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On Complexity Issue of Online Learning
Algorithms

Yuan Yao

Abstract— In this paper, some new probabilistic upper bounds
are presented for the online learning algorithm proposed in
[1], and more generally for linear stochastic approximations in
Hilbert spaces. With these upper bounds not only does one
recover almost sure convergence, but also relaxes the square
summable condition on the step size appeared in our early work.
We also give two probabilistic upper bounds for an averaging
process, both of which achieve the same rate with respect to
sample size as in “batch learning” algorithms.

Index Terms— Online learning, regularization, stochastic ap-
proximation, averaging process, reproducing kernel Hilbert
Space.

I. I NTRODUCTION

SUPERVISED learning, or learning from examples, is to
find a function in a hypothesis spaceH , which associates

an inputx ∈ X to an outputy ∈ Y , by drawing examples
(xt, yt)t∈N at random from a probability measureρ onX ×Y .
By “online learning”, we mean a sequential decision process
(ft)t∈N in the hypothesis space, where eachft+1 is decided by
the current observation andft which only depends on previous
examples, i.e.ft+1 = Tzt(ft) wherezt = (xt, yt) (see, e.g.
[1], [2]). As a contrast, “batch learning” refers to a decision
utilizing the whole set of examples (see, e.g., [3], [4]).

In the scheme of regularization, one wants to approximate
a function f∗λ as a solution of the following optimization
problem (see, e.g., [4], [5]),

min
f∈H

∫

X×Y
V (f(x), y)dρ + λ‖f‖2H , λ > 0, (1)

where the hypothesis spaceH is associated with a norm
‖ · ‖H and V : H × X × Y → R is a loss function,
which measures the prediction cost off at x against y.
Among a variety of choices onV andH , it leads to a simple
structure but deeper understanding by selecting the quadratic
loss V (f(x), y) = (f(x) − y)2 and the hypothesis space
H = HK , the reproducing kernel Hilbert space (RKHS)
associated with a Mercer kernelK. In this setting there exists a
unique minimizerf∗λ , satisfying the following linear equation,

(LK + λI)f = LKfρ, (2)

where fρ(x) =
∫
Y ydρY |x, the conditional expectation of

y, is called theregression function; and the integral oper-
ator LK : L 2

ρ (X ) → L 2
ρ (X ) is defined byLK(f) =
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∫
X K(x, t)f(t)dρX . SinceLK +λI (λ > 0) is invertible, we

may writef∗λ = (LK +λI)−1LKfρ. Moreover, such a choice
avoids the estimation of covering numbers ofH , which is
difficult in most cases [3], [6]; it provides a simple estimate
of optimal upper bounds asymptotically meeting lower bounds
[7], [8]; it bridges over the linear inverse problem toward other
regularization schemes [9], [10]; and more interestingly in this
paper, it takes an especially simple form in online learning
algorithms [1].

Given an independent and identically distributed random
sequence(xt, yt)t∈N, the algorithm in [1] returns a sequence
(ft)t∈N ∈HK to approximatef∗λ ,

ft+1 = ft − γt((ft(xt)− yt)Kxt + λft), (3)

wheref1 ∈ HK , e.g.f1 = 0, and in this paper the step size
γt > 0 is chosen asγt = O(t−θ) for someθ ∈ [0, 1).

The algorithm can be regarded as either the stochastic
approximation of the gradient descent method for (1), or the
stochastic approximation of the linear equation (2), which
was originally proposed in [11], [12]. Traditional analysis on
stochastic approximations has been focusing on convergence
and asymptotic rates. A convergence result often used in
applications, known as the Robbins-Siegmund Theorem [13],
imposes a condition on the step size that

∑
t γt = ∞ and∑

t γ2
t < ∞, and leads to the almost sure convergence

(with probability one). For the step size chosen in this paper,
γt = O(t−θ), this requiresθ ∈ (1/2, 1). In this setting, the
asymptotic rate has been shown asO(γ1/2

t ) = O(t−θ/2).
Note that the condition

∑
t γt = ∞, is used to “forget” the

error caused by initial choices. However the square summable
condition,

∑
t γ2

t < ∞, is not necessary for the almost sure
convergence. For example in [14] (or see the remarks in [15]),
to ensure the almost sure convergence it is enough that for all
c > 0, ∑

t

e−c/γt < ∞.

This even justifies the use ofγt = 1/ log1+ε t for some
ε > 0, which is however not pursued in this paper. For more
background on stochastic approximations, see for example
[16], [17], and references therein.

In learning theory a fundamental goal is to approximate the
regression functionfρ. For this purpose, it is not enough to
apply traditional results on convergence and asymptotic rates;
since to approximatefρ arbitrarily well, we need to tune the
regularization parameterλ arbitrarily small as sample size
goes large. The influence ofλ to convergence is hidden in
the constants and thus we seek upper bounds to disclose it.
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In [1], we present a probabilistic upper bound based on
Markov’s Inequality, that the following holds with probability
at least1− δ (δ ∈ (0, 1))

‖ft − f∗λ‖K ≤ O(λ−
θ

2(1−θ) t−θ/2δ−1/2), θ ∈ (1/2, 1).

This upper bound is tight in the asymptotic rate oft; however,
it only implies thatft converges tof∗λ in probability, weaker
than the almost sure convergence.

In this paper, we present two new probabilistic upper bounds
by using exponential probabilistic inequalities for martingales
in Hilbert spaces [18], both of which lead to almost sure
convergence and extend the rate of step size toθ ∈ [0, 1),
at the sacrifice of rates onλ.

The first upper bound (as Theorem A) says that with
probability at least1− δ (δ ∈ (0, 1)),

‖ft − f∗λ‖K ≤ O(λ−1− 1
2(1−θ) t−θ/2 log1/2 1/δ), θ ∈ [0, 1).

This upper bound implies almost sure convergence for all
θ ∈ (0, 1), by changing1/δ to log 1/δ. Note that when
θ = 0, algorithm (3) is often called theAdaline or Widrow-
Hoff algoirthm ([19], or see Chapter 5 in [20]), which is not
guaranteed to converge in this setting.

The second upper bound (as Theorem B) is given for the
averaging processproposed in [21], [22],

f̄t =
1
t

t∑

j=1

fj = f̄t−1 +
1
t
(ft − f̄t−1), f̄1 = f1, (4)

that the following holds with probability at least1 − δ (δ ∈
(0, 1)),

‖f̄t − f∗λ‖K ≤ O(λ−2t−1/2 log1/2 1/δ), θ ∈ [0, 1).

In contrast to “batch learning” case with a rateO(λ−1t−1/2)
[7], this upper bound achieves the same fixed rate int for all
θ ∈ [0, 1), while losing the rate inλ.

It is possible to improve the rate inλ by turning back
to Markov’s Inequality. In fact, the reason of loss inλ lies
in the application of the Hoeffding-style inequalities which,
compared to Markov’s Inequality, replace the variance by its
uniform upper bounds. Based on this observation, we obtain
the following result (as Theorem B*) for the averaging process
by using Markov’s Inequality,

‖f̄t − f∗λ‖K ≤ O(λ−1t−1/2δ−1/2), θ ∈ [0, 1),

which holds with probability at least1−δ (δ ∈ (0, 1)). We con-
jecture that this can be improved to beO(λ−1t−1/2 log1/2 1/δ)
by using other variance-based inequalities, such as Bennet’s or
Bernstein’s Inequality.

The organization of this paper is as follows. In Section II,
we present our main results and discussions. In Section III, we
study a more general problem, linear stochastic approximation
in Hilbert spaces, from which we derive Theorem A and B in a
special case. We propose in Section IV a martingale decompo-
sition for remainders, which is crucial for later development.
All the proofs for the theorems in Section III are collected
in Section V. In section VI we prove Theorem B* via a
reverse martingale decomposition for remainders. Conclusion
and open problems are summarized in Section VII. The last

section is an appendix collecting some crucial estimates used
in this paper.

II. M AIN RESULTS

Before presenting the main results, we need some definitions
and remarks on notation.

In this paper, letX ⊆ Rn be compact,Y = R, andZ =
X ×Y . Assume that there is aMρ > 0 such thatsupp(ρ) ⊆
X × [−Mρ,Mρ]. Define

CK := max
x∈X

√
K(x, x) < ∞. (5)

and a constant only depending onθ ∈ [0, 1),

Dθ = 1 + 2
θ

1−θ

(
1 + Γ

(
1

1− θ

))
≥ 1. (6)

Assume that the examples(xt, yt)t∈N are independent and
identically distributed (i.i.d.) according toρ.

In this paragraph, we provide a short background on re-
producing kernel Hilbert spaces (RKHS). A functionK :
X × X → R is called aMercer kernel, if it is a continuous
symmetric real function which ispositive semi-definitein the
sense that

∑l
i,j=1 cicjK(xi, xj) ≥ 0 for any l ∈ N and any

choice ofxi ∈ X and ci ∈ R (i = 1, . . . , l). Let HK be the
Reproducing Kernel Hilbert Space associated with a Mercer
kernelK. Recall the definition as follows. Consider the vector
spaceVK generated by{Kx : x ∈ X}, i.e. all the finite linear
combinations ofKx, where for eachx ∈ X, the functionKx :
X → R is defined byKx(x′) = K(x, x′). A semi-definite
inner product〈 , 〉K on this vector space can be defined as
the unique linear extension of〈Kx,Kx′〉K := K(x, x′). The
induced semi-norm is‖f‖K =

√〈f, f〉K for eachf ∈ VK .
Notice that the zero setV0 = {f ∈ VK : ‖f‖K = 0} is
a subspace. Then the semi-definite inner product induces an
inner product on the quotient spaceVK/V0. Let HK be the
completion of this inner product spaceVK/V0 with respect to
‖ · ‖K . The most important property of RKHS is the so called
reproducing property: for any f ∈ HK , f(x) = 〈f, Kx〉K
(x ∈ X). RKHS can be regarded as a generalization of real
analytic functions (or band-limited functions), see for example
[23], [24].

Recall the definition of theincomplete gamma function
restricted on[0,∞)× [0,∞),

Γ(a, x) =
∫ ∞

x

sa−1e−sds, wherea, x ≥ 0.

Thegamma functionis defined byΓ(a) = Γ(a, 0). Finally we
make a remark on notation. Whenn < m, the product and
summation,

∏n
i=m xi and

∑n
i=m xi, are understood to be1

and 0, respectively. We useEz andEz1|z2 to denote the ex-
pectation and conditional expectation, respectively. Shorthand
notationE is also used when its meaning is clear from the
context.

The following are the main results in this paper.
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A. Probabilistic Upper Bound with Almost Sure Convergence

Theorem A. Let λ ≤ λ0, γt = t−θ/(C2
K + λ) for someθ ∈

[0, 1), and f1 = 0. Then for allt ∈ N there holds

‖ft − f∗λ‖K ≤ Einit(t) + Esamp(t),

where
Einit(t) ≤ e

α
1−θ (1−t1−θ)‖f∗λ‖K ,

and with probability at least1− δ (δ ∈ (0, 1)),

Esamp(t) ≤ Cρ,θ,K

(
1
λ

)1+ 1
2(1−θ)

(
1
t

) θ
2

log1/2 2
δ
.

Here Cρ,θ,K = 16
√

DθCKMρ(λ0 + C2
K)1/2(1−θ).

The proof of Theorem A will be given in Section III as a
corollary of Theorem 3.1.

Remark 2.1:The second inequality is equivalent to

Prob{Esamp(t) ≥ ε} ≤ 2e−cε2tθ

where c = λ2+ 1
1−θ /C2

ρ,θ,K . For eachε > 0, denote byAt

the event{Esamp(t) ≥ ε}. Then
∑

t∈N
Prob(At) ≤ 2

∑

t∈N
e−cεtθ

< ∞.

By the Borel-Cantelli Lemma, we haveProb(At i.o.) = 0,
i.e. it is of zero probability thatAt happens for infinitely many
values t ∈ N, whenceEsamp(t) → 0 almost surely (with
probability one).

Remark 2.2:Note that whenθ = 0, the Widrow-Hoff
algorithm [19] can’t ensure its convergence by this upper
bound. However, it can be combined with the averaging
process to achieve a convergence rate ofO(t−1/2), which will
be discussed in the next subsection.

B. Averaging Process

It is natural to consider the average of the ensemble
{f1, . . . , ft} up to time t, which might improve the conver-
gence rate since by intuition averaging may reduce variance.
In stochastic approximation, this acceleration by averaging
was firstly observed independently by [22] and [21] (or see
[25]) based on asymptotic analysis; recently this phenomenon
has also been noticed in learning theory society (see, e.g.,
[2]). A recent result [26] studies this averaging process in a
more general framework of two-time-scale linear stochastic
approximations with asymptotic analysis. Below we show a
probabilistic upper bound with a fixed rateO(t−1/2) for all
θ ∈ [0, 1).

Theorem B. Let λ ≤ λ0, γt = t−θ/(C2
K + λ) for someθ ∈

[0, 1), and f1 = 0. Then for allt ∈ N there holds for (4)

‖f̄t − f∗λ‖K ≤ Einit(t) + Esamp(t).

where

Einit(t) ≤ C1

(
1
λt

)
,

and with probability at least1− δ (δ ∈ (0, 1)),

Esamp(t) ≤ C2

(
1
λ

)2
√

1
t

log1/2 2
δ
.

Here C1 = Dθ(λ0 + C2
K)‖f∗λ‖K and C2 =

23+θDθCKMρ(λ0 + C2
K).

The proof of Theorem B will be given in Section III as a
corollary of Theorem 3.2.

Remark 2.3:Assume without loss of generality thatλ0 =
C2

K . Whenθ = 0, D0 = 3 and this gives the following bound
for combinedAdaline-Averagingalgorithm

Einit(t) ≤ 6C2
K‖f∗λ‖K

(
1
λt

)
,

and with probability at least1− δ (δ ∈ (0, 1)),

Esamp(t) ≤ 48C3
KMρ

(
1
λ

)2
√

1
t

log1/2 2
δ
.

The rate in λ can be improved. Letσ2
λ = E[‖(y −

f∗λ(x))Kx−λf∗λ‖2K for someσλ ≥ 0. By Markov’s Inequality
we obtain the following theorem, whose proof will be given
in Section VI.

Theorem B*. Let λ ≤ λ0, γt = t−θ/(C2
K + λ) for some

θ ∈ [0, 1), andf1 = 0. Then the following holds for allt ∈ N,

‖f̄t − f∗λ‖K ≤ Einit(t) + Esamp(t),

where

Einit(t) ≤ Dθ(λ0 + C2
K)‖f∗λ‖K

(
1
λt

)
,

and with probability at least1− δ (δ ∈ (0, 1)),

Esamp(t) ≤ 2θDθσλ

λ
√

δt
.

Remark 2.4:Proposition 6.5-3 gives an estimate onσλ,

σλ ≤ Mρ

√
5(λ0 + C2

K).

Remark 2.5:If σ2
λ = 0, we obtain the following upper

bound in a deterministic setting,

‖f̄t − f∗λ‖K ≤ Dθ(λ0 + C2
K)‖f∗λ‖K

(
1
λt

)
.

C. Comparison with “Batch Learning” Results

Given a samplez = {(xi, yi) : i = 1, . . . , t}, “batch
learning” means solving the followingregularized least square
problem (see, e.g., [4], [3])

min
f∈HK

1
t

t∑

i=1

(f(xi)− yi)2 + λ‖f‖2K , λ > 0.

There exists a unique minimizerfλ,z satisfying

fλ,z(x) =
t∑

i=1

aiK(x, xi)
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wherea = (a1, . . . , at) is the solution of the linear equation

(λtI + Kz)a = y,

with t× t identity matrixI, t× t matrix Kz whose(i, j) entry
is K(xi, xj) andy = (y1, . . . , yt) ∈ Rt.

A probabilistic upper bound for‖fλ,z − f∗λ‖K is given in
[27], and this has been substantially improved by [28] using
also some ideas from [29]. Moreover, [30] gives error bounds
expressed in a different form. A recent result (Theorem 1 in
[7]) shows that,

Theorem 2.6:With probability at least1 − δ (δ ∈ (0, 1))
there holds

‖fλ,z − f∗λ‖K ≤ 6CKMρ log(2/δ)
λ
√

t
.

Remark 2.7:A recent result [8] shows that the rate
O(λ−1t−1/2) is optimal in the sense that it leads to a
convergence rate asymptotically meeting the minimax lower
bound. Theorem B tells us that the averaging process achieves
O(λ−2t−1/2), which is optimal in t but suboptimal inλ.
Theorem B* improves this toO(λ−1t−1/2), though it only
leads to convergence in probability.

III. L INEAR STOCHASTIC APPROXIMATION IN HILBERT

SPACES

In this section we study a more general problem, stochastic
approximation of linear equations in Hilbert spaces. Some
general upper bounds are given and they lead to Theorem A
and B in a special case.

Let W be a Hilbert space,A(z) : W → W a random
positive operator depending onz ∈ Z and B(z) ∈ W a
random vector. DefineÂ = Ez[A(z)] and B̂ = Ez[B(z)].
Consider the following linear equation

Âw = B̂, (7)

whose unique solution isw∗ = Â−1B̂.
In the sequel, we assume that almost surely,

Finiteness Condition. A. µminI ≤ A(z) ≤ µmaxI (0 <
µmin ≤ µmax < ∞) and letα = µmin/µmax ∈ (0, 1];
B. ‖B(z)‖ ≤ β < ∞;
C. E‖A(z)w∗ −B(z)‖2 = σ2 < ∞.

Given an i.i.d. sequence(zt)t∈N, define a sequence
{wt}t∈W as successive stochastic approximations ofw∗,

wt+1 = wt − γt(Atwt −Bt), w1 ∈ W (8)

whereAt = A(zt), Bt = B(zt) ∈ W andγt = 1/µmaxt
θ for

someθ ∈ [0, 1).
Define aremaindersequence(rt)t∈N by

rt = wt − w∗,

which measures the deviation betweenwt and w∗. It can
be seen that bothwt and rt are W -valued random variables
depending onz1, . . . , zt−1. In this note we assume that(zt)t∈N
is a i.i.d. sequence, but the method we used here can be
extended to more general cases.

The main results in this section are in the following.

Theorem 3.1:Let γt = t−θ/µmax (θ ∈ [0, 1)) andw1 = 0.
Then for all t ∈ N, there holds

‖wt − w∗‖ ≤ Einit(t) + Esamp(t),

where
Einit(t) ≤ e

α
1−θ (1−t1−θ)‖r1‖,

and with probability at least1− δ,

Esamp(t) ≤ 16
√

Dθβ

µmax

(
1
α

)1+ 1
2(1−θ)

(
1
t

)θ/2

log1/2 2
δ
.

For the averaged sequencēwt =
1
t

t∑

j=1

wj , we have

Theorem 3.2:Let γt = t−θ/µmax (θ ∈ [0, 1)) andw1 = 0.
Then for all t ∈ N there holds

‖w̄t − w∗‖ ≤ Einit(t) + Esamp(t),

where

Einit(t) ≤ Dθ

(
1
αt

)
‖r1‖,

and with probability at least1− δ,

Esamp(t) ≤ 23+θDθβ

µmax

(
1
α

)2
√

1
t

log1/2 2
δ
.

A. Proofs of Theorem A and B

Proof of Theorem A:We first show that the algorithm given
by (3) can be derived from equation (8); then Theorem A
follows from Theorem 3.1.

Let Ex : HK → R be the evaluation operator such that
Ex(f) = f(x). Let E∗

x : R → HK be the adjoint of
Ex defined by 〈y, Ex(f)〉R = 〈E∗

x(y), f〉HK
, whence by

reproducing propertyf(x) = 〈f, Kx〉, we haveE∗
x(y) = yKx.

Now take W = HK , defineA(z) : HK → HK by f 7→
E∗

xEx(f) + λ andB(z) = E∗
x(−y). ThenÂ = LK + λI and

B̂ = −LKfρ. By this substitution, equation (8) becomes (3).
Notice thatµmax = λ + C2

K , µmin = λ, andβ = CKMρ.
Theorem A thus follows from Theorem 3.1.

Proof of Theorem B: In a similar way to the proof of
Theorem A, Theorem B follows from Theorem 3.2.

IV. M ARTINGALE DECOMPOSITION OFREMAINDERS

In this section, we decompose the remainderrt and its aver-
ager̄t into the sum of two parts: one is deterministic reflecting
the error caused by initial choice, and the other is a martingale
reflecting the fluctuation caused by random sampling. Upper
bounds for them will be given in the next section. Such a
decomposition is somehow close to the treatment in Robbins-
Siegmund Theorem [13], where‖rt‖2 is transformed into a
supermartingale. But our problem benefits from the linear
structure and get a direct decomposition onrt. We note that
such a martingale decomposition can be extended to‖rt‖2
in nonlinear stochastic approximations, which however is not
pursued here.
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First of all we introduce some short-hand notations. Define
a random positive operator onW ,

Πt
k =





t∏

i=k

(I − γiAi) , k ≤ t;

I, k > t.

(9)

If we replaceAi by Â, we obtain a deterministic positive
operator, saŷΠt

k. DefineYt = Atw
∗−Bt, aW -valued random

variable depending onzt. ClearlyEzt
Yt = 0 and by Finiteness

Condition-C,E‖Yt‖2 = σ2 for all t.
The following proposition gives a decomposition ofrt into

the sum of a deterministic part and a martingale.

Proposition 4.1:For all t ∈ N,

rt = Π̂t−1
1 r1 −

t−1∑

k=1

γkΠ̂t−1
k+1χk, (10)

whereχk = (Ak − Â)wk + B̂ −Bk (1 ≤ k ≤ t).

Proof: By equation (8)

rt+1 = wt+1 − w∗ = rt − γt(Atwt −Bt)
= (I − γtÂ)rt − γt((At − Â)rt + Yt)
= (I − γtÂ)rt − γtχt,

where we can check that

χt = (At − Â)rt + Yt

= (At − Â)wt + B̂ −Bt.

Then equation (10) follows from induction ont.

Note that Π̂t
k+1 is deterministic, rk depends on

z1, . . . , zk−1, Ak − Â and Yk are both of zero means
depending only onzk. Recall that given a sequence of
random variables(ξk)k∈N such thatξk depends on random
variables{zi : 1 ≤ i ≤ k}, (ξk) is called amartingale
difference sequenceif Ezk|z1,...,zk−1 [ξk] = 0. The sum of a
martingale difference sequence is called amartingale. This
motivates the following definition of a martingale difference
sequence,

ξk =
{

γkΠ̂t−1
k+1χk, 1 ≤ k ≤ t;

ξk = 0, k > t.

With this we write,

rt = Π̂t−1
1 r1 −

t−1∑

k=1

ξk. (11)

Now consider the averaging process. Define

w̄t =
1
t

t∑

i=1

wi = w̄t−1 +
1
t
(wt − w̄t−1), w̄1 = w1,

and we study upper bounds for theaveraged remainder
sequence

r̄t = w̄t − w∗ =
1
t

t∑

i=1

(wi − w∗) =
1
t

t∑

i=1

ri.

The following proposition gives a decomposition ofr̄t.

Proposition 4.2:For all t ∈ N,

r̄t =
1
t




t−1∑

j=0

Π̂j
1


 r1 − 1

t

t−1∑

k=1

γk




t−1∑

j=k

Π̂j
k+1


 χk, (12)

Proof: By equation (10),

r̄t =
1
t

t∑

j=1

rj

=
1
t


1 +

t−1∑

j=1

Π̂j
1


 r1 − 1

t

t−1∑

j=1

j∑

k=1

γkΠ̂j
k+1χk

=
1
t




t−1∑

j=0

Π̂j
1


 r1 − 1

t

t−1∑

k=1

γk




t−1∑

j=k

Π̂j
k+1


χk

which ends the proof.

Let

ηk =





γk

t
(
t−1∑

j=k

Π̂j
k+1)χk, 1 ≤ k ≤ t;

0, k > t.

Then(ηk)k∈N is a martingale difference sequence and its sum
is a martingale. With this we have

r̄t =
1
t




t−1∑

j=0

Π̂j
1


 r1 −

t−1∑

k=1

ηk. (13)

Now define aninitial error by Einit(t) = ‖Π̂t−1
1 r1‖ (or,

Einit(t) = ‖ 1
t

(∑t−1
j=0 Π̂j

1

)
r1‖ in averaging process), which

is deterministic and reflects the propagated effect ofr1; and
a sample errorby Esamp(t) = ‖∑t−1

k=1 ξk‖ (or, Esamp(t) =
‖∑t−1

k=1 ηk‖ in averaging process), which is random and
reflects the stochastic error caused by samples. The initial error
can be bounded deterministically. For the sample error, we can
obtain probabilistic upper bounds by using the exponential
inequalities for martingale difference sequences in Hilbert
spaces [18]. We will show this in the next section.

V. PROOFS OFTHEOREM 3.1 AND THEOREM 3.2

For simplicity, in this section we choose Hoeffding’s in-
equality for martingale difference sequences in Hilbert spaces
[31]. We note here that by choosing Bennet-type inequalities
[18], one can get tighter bounds depending on variances
E‖At − Â‖2 andE‖Bt − B̂‖2, in the sense that when these
variances approach to zero, they lead to deterministic upper
bounds.

Before presenting the proofs, we need some preliminary
results. The first one is an extension of Hoeffiding’s Inequality
from real numbers to Hilbert spaces, which is due to Iosif
Pinelis [31] (see also Theorem 3.5 in [18]).

Lemma 5.1 (Pinelis-Hoeffding):Let (ξi)i∈N ∈ H be a
martingale difference sequence in a Hilbert spaceH such that
for all i almost surely‖ξi‖ ≤ ci < ∞. Then for allt ∈ N,

Prob

{∥∥∥∥∥
t∑

i=1

ξi

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− ε2

2
∑t

i=1 c2
i

}
.
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The following proposition collects some useful estimates.

Proposition 5.2:Let α′ = α/(1− θ). The following holds
for all t ∈ N,

1. ‖Πt
k‖ ≤ eα′[k1−θ−(t+1)1−θ] when k ≤ t, and the same

holds for‖Π̂t
k‖;

2. For all integersk ∈ [0, t],
∥∥∥∥∥∥

t∑

j=k

Πj
k+1

∥∥∥∥∥∥
≤

{
2θDθα

−1kθ, 1 ≤ k ≤ t;
Dθα

−1, k = 0.

The same also holds for‖∑t
j=k Π̂t

k+1‖;
3. ‖w∗‖ ≤ β/µmin;
4. ‖Yt‖ ≤ 2β/α;
5. ‖wt‖ ≤ eα′(1−t1−θ)‖w1‖+ 3β/µmin;
6. ‖rt‖ ≤ eα′(1−t1−θ)‖w1‖+ 4β/µmin;
7. ‖χt‖ ≤ 2µmaxe

α′(1−t1−θ)‖w1‖+ 8β/α.

Proof: 1. By Lemma A.3-1 withp = 1,

‖Πt
k‖ ≤

t∏

i=k

(
1− α

iθ

)
≤ eα′[k1−θ−(t+1)1−θ].

Similar to ‖Π̂t
k‖.

2. By Lemma A.3-2,
∥∥∥∥∥∥

t∑

j=k

Πj
k+1

∥∥∥∥∥∥
≤ 1+

t∑

j=k+1

j∏

i=k+1

(
1− α

i

)
≤ 1+

Dθ − 1
α

(k+1)θ,

where if k = 0, r.h.s. ≤ Dθα
−1, and if k ≥ 1, r.h.s. ≤

2θDθα
−1kθ.

3. ‖w∗‖ ≤ ‖Â−1‖‖B̂‖ ≤ β/µmin.
4. ‖Yt‖ = ‖Atw

∗−Bt‖ ≤ µmaxβ/µmin +β ≤ 2β/α, since
α = µmin/µmax.

5. By equation (8)

wt+1 = wt − γt(Atwt −Bt)
= (I − γtAt)wt + γtBt

= Πt
1w1 +

t∑

k=1

γkΠt
k+1Bk,

whence

‖wt+1‖ ≤ ‖Πt
1‖‖w1‖+ β

t−1∑

k=1

γk‖Πt
k+1‖

≤ eα′(1−(t+1)1−θ)‖w1‖+
3β

µmin
,

where the last step follows from part 1 and Lemma A.3-3.
6. Since‖rt‖ ≤ ‖wt‖+ ‖w∗‖, using part 3 and 5 gives the

result.
7. Since‖χt‖ = ‖(At−Â)wt+B̂−Bt‖ ≤ 2µmax‖wt‖+2β,

apply part 5 and notice that6β/α + 2β ≤ 8β/α, which gives
the result.

Now we are ready to give the formal proofs of Theorem
3.1 and 3.2.

A. Proof of Theorem 3.1

Proof of Theorem 3.1:By equation (11) we have

‖rt‖ ≤ ‖Π̂t−1
1 r1‖+ ‖

t−1∑

k=1

ξk‖

= Einit(t) + Esamp(t).

The upper bound onEinit(t) follows from Proposition 5.2-
1. For the upper bound onEsamp(t), by Proposition 5.2-6 with
w1 = 0, ‖χk‖ ≤ 8β/α, whenceξk is bounded by

‖ξk‖ ≤ γk‖Πk+1,t−1‖‖χk‖

≤ 8β

µmin

[
1
kθ

t−1∏

i=k+1

(
1− α

iθ

)]
= ck.

Applying Pinelis-Hoeffding inequality (Lemma 5.1), we obtain

Prob

{∥∥∥∥∥
t−1∑

k=1

ξk

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− ε2

2
∑t−1

k=1 c2
k

}
.

Let the right hand side equalδ, then

ε2 = 2

(
t−1∑

k=1

c2
k

)
log

2
δ
≤ 128β2

µmin
2
ψ2

θ(t, α) log
2
δ
,

where

ψ2
θ(t, α) =

t−1∑

k=1

1
k2θ

t−1∏

i=k+1

(
1− α

iθ

)2

.

We complete the proof by applying the upper bound for
ψ2

θ(t, α) in Lemma A.3-4.

B. Proof of Theorem 3.2

Proof of Theorem 3.2:By equation (13) we have

‖r̄t‖ ≤ 1
t

∥∥∥∥∥∥




t−1∑

j=0

Π̂j
1


 r1

∥∥∥∥∥∥
+ ‖

t−1∑

k=1

ηk‖

= Einit(t) + Esamp(t).

The initial error bound follows from Propoistion 5.2-2 with
k = 0. As to the sample error bound, by Proposition 5.2-2
and Proposition 5.2-7 withw1 = 0, we obtain

‖ηk‖ ≤ γk

t

∥∥∥∥∥∥

t−1∑

j=k

Π̂j
k+1

∥∥∥∥∥∥
‖χk‖

≤ 2θ+3βDθµmax

tµmin
2

= cη. (14)

Applying Pinelis-Hoeffding inequality (Lemma 5.1),

Prob

{∥∥∥∥∥
t−1∑

k=1

ηk

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− ε2

2
∑t−1

k=1 c2
η

}
,

and setting the right hand to beδ, we obtain

ε ≤
√

2tcη log1/2 2
δ
.

The second bound follows from (14).
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VI. REVERSEDMARTINGALE DECOMPOSITION AND

PROOF OFTHEOREM B*

In this section we give a proof of Theorem B*. Note that in
the martingale decompostion in Section IV,χt = (At−Â)rt+
B̂−Bt whose variance grows in proportion to‖rt‖2, whence
there is no improvement replacing Hoeffding’s Inequality by
Markov’s inequality. However, we may avoid this by turning
to the remainder decomposition used in [1] where we directly
deal with the variance,σ2 = E‖Yt‖2. Yet this approach leads
to a reversed martingale decomposition for remainders, as we
shall see soon.

The following lemma is taken from [1], whose proof is
included here for completeness.

Lemma 6.1:For all t ∈ N,

rt = Πt−1
1 r1 −

t−1∑

k=1

γkΠt−1
k+1Yk.

Proof: Note that

rt+1 = wt+1 − w∗

= wt − γt(Atwt + Bt)− (I − γtAt)w∗ − γtAtw
∗

= (I − γtAt)rt − γtYt.

The result then follows from induction ont ∈ N.

It leads to the following decomposition for the averaged
remainder.

Lemma 6.2:For all t ∈ N,

r̄t =
1
t




t−1∑

j=0

Πj
1


 r1 −

t−1∑

k=1

γk

t




t−1∑

j=k

Πj
k+1


 Yk.

For k ∈ Z, define

ηk =





γk

t




t−1∑

j=k

Πj
k+1


 Yk, 1 ≤ k ≤ t;

0, otherwise.

Recall that a sequence of random variables(xk) is called a
reversed martingale difference sequenceif (x−k) is a martin-
gale difference sequence. Then(ηk) is a reversed martingale
difference sequence; since it depends on{zk, . . . , zt−1} and
Ezk|zk+1,...,zt−1 [ηk] = 0, which implies that(η−k) is a mar-
tingale difference sequence.

We will use the following well-known Markov’s Inequality.

Lemma 6.3 (Markov):Let X be a nonnegative random
variable. Then for any real numberε > 0, we have

Prob{X ≥ ε} ≤ E[X]
ε

.

Theorem 6.4:Let γt = t−θ/µmax (θ ∈ [0, 1)) andw1 = 0.
Defineα = µmin/µmax ∈ (0, 1]. Then the following holds for
all t ∈ N,

‖w̄t − w∗‖ ≤ Einit(t) + Esamp(t).

Here

Einit(t) ≤ Dθ

(
1
αt

)
‖r1‖,

and with probability at least1− δ (δ ∈ (0, 1)),

Esamp(t) ≤ 2θDθσ√
δµmax

(
1
α

) √
1
t
.

Proof: The initial error bound follows from Propoistion 5.2-
2 with k = 0.

As to the sample error, note that

E‖
t−1∑

k=1

ηk‖2 ≤
t−1∑

k=1

γ2
k

t2
E‖

t−1∑

j=k

Πj
k=k+1‖2E‖Yk‖2

≤ 22θD2
θσ2

µmax
2α2

t−1.

where the last is due to Proposition 5.2-2 and Finiteness
Condition-C. The sample error bound then follows from
Markov inequality by takingX = ‖∑t−1

k=1 ηk‖2.

Proof of Theorem B*: Settingµmax = λ + C2
K , µmin =

λ, α = λ/(λ + C2
K), and σ = σλ, the result follows from

Theorem 6.4.

The following proposition gives an estimate ofσλ.

Proposition 6.5:1. ‖f∗λ‖K ≤ Mρ/
√

λ;
2. ‖f∗λ‖L 2

ρ
≤ 2Mρ;

3. σλ ≤ Mρ

√
5(λ + C2

K).

Proof: 1. Note that

f∗λ = arg min
f∈HK

‖f − fρ‖2L 2
ρ

+ λ‖f‖2K .

Taking f = 0, we have

‖f∗λ − fρ‖2L 2
ρ

+ λ‖f∗λ‖2K ≤ ‖fρ‖2L 2
ρ
≤ M2

ρ , (15)

which leads to the result.
2. From (15), we obtain‖f∗λ − fρ‖L 2

ρ
≤ Mρ. The result

then follows from

‖f∗λ‖L 2
ρ

≤ ‖f∗λ − fρ‖L 2
ρ

+ ‖fρ‖L 2
ρ
≤ 2Mρ.

3. Note thatE[yKx] = LKfρ andE[f∗λ(x)Kx] = LKf∗λ .
Then

σ2
λ = E‖(y − f∗λ(x))Kx − λf∗λ‖2K

= E[(f∗λ(x)− y)2K(x, x)]
+2λ〈f∗λ , LK(f∗λ − fρ)〉K + λ2‖f∗λ‖2K

where

E[(f∗λ(x)− y)2K(x, x)]
≤ C2

K(‖f∗λ − fρ‖2L 2
ρ

+ E(fρ(x)− y)2)

≤ 5C2
KM2

ρ ,

〈f∗λ , LK(f∗λ − fρ)〉K
≤ ‖L1/2

K f∗λ‖K · ‖L1/2
K (f∗λ − fρ)‖K

= ‖f∗λ‖L 2
ρ
· ‖f∗λ − fρ‖L 2

ρ

≤ 2M2
ρ ,

andλ2‖f∗λ‖2K ≤ λM2
ρ . Thus we end the proof.
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VII. C ONCLUSION AND OPEN PROBLEMS

In this paper, we have shown by probabilistic upper bounds
that a two-stage online learning algorithm, the stochastic
approximation of the gradient descent method followed by an
averaging process, can achieve the almost sure convergence
with an optimal asymptotic rate with respect to the sample
size, as good as “batch learning”. Moreover considering the
regularization parameter and confidence, the best results ob-
tained so far are,O(λ−2t−1/2 log1/2 1/δ) (Theorem B) or
O(λ−1t−1/2δ−1/2) (Theorem B*).

Thus it is still an open problem,if we can achieve
O(λ−1t−1/2 log1/2 1/δ), the optimal rate known in “batch
learning”.

APPENDIX A: SOME ESTIMATES BASED ONGAMMA

FUNCTION

Lemma A.1:Let θ ∈ [0, 1), a > 0 and t ≥ 2. Then for any
τ ∈ R,

e−at1−θ

∫ t

1

x−(θ+τ)eax1−θ

dx = O(t−τ ).

In fact, if τ ≥ 0,

Aθ,at−τ ≤ e−at1−θ

∫ t

1

x−(θ+τ)eax1−θ

dx ≤ A′θ,τ,at−τ ,

and if τ < 0,

Bθ,τ,at−τ ≤ e−at1−θ

∫ t

1

x−(θ+τ)eax1−θ

dx ≤ B′
θ,at−τ .

Here

Aθ,a =
1− e−a(21−θ−1)

a(1− θ)
,

A′θ,τ,a =
2τ/(1−θ)

a(1− θ)

(
1 + a−τ/(1−θ)Γ

(
1 + τ − θ

1− θ

))
,

Bθ,τ,a =
2τ/(1−θ)(1− e−a)

a(1− θ)
, and B′

θ,a =
1

a(1− θ)
.

Proof: Let y = t1−θ − x1−θ. Then

e−at1−θ

∫ t

1

x−(θ+τ)eax1−θ

dx (A-1)

=
1

1− θ

∫ t1−θ−1

0

(t1−θ − y)−τ/(1−θ)e−aydy

=
t−τ

1− θ

∫ t1−θ−1

0

(
1− y

t1−θ

)−τ/(1−θ)

e−aydy.

1. (For Aθ,a) For 0 ≤ y ≤ t1−θ − 1, 1− y

t1−θ
≤ 1. Thus if

τ ≥ 0, equation (A-1) has

r.h.s. ≥ t−τ

1− θ

∫ t1−θ−1

0

e−aydy

=
t−τ

a(1− θ)
(1− e−a(t1−θ−1))

≥ t−τ

a(1− θ)
(1− e−a(21−θ−1)), t ≥ 2.

2. (For B′
θ,a) Similarly if τ < 0, equation (A-1) has

r.h.s. ≤ t−τ

1− θ

∫ t1−θ−1

0

e−aydy

=
t−τ

a(1− θ)
(1− e−a(t1−θ−1))

≤ t−τ

a(1− θ)
.

3. (For A′θ,τ,a) Note that for 0 ≤ y ≤ t1−θ − 1, s =
y/t1−θ ∈ (0, 1), whence

1
1− s

= 1 +
∞∑

n=1

sn = 1 +
s

1− s

≤ 1 +
y/t1−θ

1− (t1−θ − 1)/t1−θ

= 1 + y. (A-2)

Thus forτ > 0 the right hand side of (A-1) is bounded by

r.h.s. ≤ t−τ

1− θ

∫ t1−θ−1

0

(1 + y)τ/(1−θ)e−aydy

≤ 2τ/(1−θ)t−τ

1− θ

∫ 1

0

e−aydy

+
2τ/(1−θ)t−τ

1− θ

∫ t1−θ−1

1

yτ/(1−θ)e−aydy

≤ 2τ/(1−θ)

1− θ
t−τ

{∫ ∞

0

e−aydy

+
∫ ∞

0

y(1+τ−θ)/(1−θ)−1e−aydy

}

≤ 2τ/(1−θ)

a(1− θ)
(1

+a−τ/(1−θ)Γ
(

1 + τ − θ

1− θ

))
t−τ .

4. (For Bθ,τ,a) By equation (A-2), forτ < 0 the right hand
side of (A-1) is bounded by

r.h.s. ≥ t−τ

1− θ

∫ t1−θ−1

0

(1 + y)τ/(1−θ)e−aydy

≥ 2τ/(1−θ)t−τ

1− θ

∫ 1

0

e−aydy

+
2τ/(1−θ)t−τ

1− θ

∫ t1−θ−1

0

yτ/(1−θ)e−aydy

≥ 2τ/(1−θ)t−τ

1− θ

∫ 1

0

e−aydy

=
2τ/(1−θ)(1− e−a)

a(1− θ)
t−τ .

This completes the proof.

Lemma A.2:Let θ ∈ (0, 1). Then

Cθt
θ ≤ et1−θ

∫ ∞

t

e−x1−θ

dx ≤ C ′θt
θ,

whereCθ = 1/(1− θ) andC ′θ = 2θ/(1−θ)(1 + Γ(1/(1− θ))).
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Proof: 1. Lower bound.Consider the continuous function

f(x) = x1−θ.

By the mean value theorem, whenx ≥ t > 0, there exists a
ζ ∈ (t, x) such that

f(t)− f(x) = f ′(ζ)(t− x) = (1− θ)ζ−θ(t− x)
≥ −(1− θ)x−θ(x− t),

whence

et1−θ

∫ ∞

t

e−x1−θ

dx

≥
∫ ∞

t

e−(1−θ)t−θ(x−t)dx

= e(1−θ)t1−θ

∫ ∞

t

e−(1−θ)t−θxdx

=
tθ

1− θ
.

2. Upper bound.It is enough to show that forx ≥ 1 and
a ≥ 1,

Γ(a, x) ≤ Gae−xxa−1, Ga = 2a−1(1 + Γ(a)). (A-3)

If this is true, the result follows from settinga = 1/(1−θ) ≥ 1,
C ′θ = G1/(1−θ), and replacingx by t1−θ.

To show (A-3), by settings = x + τ ,

Γ(a, x) =
∫ ∞

x

sa−1e−sds

= xa−1e−x

∫ ∞

0

e−τ (1 + τ/x)a−1dτ,

≤ xa−1e−x

∫ ∞

0

e−τ (1 + τ)a−1dτ,

(by x ≥ 1 anda ≥ 1),

≤ xa−1e−x

{
2a−1

∫ 1

0

e−τdτ

+2a−1

∫ ∞

1

e−ττa−1dτ

}

≤ 2a−1(1 + Γ(a))xa−1e−x.

This completes the proof.

Lemma A.3:1. For α ∈ (0, 1], p > 0, andθ ∈ [0, 1],
t−1∏

i=k

(
1− α

iθ

)p

≤





exp
{

αp

1− θ
(k1−θ − t1−θ)

}
, θ ∈ [0, 1)

(
k

t

)αp

, θ = 1

2. For α ∈ (0, 1], θ ∈ [0, 1), and allt ∈ N,

ψ0
θ(t, k, α) :=

t−1∑

j=k

j∏

i=k

(
1− α

iθ

)
≤ Dθ − 1

α
kθ;

3. For α ∈ (0, 1], θ ∈ [0, 1], and allt ∈ N,

ψ1
θ(t, α) :=

t−1∑

k=1

1
kθ

t−1∏

i=k+1

(
1− α

iθ

)
≤ 2

α
;

4. For α ∈ (0, 1], θ ∈ [0, 1), and allt ∈ N,

ψ2
θ(t, α) :=

t−1∑

k=1

1
k2θ

t−1∏

i=k+1

(
1− α

iθ

)2

≤ 2Dθ

(
1
α

) 1
1−θ

(
1
t

)θ

.

Proof: The following fact will be used repeatedly in the
proof,

ln(1 + x) ≤ x, for all x > −1. (A-4)

1. By the inequality (A-4), we have forθ ∈ [0, 1],

ln
(
1− α

iθ

)p

≤ −αp

iθ
.

Thus
t−1∑

i=k

ln
(
1− α

iθ

)p

≤ −αp

t−1∑

i=k

1
iθ

≤ −αp

∫ t

k

1
xθ

dx

which equals
αp

1− θ

(
k1−θ − t1−θ

)
,

if θ ∈ [0, 1), and

ln
(

k

t

)αp

,

if θ = 1. Taking the exponential gives the inequality.
2. Notice that Letα′ = α/(1−θ). Using part 1 withp = 1,

we obtain
j∏

i=k

(
1− α

iθ

)
≤ eα′[k1−θ−(j+1)1−θ ],

whence
t−1∑

j=k

j∏

i=k

(
1− α

iθ

)

≤
t−1∑

j=k

eα′[k1−θ−(j+1)1−θ ]

≤ eα′k1−θ

∫ ∞

k

e−α′x1−θ

dx

≤ (α′)−1/(1−θ)C ′θ[(α
′)1/(1−θ)k]θ,

(by Lemma A.2)

≤ 2θ/(1−θ)

{
1 + Γ

(
1

1− θ

)}(
1
α

)
kθ

=
Dθ − 1

α
kθ.

3. Notice that

ψ1
θ(t, α) =

1
(t− 1)θ

+
t−2∑

k=1

1
kθ

t−1∏

i=k+1

(
1− α

iθ

)
.

The first term is bounded by1/α for t > 1. It is sufficient
to show the second term is bounded by2/α. To see this, we
consider seperately two casesθ ∈ [0, 1) andθ = 1.
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If θ ∈ [0, 1), from part 1 withp = 1, we have

t−2∑

k=1

1
kθ

t−1∏

i=k+1

(
1− α

iθ

)

≤ e−
α

1−θ t1−θ
t−2∑

k=1

1
kθ

e
α

1−θ (k+1)1−θ

where

t−2∑

k=1

1
kθ

e
α

1−θ (k+1)1−θ

≤ 2θ
t−2∑

k=1

(
1

k + 1

)θ

e
α

1−θ (k+1)1−θ

≤ 2
∫ t

1

e
α

1−θ x1−θ

x−θdx

≤ 2
α

e
α

1−θ t1−θ

,

as desired.
If θ = 1, from part 1 (p = 1),

t−2∑

k=1

1
k

t−1∏

i=k+1

(
1− α

i

)

≤
t−2∑

k=1

1
k

(
k + 1

t

)α

≤ 2
tα

t−2∑

k=1

(k + 1)α

k + 1

≤ 2
tα

∫ t

1

xα−1dx,

where if α = 1,

2
tα

∫ t

1

xα−1dx = 2;

and if 0 < α < 1,

2
tα

∫ t

1

xα−1dx =
2
α

(
tα − 1

tα

)
≤ 2

α
.

4. Notice that

ψ2
θ(t, α) =

1
(t− 1)2θ

+
t−2∑

k=1

t−1∏

i=k+1

(
1− α

iθ

)2

.

The first term is bounded by

1
(t− 1)2θ

≤ 22θ

t2θ
.

Below we are going to give an upper bound on the second
term. Letα′ = α/(1− θ). By part 1 withp = 2,

t−1∏

i=k+1

(
1− α

iθ

)2

≤ exp{2α′[(k + 1)1−θ − t1−θ]}.

Then
t−2∑

k=1

1
k2θ

t−1∏

i=k+1

(
1− α

iθ

)2

≤ 22θ
t−2∑

k=1

1
(k + 1)2θ

e2α′[(k+1)1−θ−t1−θ]

≤ 22θe−2α′t1−θ

∫ t

1

x−2θe2α′x1−θ

dx

≤ 2θ/(1−θ)+2θ−1

α′(1− θ)

{
1 + (2α′)−θ/(1−θ)

·Γ
(

1
1− θ

)}
t−θ

(by Lemma A.1 withτ = θ).

where by

(2α′)−θ/(1−θ) ≤
(

1
α

)θ/(1−θ)

,

we obtain

r.h.s. ≤ 2θ/(1−θ)+2θ−1

(
1 + Γ

(
1

1− θ

))(
1
α

)1/(1−θ)

.

Combining two terms together, we obtain

ψ2
θ(t, α)

≤ 22θt−2θ + 2θ/(1−θ)+2θ−1

{
1 + Γ

(
1

1− θ

)}

·
(

1
α

)1/(1−θ)

t−θ

≤ 2θ

{
α1/(1−θ)(2/t)θ + 2θ/(1−θ)

[
1 + Γ

(
1

1− θ

)]}

·
(

1
α

)1/(1−θ)

t−θ

≤ 2Dθ

(
1
α

)1/(1−θ)

t−θ,

for t ≥ 2, as desired. Fort = 1, we complete the proof by
noting thatψ2

θ(1, α) = 0.

ACKNOWLEDGEMENT

The author would like to acknowledge Jia Yu for her sugges-
tion on using the gamma function which eventually develops
into Lemma A.1 and A.2; Pierre Tarres for pointing out recent
convergence results on Robbins-Monro procedure and many
helpful suggestions on improving early drafts; Peter Bartlett,
Andrea Caponnetto, Adam Klai, Ha Quang Minh, Tommy
Poggio, Lorenzo Rosasco, Ding-Xuan Zhou for many helpful
discussions; and especially Steve Smale, without whom this
paper never comes into reality.

REFERENCES

[1] S. Smale and Y. Yao, “Online learning algorithms,”
Foundation of Computational Mathematics, 2004,
submitted.



YAO: ON COMPLEXITY ISSUE OF ONLINE LEARNING ALGORITHMS 11

[2] N. Cesa-Bianchi, A. Conconi, and C. Gentile, “On the
generalization ability of on-line learning algorithms,”
IEEE Transactions on Information Theory, vol. 50,
no. 9, pp. 2050–2057, 2004.

[3] F. Cucker and S. Smale, “On the mathematical foun-
dations of learning,”Bull. of the Amer. Math. Soc.,
vol. 29, no. 1, pp. 1–49, 2002.

[4] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization
networks and support vector machines,”Advances of
Computational Mathematics, vol. 13, no. 1, pp. 1–50,
1999.

[5] T. Poggio and S. Smale, “The mathematics of learning:
Dealing with data,”Notices of the AMS, vol. 50, no. 5,
pp. 537–544, 2003.

[6] D.-X. Zhou, “Capacity of reproducing kernel spaces in
learning theory,”IEEE Transactions on Information
Theory, vol. 49, no. 7, pp. 1743–1752, 2003.

[7] S. Smale and D.-X. Zhou, “Learning theory estimates
via integral operators and their approximations,”to
appear, 2005.

[8] A. Caponnetto and E. D. Vito, “Fast rates for regular-
ized least squares algorithm,”CBCL Paper/AI Memo,
2005, preprint.

[9] E. De Vito, L. Rosasco, A. Caponnetto, U. D. Giovannini,
and F. Odone, “Learning from examples as an inverse
problem,” Journal of Machine Learning Research,
2004, to appear.

[10] H. W. Engl, M. Hanke, and A. Neubauer,Regularization
of Inverse Problems. Kluwer Academic Publishers,
2000.

[11] H. Robbins and S. Monro, “A stochastic approxima-
tion method,”The Annals of Mathematical Statistics,
vol. 22, no. 3, pp. 400–407, 1951.

[12] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the
maximum of a regression function,”The Annals of
Mathematical Statistics, vol. 23, pp. 462–466, 1952.

[13] H. Robbins and D. Siegmund, “A convergence theorem
for nonnegative almost supermartingales and some
applications,” in Optimizing Methods in Statistics,
J. S. Rustagi, Ed. Academic Press, New York, 1971,
pp. 233–257.

[14] M. Duflo, “Cibles atteignables avec une probabilité pos-
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