yi ∈ {±1} for i = 1,2, . . . ,n:

P(yi = 1|xi)

P(yi =−1|xi)
= exp(θ0 + xT

i θ),

where, in the above equation, θ ∈ Rp represents the regression coefficients
before the covariates and θ0 ∈R represents the offset in the regression model.
Here, we allow the dimensionality p to be greater than or equal to the sample
size n. As is discussed in the linear regression case, when p > n, additional
sparsity assumptions on the regression coefficient θ should be enforced to
make the logistic model identifiable from the data (and also, recovery of the
parameters θ possible). The goal of this section is to show how the Linearized
Bregman Algorithm fits the sparse binomial logistic regression model in high
dimension. An early version of the Linearized Bregman iterations was imple-
mented in [Shi et al.(2013)Shi, Yin, and Osher], which differs to Algorithm
1 mainly in their zero initialization where we exploit an optimal choice of θ0
as a maximum likelihood estimate restricted to the null sparse model θ = 0.
See more discussions on initializations in Section 1.5.

As is discussed similarly in the linear regression case, a regularization path
is returned via the Linearized Bregman Algorithm, where practitioners can
find different estimates of the same parameters under different level of sparsity
assumptions on the true parameter θ . To give a more detailed illustration on
how the Linearized Bregman Algorithm computes the regularization path,
we first introduce the loss function in the algorithm, which is given by the
negative log-likelihood of the binomial model:

L(θ0,θ) =
1
n

n

∑
i=1

log(1+ exp(−yi(θ0 + xT
i θ))).

To compute the regularization path, the Linearized Bregman Algorithm 1
needs to evaluate the derivatives of the loss function with respect to θ and
θ0 for each of the iteration point in the path,
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∇θ0L(θ0,θ) =
1
n

n

∑
i=1

−yi

1+ exp(yi(θ0 + xT
i θ))

,

∇θ L(θ0,θ) =
1
n

n

∑
i=1

−yixi

1+ exp(yi(θ0 + xT
i θ))

.

In binomial logistic model, each iteration of the Linearized Bregman Algo-
rithm requires O(np) FLOPS in general, and the overall time complexity for
the entire solution path is O(npk), where k is the number of iterations.

Here, we give the command in Libra that can be used to generate the
path for the logistic model,

lb(X,y,kappa,alpha,tlist,family= “binomial”,group= FALSE,index= NA).

As is shown in the above command, the user is required to provide data X,
y, as well as the parameters alpha, kappa, and tlist. The effects of these
parameters on the resulting regularization paths for binomial logistic model
parallel that for the linear model. Hence, we refer the reader to section 1.2 to
find a detailed explanation on how the parameters affect the regularization
paths. Finally, similar to the case in linear regression, if one needs to enforce
a particular group sparse structure on the output parameters θ , he/she has
to input the index argument so that the algorithm can know the group
information assumption on the covariates.

1.3.1.1 Example: Publications of COPSS Award Winners

The following example explores a statistician publication dataset provided
by Professor Jiashun Jin at Carnegie Mellon University [Ji and Jin(2014)].
The dataset consists of 3248 papers by 3607 authors between 2003 and the
first quarter of 2012 from the following four journals: the Annals of Statistics,
Journal of the American Statistical Association, Biometrika and Journal of
the Royal Statistical Society Series B. Here we extract a subset of 382 papers
co-authored by 35 COPSS award winners. Peter Gavin Hall (20 November
1951–9 January 2016) is known as one of the most productive statisticians
in history and contributed 82 papers in this dataset. Can we predict the
probability of his collaborations with other COPSS award winners? A logistic
regression model will be used for this exploration. For a better visualization,
we only choose 9 other COPSS winners who have no less than 10 papers in this
dataset. The following codes compute regularization paths of the Linearized
Bregman iterations for logistic regression model to predict the probability of
Peter Hall’s collaborations with them. From the regularization paths shown in
Figure 1.3, it can be seen that the probability of collaborations between Peter
Hall and other COPSS winners are all reduced below the average indicated by
the negative coefficients, which suggests that these COPSS winners usually
work independently even occasionally coauthor some papers. The three paths
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which level off as iterations go correspond to Jianqing Fan, Tony Cai, and
Raymond J Carroll, who are the only collaborators of Peter Hall in this
dataset.
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T.Tony.Cai
Xihong.Lin

Fig. 1.3: Regularization path of logistic regression by LB on COPSS data.
The x-axis is normalized θ∥1. As all the coefficients on the paths appear to
be negative, it suggests that the probability of these COPSS award winners

collaborating with Peter Hall is below the average in a contrast to his
fruitful publications. The three paths which level off as ∥θ∥1 grows

correspond to Jianqing Fan, Tony Cai, and Raymond J Carroll, who are the
only collaborators of Peter Hall in this dataset.

l i b r a r y ( Libra )

# Data i s a 382 -by -35 matrix , c on s i s t i ng o f 382 pub l i ca t i ons
coauthored by 35 COPSS award winners

data<-read . tab l e (” copss . txt ”)
dim( data )
names( data )

# choose the authors whose pub l i ca t i ons are o f no l e s s than 10
s0<-colSums ( data )
data1<-data [ , s0>=10]
dim( data1 )
names( data1 )

# Run the l o g i s t i c r e g r e s s i on that Peter . Hal l ~ other nine copss
winner authors

y<-as . vector (2* as . matrix ( data1 [ , 5 ] ) -1) ; # Peter . Hal l as response
X<-as . matrix (2* as . matrix ( data1 [ , - 5 ] ) -1) ; # Other COPSS winners as

p r ed i c to r s
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path <- lb (X, y , kappa = 1 , fami ly=”binomial ” , t r a t e =100, normalize =
FALSE)

# Plot the l o g i s t i c r e gu l a r i z a t i on paths
p lot ( path , xtype=”norm” , omit . ze ros=FALSE)
t i t l e (main=paste (” Log i s t i c : ” , a t t r i bu t e s ( data1 )$names [ 5 ] , ” ~ . ” ) ,

l i n e=3)
legend (” bottomle ft ” , legend=at t r i bu t e s ( data1 )$names [ - 5 ] , c o l=c

( 1 : 6 , 1 : 3 ) , l t y=c ( 1 : 5 , 1 : 4 ) )

1.3.1.2 Example: Journey to the West

Journey to the West is one of the Four Great Classical Novels of Chinese
Literature. The literature describes an adventure story about Tangseng who
travelled to the “West Regions” for Sacred Texts. The literature contains
more than a hundred chapters and involves more than a thousand of charac-
ters. One interesting study on the literature would be to understand the social
relationships between the main characters, i.e., to understand how those with
different personalities and power can come along with each other.

Here, we give a simple example showing how the Linearized Bregman Al-
gorithm can be used to analyze the relationship between one main character,
MonkeyKing (Sunwukong), to the other main characters. We collect some data
that documents the appearance/disappearance of the top 10 main characters
under the pre-specified 408 different scenes in the novel. To analyze the rela-
tionship between MonkeyKing to the other 9 main characters, we build up a
logistic regression model, where the response Y corresponds to the indicator
of the appearance of the MonkeyKing in these scenes and the other covariates
X correspond to the indicators of the appearance of the other 9 characters
in the scenes. The data is collected via crowdsourcing at Peking University,
and can be downloaded at the following course website

https://github.com/yuany-pku/journey-to-the-west

Below we analyze the result of the logistic regression model fitted by the
Linearized Bregman Algorithm. Notice that, Tangseng, Pig (Zhubajie) and
FriarSand (Shaseng) are the first three main characters that are picked
up in the regularization path. In addition, the coefficients of their corre-
sponding covariates are all positive, meaning that they probably show up
the same time as the MonkeyKing in the story. A combination of the above
two phenomena is explained by the fact that in the novel they together with
MonkeyKing (Sunwukong) form the fellowship of the journey to the west. On
the other hand, Yuhuangdadi, Guanyinpusa, and Muzha seem to have less
involvements with the MonkeyKing, as they didn’t show up in the paths until
very late stages, with estimated coefficients being negative, indicating that
they just appeared occasionally with the MonkeyKing when he got troubles.

https://github.com/yuany-pku/journey-to-the-west
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Fig. 1.4: Regularization path of lb on west10 data using
family= ”binomial”. The fellowship of the journey to the west is formed
by Sunwukong (MonkeyKing) and his three peers: Tangseng, Zhubajie, and

Shaseng, corresponding to the first three paths.

l i b r a r y ( Libra )
data ( west10 )
y<-2*west10 [ , 1 ] - 1 ;
X<-as . matrix (2*west10 [ , 2 : 1 0 ] - 1 ) ;

path <- lb (X, y , kappa = 1 , fami ly=”binomial ” , t r a t e =100, normalize =
FALSE)

plot ( path , xtype=”norm” , omit . ze ros=FALSE)
t i t l e (main=paste (” Log i s t i c ” , a t t r i bu t e s ( west10 )$names [ 1 ] , ” ~ . ” ) ,

l i n e=3)
legend (” bottomle ft ” , legend=at t r i bu t e s ( west10 )$names [ - 1 ] , c o l=c

( 1 : 6 , 1 : 3 ) , l t y=c ( 1 : 5 , 1 : 4 ) )

1.3.2 Multinomial Logistic Model

Multinomial logistic regression is a method that generalizes the binary lo-
gistic model to multi-class classification problems, where the response y has
K(≥ 2) different outcomes [Hastie et al.(2009)Hastie, Tibshirani, and Fried-
man]. The model assumes the following relationship between the response
y ∈ {1,2, . . . ,K} and its covariate x ∈ Rp:

P(y = k|x) = exp(θk0 + xT θk)

∑K
k=1 exp(θk0 + xT θk)
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As is discussed in the previous sections, often additional sparsity assump-
tions on the coefficients θk for k = 1,2, . . . ,K are added by researchers to make
the model more identifiable/more interpretable in high dimensions. Usually,
researchers can have different prior beliefs on the underlying sparse structure
of the model, and these different types of sparse structures correspond to
different types of sparse multinomial logistic regression model. In our pack-
age, we consider three major variants of the original multinomial logistic
model, i.e., the entry-wise sparse, the column-wise sparse and the block-wise
sparse multinomial logistic model. The entry-wise sparse model corresponds
to adding an LASSO (l1) penalty on all the parameters θk for k = 1,2, . . . ,K.
The column-wise sparsity corresponds to adding a more complicated group
LASSO penalty on each column group of parameters θk, ∑p

j=1

√
∑K

k=1 θ 2
k j.

Since each column of θ corresponds to a feature xi for some 1 ≤ i ≤ p, get-
ting column-wise sparse estimates will select the same set of features for
different response classes simultaneously. Finally, as a generalization of the
previous group sparse model, the block-wise sparse model assumes an addi-
tional group structure on the coefficients θ , and penalizes our model through
the following block-wise penalty ∑g

√
∑K

k=1 ∑ j:g j=g θ 2
k j. Similar to the column-

wise sparse model, the block-wise sparse model does feature selection for all
response classes at the same time, yet it may select a group of features to-
gether instead of singletons and hence relies more on the feature correlation
group structure.

Now we are ready to give the R command in Libra to generate regular-
ization paths for multinomial logistic regression.

lb(X,y,kappa,alpha,tlist,family= “multinomial”,group= FALSE,index= NA)

We note here for the reader that the parameters alpha, kappa and tlist

function the same as they do in the linear regression model, and therefore,
we omit introduction of these parameters here but refer the reader to sec-
tion 1.2 for a detailed explanation of these parameters. Now, we are going to
illustrate how the three different types of sparsity structures on parameters
are implemented in R. To get an entry-wise sparse multinomial logistic re-
gression, one simply sets group= FALSE, and the function lb will return the
solution path for this model. On the other hand, to fit a column-wise/block-
wise sparse model, one needs to set group= TRUE and provide the additional
prior group information when possible.

Finally, we discuss some details of the algorithmic implementation in solv-
ing the sparse multinomial logistic model. Similar as before, the negative
log-likelihood of the multinomial model is used as the loss function:

L(θ0,θ) =
1
n

n

∑
i=1

log(
K

∑
k=1

exp(θk0 + xT
i θk))−θyi0 − xT

i θyi



1 A Tutorial on Libra 17

One can compute the derivatives of the above loss function with respect to
its parameters:

∇θ j0L(θ0,θ) =
1
n

n

∑
i=1

exp(θ j0 + xT
i θ j)

∑K
k=1 exp(θk0 + xT

i θk)
−1(yi = j),

∇θ j L(θ0,θ) =
1
n

n

∑
i=1

exp(θ j0 + xT
i θ j)xi

∑K
k=1 exp(θk0 + xT

i θk)
− xi1(yi = j).

Therefore, the computational complexity for each iteration of the Linearized
Bregman Algorithm is of O(npK) FLOPs.

1.4 Graphical Model

Undirected graphical models, also known as Markov random fields, has many
applications in different fields including statistical physics [Ising()], natural
language processing [Manning and Schütze(1999)], and image analysis [Hass-
ner and Sklansky(1980)], etc. Markov random field models the joint probabil-
ity distribution of set random variables {Xv}, where the subscript v belongs
to some set V , by some undirected graph G = (V,E), where E ∈ {0,1}V×V

denotes the edges among V that determine the (conditional) independence
between subsets of random variables of {Xv}v∈V . In this section, we introduce
three types of undirected graphical models implemented in Libra: Gaussian
Graphical Models, Ising Models, and Potts Models.

1.4.1 Gaussian Graphic Model

The Gaussian graphic model assumes the data x ∈ Rp follow the the joint
normal distribution N (µ,Θ−1), where Θ is a sparse p-by-p inverse covari-
ance (precision) matrix which encodes the conditional independence relations
between variables, i.e. {xi ⊥ x j : x{−i,− j}} ⇔Θi j = 0. Note that θ0 here is the
diagonal of Θ which is not penalized and the sparse parameter θ contains
the off-diagonal elements.

Graphical LASSO [Friedman et al.(2008)Friedman, Hastie, and Tibshi-
rani] exploits the maximum likelihood estimate with l1 regularization on θ .
However the gradient of Gaussian likelihood with respect to θ involves ma-
trix inverse and is thus not good for implementing the Linearized Bregman
Algorithm. To avoid this issue, here we exploit the composite conditional
likelihood as the loss function.

It is easy to calculate the distribution of x j conditional on x− j is also a
normal distribution:
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x j|x− j ∼ N

(
µ j − ∑

k ̸= j

Θ jk

Θ j j
(xk −µk),

1
Θ j j

)

For simplicity assume that the data is centralized, then the composite con-
ditional likelihood becomes

L(Θ) =
p

∑
j

1
n

n

∑
i=1

Θ j j

2

(
xi, j + ∑

k ̸= j

Θ jk

Θ j j
xi,k

)2

− 1
2

logΘ j j).

or equivalently,
L(Θ) = ∑

j

1
2Θ j j

Θ T
· j SΘ· j −

1
2

log(Θ j j)

where S = 1
n ∑n

i=1 xixT
i is the covariance matrix of data. Such a loss function is

convex.
The corresponding gradient is defined by

∇θ j j L(Θ) =
1

Θ j j
S j·Θ· j −

1
2Θ 2

j j
Θ T

· j SΘ· j −
1

2Θ j j

∇θ jk L(Θ) =
1

Θ j j
Sk·Θ· j +

1
Θkk

S j·Θ·k,

and the computation of gradient is O(min(p3,np2)).
The Libra command to estimate the Gaussian Graphical Model is

ggm(X,kappa,alpha,S,tlist,nt= 100,trate= 100)

where X is the data matrix and if X is missing, the covariance matrix S should
be provided. Moreover nt is the number of models on path which decides the
length of tlist and trate := tmax/tmin as the scale span of t. Their choices
are further discussed in Section 1.5.

1.4.1.1 Example: Journey to the West

Here we demonstrate the application of function ggm to the same dataset
west10 introduced before. We choose a particular model at sparsity level
51% and plot it in Figure 1.5 against the outcome of Graphical LASSO
implemented by R package huge [Zhao and Liu(2012)]. It can be seen that
the resulting graphs bear a globally similar sparsity pattern with several
distinct edges.
l i b r a r y ( Libra )
l i b r a r y ( igraph )
l i b r a r y ( huge )
l i b r a r y ( cl ime )
data ( west10 )
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Fig. 1.5: A comparison of sparse Gaussian Graphical models returned by
LB for composite conditional likelihood (left) and Graphical LASSO (right).

Green for the positive coefficients and Red for the negative in the inverse
covariance matrix Θ . The width of edge represents the magnitude of

coefficients.

X <- as . matrix (2*west10 -1 ) ;
obj = ggm(X,1 , alpha = 0.01 , nt=1000, t r a t e=100)
g<-graph . adjacency ( obj$path [ , , 7 2 0 ] ,mode=”undirected ” , weighted=

TRUE, diag=FALSE)
E(g ) [E(g ) $weight <0] $color <-”red”
E(g ) [E(g ) $weight >0] $color <-”green ”
V(g )$name<- a t t r i bu t e s ( west10 )$names
p lot (g , vertex . shape=”rec tang l e ” , vertex . s i z e =35, vertex . l ab e l=V(g )

$name ,
edge . width=2*abs (E(g ) $weight ) ,main=”GGM (LB) : spa r s i t y =0.51”)

obj2<- huge ( as . matrix ( west10 ) , method = ” g la s so ”)
obj2 . s e l e c t = huge . s e l e c t ( obj2 , c r i t e r i o n = ” eb ic ”)
g2<-graph . adjacency ( as . matrix ( obj2 . s e l e c t $op t . i cov ) ,mode=”plus ” ,

weighted=TRUE, diag=FALSE)
E( g2 ) [E( g2 ) $weight <0] $color <-”red”
E( g2 ) [E( g2 ) $weight >0] $color <-”green ”
V( g2 )$name<- a t t r i bu t e s ( west10 )$names
p lot ( g2 , vertex . shape=”rec tang l e ” , vertex . s i z e =35,edge . width=2*abs (

E( g2 ) $weight ) , vertex . l ab e l=V(g2 )$name ,main=”Graphical LASSO:
spa r s i t y =0.51”)

obj3<- cl ime ( as . matrix ( west10 ) , l i n s o l v e r = ” simplex ”)
g3<-graph . adjacency ( as . matrix ( obj3$Omegalist [ [ 7 0 ] ] ) ,mode=”plus ” ,

weighted=TRUE, diag=FALSE)
E( g3 ) [E( g3 ) $weight <0] $color <-”red”
E( g3 ) [E( g3 ) $weight >0] $color <-”green ”
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V( g3 )$name<- a t t r i bu t e s ( west10 )$names
p lot ( g3 , vertex . shape=”rec tang l e ” , vertex . s i z e =35,edge . width=2*abs (

E( g3 ) $weight ) , vertex . l ab e l=V(g3 )$name ,main=”CLIME: spa r s i t y
=0.51”)

1.4.2 Ising Model

Among many different graphical models, one important graphical model for
binary random variables (i.e.Xv ∈ {0,1} for any v ∈ V ) is the Ising model,
which specifies the underlying distribution on {Xv} by the following Boltz-
mann distribution:

P(x) =
1

Z(θ0,θ)
exp(xT θ0 +

1
2

xT θx),

Here in the above equation, θ0 ∈ R|V | and θ ∈ R|V |×|V | are the parameters of
the Ising model with Z the normalizing function. (Z is also named the par-
tition function in the literature.) Notably, the nonzero entries of |V | by |V |
symmetric matrix θ ∈R|V |×|V | correspond to the edge-set E, which determines
the dependence structure (conditional independence) between {Xv}. There-
fore, given the data {xi}n

i=1, where xi ∈ {0,1}|V |, the objective of learning here
is to determine the support of θ (i.e., the graph structure) and estimate the
strength of θ simultaneously (strength of dependency relationship).

To solve this model, [Ravikumar et al.(2010)Ravikumar, Wainwright, Laf-
ferty, et al.] [Xue et al.(2012)Xue, Zou, and Cai] etc. suggest using logistic
regression by observing that the conditional distribution of Xv given all the
other variables X−v satisfies the following logistic distribution,

P(Xv = 1|X−v)

P(Xv = 0|X−v)
= exp(θv0 +θv,−vX−v) v ∈V.

To fully utilize all the information from the data while keeping the symmetry
of parameters, we use the following composite conditional likelihood [Xue
et al.(2012)Xue, Zou, and Cai] as our loss function in Libra,

L(θ0,θ) =
|V |

∑
v=1

1
n

n

∑
i=1

log(1+ exp(θv0 +θv,−vxi,−v))− xiv(θv0 +θv,−vxi,−v),

with the gradient of the above loss showing below:

∇θv0L(θ0,θ) =
1
n

n

∑
i=1

1
1+ exp(−θv0 −θv,−vxi,−v)

− xiv

∇θv1v2
L(θ0,θ) =

1
n

n

∑
i=1

xiv2

1+ exp(−θv10 −θv1,−v1xi,−v1)
+

xiv1

1+ exp(−θv20 −θv2,−v2xi,−v2)
−2xiv1xiv2 .
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In fitting the Ising model, each iteration of the Linearized Bregman Algorithm
requires O(n|V |2) FLOPS in general, and the overall time complexity for the
entire solution path is O(n|V |2k), where k is the number of iterations.

The command in Libra that can be used to generate the path for the Ising
model is

ising(X,kappa,alpha,tlist,responses= c(0,1),nt= 100,trate= 100,intercept= TRUE)

The functions of the arguments kappa, alpha and tilst is similar to that
of these same arguments appeared in the function calls for the linear, bino-
mial logistic and multinomial logistic model. Hence, we refer the reader to
section 1.2 for a detailed explanations of these arguments. There are several
arguments specialized for Ising model, i.e. nt is the number of models on path
which decides the length of tlist and trate := tmax/tmin is the scale span of
t. See section 1.5 for more details on these two arguments. The choice of the
argument responses can be either c(0,1) or c(−1,1). The choice c(−1,1)
corresponds to the following model formulation, where we instead assume
our data x coming from {−1,1} and our distribution on data x having the
following specification:

P(x) =
1
Z

exp(
1
2

xT h+
1
4

xT Jx),

where, h ∈ R|V | and J ∈ R|V |×|V |. Since such model formulations appear quite
often in some scientific fields including computational physics, for conve-
nience, we include Linearized Bregman Algorithm solvers for this type of
model in our package. For clarity, we also give the one-to-one correspondence
between the two model formulations:

x−1/1 = 2x0/1 −1,
J = θ/2,
h = θ0 + J1.

1.4.2.1 Example: Simulation data

In this section, we give some simulation results that illustrate the perfor-
mance of the Linearized Bregman Algorithm in solving the Ising model. In
our simulation setting, we choose our sample size n to be 5000 and choose
our underlying graph G to be the standard 10-by-10 grid (see Figure 1.6).
We set the intercept coefficients h to be 0 for all nodes. Each entry in the
interaction matrix J jk is set to be 2/2.3 whenever j and k are neighbors on the
10-by-10 grid or set to 0 otherwise. Here are the example codes that shows
the simulation:
l i b r a r y ( Libra )
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data ( i s ingdata )
obj = i s i n g ( isingdata$X ,10 , alpha=0.1 , t r a t e=30)

TPrate <- rep (0 ,100)
FPrate <- rep (0 ,100)
f o r ( i in 1 :100) {

TPrate [ i ] = sum(( obj$path [ , , i ] !=0)&( i s ingdata$J !=0) )
FPrate [ i ] = sum(( obj$path [ , , i ] !=0)&( i s ingdata$J==0))

}
TPrate <- TPrate/sum( i s ingdata$J !=0)
FPrate <- FPrate/sum( i s ingdata$J==0)
tmin <- log ( obj$t [min(which (TPrate==1)) ] )
tmax <- log ( obj$t [max(which (FPrate==0)) ] )

coord = matrix ( c ( rep (1 : 10 , each=10) , rep (1 :10 ,10 ) ) , ncol=2)
g<-graph . adjacency ( as . matrix ( i s ingdata$J ) ,mode=”plus ” , weighted=

TRUE, diag=FALSE)
png( f i l e =”Grid_true . png” , bg=”transparent ”)
p lot (g , vertex . shape=”c i r c l e ” , vertex . s i z e =10,edge . width=2*abs (E(g )

$weight ) , layout=coord )
dev . o f f ( )
png( f i l e =”Ising_TPFP . png” , bg=”transparent ”)
p lot ( log ( obj$t ) ,TPrate , co l=’red ’ , type=’ l ’ , l t y=1,xlab=expres s ion (

log ( t ) ) , ylab=’TPrate & FPrate ’ )
l i n e s ( log ( obj$t ) , FPrate , co l=’blue ’ , type=’ l ’ , l t y=2)
ab l ine (v = c ( tmin , tmax) , l t y=3)
ax i s (1 , at = c ( tmin , tmax) , l a b e l s = c ( expres s ion ( t [ 1 ] ) , expres s ion ( t

[ 2 ] ) ) )
legend (x = 3 , y = 0.58 , l t y =1:2 , co l=c ( ’ red ’ , ’ blue ’ ) , legend=c ( ’

TPrate ’ , ’ FPrate ’ ) )
dev . o f f ( )

Figure 1.6 shows the True-Positive-Rate curve and False-Positive-Rate
curve along the model path computed by ising. There is a segment in the
LB path which gives the same sparsity pattern as the ground truth. For a
better visualization, some movies that illustrated the regularization path of
our fitting procedure are shown in the Appendix.

1.4.2.2 Example: Journey to the West

In this section, we revisit our example in section 1.3.1.2. In section 1.3.1.2,
we analyze the social relationship between the main character MonkeyKing

and the other 9 characters for the classic novel 1.3.1.2 via a single logistic
regression. However, such analysis doesn’t take into account the pairwise rela-
tionships between the other top 9 main characters, and hence without using
the joint information among the other 9 characters, our estimate of social
networking structure may be statistically inefficient. In this section, we are
going to jointly estimate the social networking among all the 10 main char-
acters simultaneously by applying techniques from graphical models. Note
that, this can return to us a statistically more efficient estimate of the so-
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Fig. 1.6: Left: True Grid. Right: TPrate and FPrate vs. log(t). The path
between t1 and t2 gives the correct sparsity pattern of models.

cial networking, compared to the result coming from multiple times of single
logistic regressions.

Here, we first consider using Ising model to model the interaction rela-
tionships between the top 10 main characters in the classic novel Journey
to the West. Figure 1.7 shows an Ising model estimate at the same sparsity
level of 51% as in Figure 1.5, using the command ising. Comparing it with
Gaussian graphical models in Figure 1.5, note that the color of these two
types of graphs is almost opposite. This is because there is a negative sign on
the exponential term in Gaussian likelihood function, which means a nega-
tive interaction coefficient actually increases the probability of co-presence in
Gaussian graphical models. Up to the sign difference, the sparsity patterns
in all these models are qualitatively similar.
l i b r a r y ( Libra )
l i b r a r y ( igraph )
data ( west10 )
X <- as . matrix (2*west10 -1 ) ;
obj = i s i n g (X, 10 , 0 . 1 , nt=1000, t r a t e=100)

g<-graph . adjacency ( obj$path [ , , 7 7 0 ] ,mode=”undirected ” , weighted=
TRUE)

E(g ) [E(g ) $weight <0] $color <-”red”
E(g ) [E(g ) $weight >0] $color <-”green ”
V(g )$name<- a t t r i bu t e s ( west10 )$names
p lot (g , vertex . shape=”rec tang l e ” , vertex . s i z e =35, vertex . l ab e l=V(g )

$name , edge . width=2*abs (E(g ) $weight ) ,main=”I s i ng Model (LB) :
spa r s i t y =0.51”)
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Ising Model (LB): sparsity=0.51

Sunwukong

Tangseng

Zhubajie

Shaseng

Bailongma

Guanyinpusa

Yuhuangdadi

Muzha

Nezha

Tudishen

Fig. 1.7: An Ising model of sparsity level 51% on LB path. Green edges are
for positive coefficients which increases the probability of co-appearance,

while red edges are for negative which drop such a probability. The width of
edge represents the magnitude of coefficients. Despite that the signs of

coefficients are almost opposite compared with Gaussian graphical models,
the sparsity patterns in these models are qualitatively similar.

1.4.2.3 Example: Dream of the Red Chamber

Dream of the Red Chamber, often regarded as the pinnacle of Chinese fic-
tion, is another one of the Four Great Classical Novels of Chinese Literature,
composed by Cao, Xueqin for the first 80 chapters and Gao, E for the re-
maining 40 chapters. With a precise and detailed observation of the life and
social structures typical of 18th-century society in Qing Dynasty, the novel
describes a tragic romance between 贾宝⽟ (pronunciation: Jia, Baoyu) and
林黛⽟ (pronunciation: Lin, Daiyu) among other conflicts. Our interest is
to study the social network of interactions among the main characters. Our
dataset records 375 characters who appear (“1”) or do not show up (“0”) in
475 events extracted from the 120 chapters. The data is collected via crowd-
sourcing at Peking University, and can be downloaded at the following course
website:

https://github.com/yuany-pku/dream-of-the-red-chamber

The following R codes give a simple example showing how the Linearized
Bregman Algorithm can be used to build up sparse Ising models from the
data, focusing on the most frequently appeared 18 characters. To compare the

https://github.com/yuany-pku/dream-of-the-red-chamber
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structural difference of the first 80 chapters by Cao, Xueqin and the latter 40
chapters by Gao, E, we run ising on two subsets of data to extract two Ising
models shown in Figure 1.8. The links shed light on conditional independence
relations among characters learned from data. It is clear that in the first part
of the novel, 贾宝⽟ has a strong connection with 林黛⽟ and is conditional
independent to another main character薛宝钗 (pronunciation: Xue, Baochai)
as Cao, Xueqin depicts; while in the second part 贾宝⽟ connects to 薛宝钗
directly and becomes conditional independent to 林黛⽟ as Gao, E implies.
Such a transition is consistent with the split of the novel.

Ising Model (LB): sparsity=20%

贾政

贾珍

贾琏

贾宝⽟玉
贾探春

贾蓉

史太君

史湘云 王夫⼈人

王熙凤

薛姨妈
薛宝钗

林黛⽟玉

邢夫⼈人

尤⽒氏

李纨

袭⼈人
平⼉儿

Ising Model (LB): sparsity=20%

贾政

贾珍

贾琏

贾宝⽟玉

贾探春

贾蓉

史太君

史湘云

王夫⼈人

王熙凤

薛姨妈

薛宝钗

林黛⽟玉

邢夫⼈人

尤⽒氏

李纨

袭⼈人

平⼉儿

Fig. 1.8: Left: an Ising model for the first 80 chapters by Cao, Xueqin.
Right: an Ising model for the remaining chapters by Gao, E. Sparsity levels
are all chosen as 20% on LB path. Green edges are for positive coefficients

which increase the probability of co-appearance, while red edges are for
negative which drop such a probability. The width of edge represents the

magnitude of coefficients. Comparing the two models, one can see that 贾宝
⽟ has a strong link with 林黛⽟ in the first part, and changes the link to 薛

宝钗 who becomes his wife in the second part of the novel.

l i b r a r y ( Libra )
l i b r a r y ( igraph )

load (”dream .RData”)
# Choose the f i r s t 80 chapters authored by Cao , Xueqin
data<-dream [ dream [ ,1 ] >0 , ]
dim( data )
s0<-colSums ( data )
# r e s t r i c t to the most important characte r s
data1<-data [ , s0>=30]
#Eng_names <- c ( ’ Jia , Zheng ’ , ’ Jia , Zhen ’ , ’ Jia , Lian ’ , ’ Jia , Baoyu

’ , ’ Jia , Tanchun ’ , ’ Jia , Rong ’ , ’ Lady Dowager ’ , ’ Shi , Xiangyun ’ , ’
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Lady Wang’ , ’Wang, Xifeng ’ , ’ Aunt Xue ’ , ’Xue , Baochai ’ , ’ Lin ,
Daiyu ’ , ’ Lady Xing ’ , ’Madam You ’ , ’ Li , Wan’ , ’ Xiren ’ , ’ Ping \ ’ er ’ )

p = dim( data1 ) [ 2 ] ;
X<-as . matrix (2* as . matrix ( data1 [ , 2 : p ] ) -1) ;
obj = i s i n g (X, 10 , 0 . 1 , nt=1000, t r a t e=100)
spa r s i t y=NULL
fo r ( i in 1 :1000) { spa r s i t y [ i ]< -(sum( abs ( obj$path [ , , i ] )>1e -10) ) /(

p^2 -p) }

## Choose spa r s i t y=20% at point 373
g<-graph . adjacency ( obj$path [ , , 3 7 3 ] ,mode=”undirected ” , weighted=

TRUE)
E(g ) [E(g ) $weight <0] $color <-”red”
E(g ) [E(g ) $weight >0] $color <-”green ”
V(g )$name<- a t t r i bu t e s ( data1 )$names [ 2 : p ]
p lot (g , vertex . shape=”rec tang l e ” , vertex . s i z e =25, vertex . l ab e l=V(g )

$name , edge . width=2*abs (E(g ) $weight ) , vertex . l ab e l . fami ly=’
STKaiti ’ , main=”I s i ng Model (LB) : spa r s i t y=20%”)

# Choose the l a t e r 40 chapters authored by Gao , E
data<-dream [ dream [ ,1 ] <1 , ]
data2<-data [ , s0>=30]
X<-as . matrix (2* as . matrix ( data2 [ , 2 : p ] ) -1) ;
obj = i s i n g (X, 10 , 0 . 1 , nt=1000, t r a t e=100)
spa r s i t y=NULL
fo r ( i in 1 :1000) { spa r s i t y [ i ]< -(sum( abs ( obj$path [ , , i ] )>1e -10) ) /(

p^2 -p) }

## Choose spa r s i t y=20% at point 344.
g<-graph . adjacency ( obj$path [ , , 3 4 4 ] ,mode=”undirected ” , weighted=

TRUE)
E(g ) [E(g ) $weight <0] $color <-”red”
E(g ) [E(g ) $weight >0] $color <-”green ”
V(g )$name<- a t t r i bu t e s ( data2 )$names [ 2 : p ]
p lot (g , vertex . shape=”rec tang l e ” , vertex . s i z e =25, vertex . l ab e l=V(g )

$name , edge . width=2*abs (E(g ) $weight ) , vertex . l ab e l . fami ly=’
STKaiti ’ , main=”I s i ng Model (LB) : spa r s i t y=20%”)

1.4.3 Potts Model

Potts Model can be regarded as a multinomial generalization of Ising model.
Each variable x j can be a multi-class variable. For simplicity we assume x ∈
{1,2, . . . ,K}p, actually the class number and class name can be arbitrary.
Then the model x is assumed to satisfy the distribution:

P(x) =
1
Z

exp

 ∑
j=1,...,p
s=1,...,K

θ js,01(x j = s)+
1
2 ∑

j=1,...,p;s=1,...,K
k=1,...,p;t=1,...,K

θ js,kt1(x j = s)1(xk = t)
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where Z is the normalization factor. The intercept coefficients θ0 is a vector of
length pK and the interaction coefficients θ is a pk-by-pk symmetric matrix
with zero diagonal block. So the distribution of x j conditional on the rest
variables x− j satisfies

P(x j = s|x− j) =
exp(θ js,0 +∑k=1,...,p;t=1,...,K θ js,kt1(xk = t))

∑s=1,...,K exp(θ js,0 +∑k=1,...,p;t=1,...,K θ js,kt1(xk = t))

which is actually a multinomial logistic distribution.
So the loss function is defined as the composite conditional likelihood:

L(θ0,θ) =
p

∑
j=1

1
n

n

∑
i=1

log

 ∑
s=1,...,K

exp

θ js,0 + ∑
k=1,...,p
t=1,...,K

θ js,kt1(xi,k = t)


+ . . .

. . .−θ jxi, j ,0 − ∑
k=1,...,p
t=1,...,K

θ jxi, j ,kt1(xi,k = t)

The corresponding gradient is

∇θ js,0L(θ0,θ) = 1
n ∑n

i=1

exp(θ js,0+∑k=1,...,p
t=1,...,K

θ js,kt 1(xi,k=t)

∑s=1,...,K exp(θ js,0+∑k=1,...,p
t=1,...,K

θ js,kt 1(xi,k=t)) −1(xi j = s)

∇θ js,kt L(θ0,θ) = 1
n ∑n

i=1

1(xi,k=t)exp(θ js,0+∑k=1,...,p
t=1,...,K

θ js,kt 1(xi,k=t)

∑s=1,...,K exp(θ js,0+∑k=1,...,p
t=1,...,K

θ js,kt 1(xi,k=t)) −1(xi j = s,xik = t)

+

1(xi, j=s)exp(θkt,0+∑ j=1,...,p
s=1,...,K

θkt, js1(xi, j=s)

∑t=1,...,K exp(θkt,0+∑ j=1,...,p
s=1,...,K

θkt, js1(xi, j=s)) −1(xik = t,xi j = s)

and the computation cost of gradient is O(np2K2)(or O(np2) if using sparse
encoding to represent x).

The function to estimate the Potts model in Libra is

potts(X,kappa,alpha,tlist,nt= 100,trate= 100,intercept= TRUE,group= FALSE)

The data matrix X should a matrix of size n-by-p, and each column is
a class vector (the number of class for each variable can be different). If
group= TRUE, then the group penalty is used;

∑
k=1,...,p
k=1,...,p

√√√√ ∑
s=1,...,K
t=1,...,K

θ 2
js,kt .
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1.5 Discussion

In this section, we include some discussions on the choice of some universal
parameters that are used throughout the Libra package.

• Initialization of intercept parameter θ0: The initialization of intercept θ0
in the Linearized Bregman Algorithm is θ 0

0 = argminθ0 L(θ0,0), not from
zero. The reason for this is to avoid picking up the variables that are very
relevant to the intercept term. If θ0 = 0 at first, then the gradient of those
spurious variables close to the intercept may become very large due to the
influence of intercept, such that they are much easier to be picked out. This
issue is especially crucial in unbalanced sample in Ising model. When 1 or
−1 dominates a variable, this variable is thus very close to the intercept
term and becomes a spurious variable being selected early. Fortunately,
computation of argminθ0 L(θ0,0) can be done explicitly in all the examples
above.

• Initialization of t: Because the initial value of θ0 is minimal point, so the
gradient of loss is always zero unless a new variable is added in. So in the
package, the iteration actually begins from the first entry time

t0 = inf{t : θ j(t) ̸= 0, for some j}

and z(t0) can be calculated easily because ∇θ L(θ 0
0 ,0) is constant.

• Parameter tlist: Instead of returning all the results of iteration steps,
we need to return the results at a pre-decided set of t, tlist, along the
path. However the Linearized Bregman Iterations only compute the value
at a regular grid of time t0 + kα,k = 0,1, . . . , which may not consists a
particular t in tlist. To solve this issue, for a point t in tlist but not on
the computed time grid, a linear interpolation of zk(θ k

0 ) and zk+1(θ k+1
0 ) is

used to computed z(t) or θ0(t), θ(t) is further obtained by using Shrinkage
on z(t). Finally if tlist is not specified by the user, a geometric sequence
from t0 to t0 ·trate (trate= tmax/tmin) with length nt (number of models
on path to show) is used as the default choice tlist.
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Appendix: Movies of Ising Model Paths

The Ising model in simulation is a 10-by-10 grid. The intercept coefficients
h = 0 and J jk = 2/2.3 if j and k are neighbors on the grid and 0 otherwise. So
J is a 100-by-100 matrix and we draw 5000 samples using Gibbs sampling.
Here is the example code to visualize the whole path using the R-package
animation. The two movies are shown in Fig. 1.9 and Fig. 1.10, respectively.
Note that Adobe Reader can be used to see the animation.

Fig. 1.9: Left: True Coefficients; Right: Movie of the Path of Estimated
Coefficients.

l i b r a r y ( animation )
l i b r a r y ( igraph )
l i b r a r y ( Libra )
data ( i s ingdata )
obj = i s i n g ( isingdata$X ,10 , alpha=0.1 , t r a t e=30)

ncol = 50
breaks = seq (min( obj$path ) ,max( obj$path ) , length . out=ncol+1)
png( f i l e =”Is ing_true . png” , bg=”transparent ”)
image ( is ingdata$J , co l=rainbow ( ncol ) , breaks=breaks )
dev . o f f ( )
saveGIF ({
f o r ( i in 1 :100) image ( obj$path [ , , i ] , c o l=rainbow ( ncol ) , breaks=

breaks )
} , movie . name = ” Is ing_lb . g i f ” , i n t e r v a l = 0 .1 , nmax = 100)

coord = matrix ( c ( rep (1 : 10 , each=10) , rep (1 :10 ,10 ) ) , ncol=2)
g<-graph . adjacency ( as . matrix ( i s ingdata$J ) ,mode=”plus ” , weighted=

TRUE, diag=FALSE)
png( f i l e =”Grid_true . png” , bg=”transparent ”)
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Fig. 1.10: Left: True Grid; Right: Movie of the Path of Estimated Grid. The
width of edge represents the magnitude of coefficients.

plot (g , vertex . shape=”c i r c l e ” , vertex . s i z e =10,edge . width=2*abs (E(g )
$weight ) , layout=coord )

dev . o f f ( )
saveGIF ({
f o r ( i in 1 :100) {
g2<-graph . adjacency ( as . matrix ( obj$path [ , , i ] ) ,mode=”plus ” , weighted

=TRUE, diag=FALSE)
i f ( i==1){
p lot ( g2 , vertex . shape=”c i r c l e ” , vertex . s i z e =10,edge . width

=0, layout=coord )
} e l s e {
p lot ( g2 , vertex . shape=”c i r c l e ” , vertex . s i z e =10,edge . width

=2*abs (E( g2 ) $weight ) , layout=coord )
}

}
} , movie . name = ”Grid_lb . g i f ” , i n t e r v a l = 0 .1 , nmax = 100)
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