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Abstract
A core task in computer-aided drug discovery is the optimiza-
tion of lead compounds with high binding affinity to the target
proteins. The binding process is desired to find the proper
position and the correct relative orientation of the “key” (the
ligand), which will open up the “lock” (the protein). During
the process, existing deep learning methods usually overlook
surface intersection between ligands and targets, i.e., part of
the ligands goes into the protein interior. In this paper we
present our SurfBind model, a two-stage deep learning method
aided by the surface distance function (SDF). Our model will
produce pairwise distance distribution to encode the multi-
valued possible relative positions. By exerting effective SDF
constraint to distance likelihood potential, SurfBind derives
rational conformations lessening clash to the protein, and also
reduces root mean square deviation (RMSD) for ultra-large
ligands. To the best of our knowledge, the performance of Surf-
Bind working as a score function on docking and screening
power achieves SOTA on CASF-2016 benchmark.

1 Introduction
When it comes to protein-ligand binding, the target protein
is postulated as rigid and encoded into high dimensional
feature space. For encoded protein, finding the rational ligand
pose is an significant but challenging task. One direction to
settle protein-ligand binding is to predict intermediate values
enlightening binding interactions like binding affinity (Jones
et al. 2021), score functions (SF) (Sánchez-Cruz et al. 2021;
Zheng et al. 2022), RMSD between given binding pose and
target protein (Bao, He, and Zhang 2021). These intermediate
values can be adopted as measures to binding ability, however,
challenges to generate suitable conformations are regular
visitors in these methods.

Another direction is end-to-end models such as
EQUIDOCK (Ganea et al. 2021), EquiBind (Stärk et al.
2022) and TANKBind (Lu et al. 2022). They ensure SE(3)-
equivariance for 3D inputs and consider physical constraints
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like dihedral angles. However, aforementioned methods im-
pose insufficient restriction on orientation of ligands against
protein surfaces. Though equipped with loss to prevent steric
clashes (Ganea et al. 2021; Stärk et al. 2022), they still suffer
from the surface intersection between ligands and targets, i.e.,
part of the ligands go “inside” the protein surface. Such un-
realistic molecules will have extremely low binding affinity
although their RMSDs seem good.

Recently, a two-stage deep learning method, DeepDock
(Méndez-Lucio et al. 2021) is proposed to predict pairwise
distance distribution encoding flexible binding outcomes. Dis-
tinct from determinate values, the distance likelihood can be
aggregated into a statistical potential to build either a score
function (SF) or an energy function. SF gives out binding rat-
ings to screen out unreasonable ligand conformations and get
reasonable ranks. While energy function guides the optimiza-
tion in differential evolution (Storn and Price 1997) to gen-
erate binding conformations for ligands. However, the mesh
representation (Gainza et al. 2019) for protein in DeepDock
requires pre-computed geometrical and chemical features,
which is time consuming and takes more than 2 days on the
PDBBind database v2019 (17679 protein-ligand complexes).
Furthermore, the simple feature extractor GCN does not guar-
antee the SE(3)-equivariance and thus may cause message
passing changes with Euclidean 3D transformations. Without
any penalty on clash, DeepDock also suffers from surface
penetration issue like its deep learning counterparts.

Therefore, we raise SurfBind, a two-stage deep learning
method aided by the surface distance function (SDF) (Zhu
et al. 2010; Park et al. 2019; Venkatraman et al. 2009; Bord-
ner and Gorin 2007) on the basis of DeepDock. Fig. 1 pro-
vides workflow for SurfBind. For protein surface, in view
of training efficiency, SurfBind uses point clouds sampled
from a level set of SDF as the representation. A modified pro-
tein structure extractor based on Dmasif (Sverrisson et al.
2021) provides the SE(3) equivariant transformation and
trains the chemical and geometrical features from raw, with-
out any beforehand experiment-basis calculation. As for lig-
and graph representation, SurfBind adds pseudo-edges for
the geometrically close but non-bonded atoms to avoid the
under-determination of long-range information. To address
the surface intersection issue between ligand and protein,



SDF constraint assists the statistical potential trained at the
first stage to screen out irrational conformations in the sec-
ond stage. With SDF constraints and pseudo-edges, the opti-
mized conformers are more likely to fit in the pocket shapes
and reduce the RMSD to reference conformations for large
molecules. We compare SurfBind to DeepDock and physical
based state-of-the-art methods on the CASF-2016 benchmark
(Su et al. 2019) and obtain better results on docking and
screening powers.

Compared to DeepDock, our innovations can be listed
threefold:

• For protein surface, by sampling the level set of sur-
face distance function (SDF), point clouds are used as
the representation and provides abundant information by
dense coverage of the surface. For features attached to
each point cloud, chemical information and geometrical
curvatures are directly learned by the feature extractor
with SE(3)-equivariance, averting time-consuming hand-
curated items.

• For ligand graph, novel pseudo-edges for close non-
bonded atoms in the 3D space are added to take non-
covalent interactions into consideration. The performance
on ultra-large ligand who has plentiful rotatable bonds or
flexible rings is improved.

• In the second stage, a new application of SDF constraint
comes into play. SDF constraint is directly combined into
outputs from the first stage and penalize the statistical
potential for undesired clashed position.

2 Methodology
SurfBind can be divided into four main blocks: protein struc-
ture extractor, ligand structure extractor, mixture density
layer, optimization and ranking under SDF constraint. Fig. 2
shows details for processing the target protein and ligand in
the first stage.

In the protein structure extractor, the target protein surface
is represented as point clouds. As point clouds are uninforma-
tive, extra chemical and geometrical curvature features are
added. Chemical features are learned by GCN from chemistry
properties while geometrical curvatures are calculated from
point clouds. A subsequent GCN handles point clouds and
features to attain the protein embedding. In the ligand struc-
ture extractor, the ligand is represented as a 2D molecular
graph with pseudo edges. Again GCN execute the embedding
for the ligand graph. Then, a mixed density layer converts
the concatenation of protein and ligand feature embeddings
to the final output, pairwise distance distribution. Eventually,
SDF constraint accompanies a distance potential and screens
out unreasonable binding outcomes during optimization or
ranking.

2.1 Protein Structure Extractor
Point Cloud Representation from Surface Distance Our
model represents the molecular surface of the rigid binding
site as oriented point cloud following (Sverrisson et al. 2021),
where each point cloud is associated with a unit normal vector.
The point cloud is sampled close to the surface derived from
the SDF in Eq. 1.

Figure 1: Workflow of SurfBind. The first stage is a deep
learning model to utilize raw protein, point clouds from SDF
sampling, and raw ligand to predict pairwise distance dis-
tribution. The second stage is to apply SDF constraint on
distance likelihood potential to yield binding scores, which
can be applied on two downstream tasks, optimization and
ranking.

Figure 2: First stage for SurfBind. The procedure is SE(3)
equivariant and consists of three major modules, a) protein
structure extractor for point clouds with trainable chemical
and geometrical curvature features. b) ligand structure ex-
tractor for 2D ligand graph, with atom type and bond type
as features. c) a mixture density layer to produce pairwise
distance distribution.

With input atom clouds {aj}Nj=1 ⊂ R3, the point cloud
{pi}ni=1 ⊂ R3 is sampled near the protein surface as level
set SDF(p) = γ1, where γ1 is a hyperparameter. σj is ex-
perimental atom radius for aj , w(p) is the averaged atom
radius for p. Normal vectors {ni}ni=1 ⊂ R3 are taken as the
gradient of the level set.

SDF(p) = −w(p) · log
N∑
j=1

exp(−∥p− aj∥/σj) (1)

Unlike mesh representation, point clouds benefit from com-
putation efficiency because they avoid connectivity calcula-
tion or structure partition. As a result, SurfBind can have
a speedup to obtain finer representation for protein surface.
However, point clouds are random discrete points so extra
information needs to be added. Different from using time-
consuming pre-computed chemical attributes in DeepDock,
SurfBind handles protein from raw and assigns trainable



chemical and geometrical curvature features to each point
cloud, as shown in the next part.

Trainable Chemical and Geometrical Features The
chemical features are produced by applying graph convolu-
tion neural network (GCN) on {aj}Nj=1 ⊂ R3. The chemical
properties, such as 32 atom types (C, H, O, N, S, Se, Be, B,
F, Mg, Si, P, Cl, V, Fe, Co, CU, Zn, As, Br, Ru, Rh, Sb, I,
Re, Os, Ir, Pt, Hg, Ca, Na, Ni), weighted average distances,
and neighboring chemical information of nearest k atoms
(k = 16), will be utilized. Such design assists the informative
encoding of atom itself and surrounding environments.

For geometrical features, SurfBind aims to get the Gaus-
sian curvature and mean curvature. Assume the surface shape
of a protein comes from sampling of a 2-dimensional Rie-
mannian manifoldsM embedded in R3. Around each point
cloud inM, the manifold is homeomorphic to the tangent
plane TpM. The differential of the Gauss map at pi is a
self-adjoint operator on TpM and conventionally called as
Weingarten map. Curvatures are determined by Weingarten
map matrix, where Gaussian curvature is the determinant and
mean curvature is the trace.

We follow (Cao et al. 2019) to estimate Weingarten map
for oriented point clouds. For pi sampled fromM, extend its
corresponding normal vector ni to a local coordinate system
(ni,ui,vi) where (ui,vi) is the orthogonal basis in TpM.
With k-nearest neighbors [pi1,pi1, ...,pik] around pi, we
project the relative coordinates and relative normal vector to
tangent space as:

∆p⊥
i = [(pi1 − pi,pi2 − pi, ...,pik − pi)

T ] · [ui,vi]

∆n⊥
i = [(ni1 − ni,ni2 − ni, ...,nik − ni)

T ] · [ui,vi]

The Weingarten map Gi ∈ R2×2 is given as Gi =
((∆p⊥

i )
T∆p⊥

i + δI2×2)
−1((∆p⊥

i )
T∆n⊥

i ) with O(n−2/3)
convergence rate (Cao et al. 2019). Now that Weingarten map
is obtained, the Gaussian curvature is Ki = det (Gi), the
mean curvature is Hi = trace(Gi)/2. In practice, we scale
ni with area-weighted average of neighboring points normals
at different radius as [1, 2, 3, 5, 10] and produce in total 5
Gaussian curvatures and 5 mean curvatures.

Up to now, the local system of Cartesian coordinates
(ni,ui,vi) at each point pi has built an orthogonal coor-
dinate frame up to one rotation in tangent space by numerical
methods. It is necessary to further modify such local refer-
ence frame in order to be robust under point cloud noise
and non-rigid deformation. Similar to (Melzi et al. 2019),
we update our frame on the intrinsic gradient of a scalar
field defined on the input shape. To incorporate chemical
features and geometrical features, fi, define a scalar function
fi = MLP(fi). The gradient on f can be approximated by
a derivative of geometric convolution containing Gaussian
filter from (Sverrisson et al. 2021):

cos∆θi ←
1

n

n∑
j=1

w(dij) · (pi − pj)
T · ui · fi

cos∆ϕi ←
1

n

n∑
j=1

w(dij) · (pi − pj)
T · vi · fi

where dij = ∥pi−pj∥ · (2−⟨ni,nj⟩) stands for an approx-
imation for geodesic distance, w(dij) = exp(−d2ij/2σ2)
stands for Gaussian window. Updated basis for tangent plane
uupdate
i ,vupdate

i will be:

uupdate
i = cos∆θi · ui + sin∆θi · vi,

vupdate
i = cos∆ϕi · ui + sin∆ϕi · vi

Finally, with updated local reference frame
[ni,u

update
i ,vupdate

i ], the embedding features in (l + 1)-
th layer f (l+1)

i is computed by graph convolution network.
Different from other work where convolution kernels are
defined over Euclidean distance using K-NN or radius
graph, here we consider the approximated geodesic distance,
which can be beneficial to differentiate specific surfaces.
To be specific, the neighborhood Ni is localized by the
approximated geodesic distance dij by a Gaussian filter as
Ni = {j : exp(−d2ij/2σ2) ≥ γ} where γ is given radius
threshold.

f
(l+1)
i = φ1(

∑
j∈Ni

φ2(pi − pj)[ni,u
update
i ,vupdate

i ]) · f (l)j )

2.2 Ligand Structure Extractor
The ligand is represented as a 2D undirected graph, where
G = (V, E). Vertices vi ∈ V stands for atoms in the ligand
with atom type as attached features, while edges ei,j ∈ E
stands for covalent bond between atoms with bond type as
features. A ligand graph will be processed through GCN with
residue block, extracting information in atom and its local
environments.

Pseudo-edge for Long Range Interaction The input of lig-
ands are 2D molecular graphs, whose edges are the covalent
bonds of the molecules (single, double, triple or aromatic).
This simple representation ignores the long-range interaction
of atoms without covalent bonds. In these cases, the atoms not
directly connected in the 2D molecular graph may have non-
covalent interactions in the real 3D space, as the accessible
conformation space of the molecules is vast. Therefore, the
performance of ultra-large molecules with numerous rotat-
able bonds or flexible rings suffers underestimation. To deal
with this issue, a pseudo-edge is added for close non-bonded
atom if the Euclidean distance of two atoms is smaller than
the distance threshold. A proper distance threshold is treated
as hyperparameter that to be chosen by experiments.

2.3 Mixture Density Layer
After aforementioned protein and ligand extractor, the pro-
cessed embeddings are combined to model the interactions
between ligand and protein. In the final step, the concate-
nated embeddings will be processed by a mixture density
network (MDN) (Bishop 1994) to encode pairwise distance
between protein and ligand as mixed Gaussian distribution
P (dij |pi,vj). Compare to predicting a definite distance, the
distance distribution is more adequate to model the multi-
valued possible relative position between protein and ligand
when binding.



The MDN layer allows the distribution of protein-
ligand distance to be learned by loss function, where
wij,k, µij,k, σij,k are outputs from MDN layer formed by
K Gaussian distribution (K = 10):

L = − 1

nm

n∑
i

m∑
j

logP (dij |pi,vj)

= − 1

nm

n∑
i

m∑
j

log

K∑
k=1

wij,kN (µij,k, σij,k) (2)

Euclidean Equivariant To summarize, aside from the in-
variance in group representation theory, SurfBind adopts
scalarization, a generic way, to achieve invariance. Typically,
geometric vectors p are transformed into intrinsic scalars,
like curvatures and distance used in producing normal vec-
tors. These scalars are invariant to Euclidean transformations
hence ensures SE(3)-equivariance. Despite the simplicity,
such design provides fundamental construction and is effi-
cient enough and universal to achieve equivariance.

2.4 SDF Constraint on Statistical Potential
Learning from the 3D collision problem in computer vision
fields, SurfBind imposes a hard SDF constraint in Eq.3 for
ligand atoms inside the protein. The protein surface is defined
as SDF(v) = γ2, where weights w = 0.35 and σ = 0.35
are referenced from (Venkatraman et al. 2009), γ2 = 0.5 is
chosen to approximate the van der Waal’s radius (1.5 Å) for
an isolated atom.

SDF(v) = −w · log
n∑

i=1

exp(−∥v − pi∥/σ) (3)

Statistical potential is the aggregation of protein-ligand
pairwise distance function in Eq. 2. SDF is directly combined
into this potential to decrease scores for undesired ligand
positions shown as Eq. 4.

Surfscore =
1

nm

n∑
i

m∑
j

logP (dij |pi,vj)·1(SDF(vj) > γ)

(4)
Surfscore can be applied in multiple scenarios. Firstly in

optimization task, for an optimization algorithm, e.g., dif-
ferential evolution, Eq. 4 is also known as energy function
which can be minimized to generate optimal conformation.
Moreover, in the ranking task, the statistical potential based
on the pairwise distance distribution in Eq. 4 can be treated as
a score function. Given proteins and ligands, such score func-
tion can give out binding ratings which indicate relative ranks.
The ranks can be applied to screen out most likely binding
poses for ligands or binding complexes for protein-ligand
pairs.

3 Experiment Settings
3.1 Datasets
Train data SurfBind is trained on PDBBind database
v2019 (Liu et al. 2017), which provides binding data and

processed structural files for the biomolecular complexes in
the Protein Data Bank (PDB) (Berman, Henrick, and Naka-
mura 2003). The specific version, PDBBind v2019 contains
17679 protein-ligand complexes. After excluding the com-
plexes in the test set or containing unrecognizable atom types,
14603 complexes are finally used for train and valid set with
random 0.8/0.2 allocation.

Test data SurfBind is tested on an open-access benchmark,
the conventional Comparative Assessment of Scoring Func-
tions (CASF) dataset (Li et al. 2018). The latest version,
CASF 2016 (Su et al. 2019), contains 285 protein-ligand
complexes with reliable structures.

3.2 Evaluation Setup
Evaluation Metrics In the optimization task, the perfor-
mance is evaluated on RMSD. In the ranking task, as Surf-
Bind is not trained to predict experimental scores on purpose,
we are more interested in docking power and screening power
(Su et al. 2019). Docking power assesses the ability of a score
function to identify native binding poses among randomly
generated decoys. Screening power evaluates the ability to
identify true protein-ligand binders for given target proteins,
among cross docking conformations. Good performance on
these two metrics indicates that conformations similar to
native binding pose will be top-ranked.

Baselines For optimization task, to address surface inter-
section issue, baselines are mishandled cases by DeepDock
(Méndez-Lucio et al. 2021). For ranking task, the baselines
are DeepDock and the Top 4 score functions recorded in (Su
et al. 2019), containing both traditional and machine learning
driven ones.

SurfBind Versions We provide three versions for Surf-
Bind models: 1) vanilla SurfBind without SDF constraint
2) SurfBind-S, for adding SDF constraint into SurfBind 3)
SurfBind-V, the incremental model for using Autodock Vina
score as a correction on the basis of SurfBind-S. The idea
in SurfBind-V, to fine-tune with traditional score function,
has witnessed appealing precedents such as OnionNet-SFCT
(Zheng et al. 2022) and ∆VinaRF20 (Li et al. 2015). For the
combination:

Score = α · Surfscore + β · V inascore
where Surfscore is the normalized score by SurfBind in
Eq. 4. Weights α = 0.5, β = −0.5 are used in experiments
as Autodock Vina shows a negative correlation to SurfBind
score.

3.3 Implementation Details
SurfBind is implemented with Pytorch (Paszke et al. 2019).
For data processing, we use PyTorch Geometric (Fey and
Lenssen 2019). SurfBind is trained on 1 Tesla A100 with
Adam optimizer with learning rate lr = 0.002 equipped with
cosine annealing. Reproducible code will be provided.

4 Results
4.1 Optimization Task
In the optimization, the differential evolution is used to get
the optimal conformation. Adding SDF constraint helps to



Table 1: Forward Screening Power for SurfBind, DeepDock and Top 4 score functions.

Forward Screening Power Success rate ↑ Enhancement Factor (EF) ↑
Top1% Top5% Top10% Top1% Top5% Top10%

Autodock Vina (2012; 2010) 29.8% 40.4% 50.9% 7.70 4.01 2.87
ChemPLP@GOLD (2009) 35.1% 61.4% 64.9% 11.91 5.29 3.59

GlideScore-SP (2004; 2004; 2006) 36.8% 54.4% 63.2% 11.44 5.83 3.98
∆VinaRF20 (2015) 42.1% 49.1% 54.4% 11.73 4.43 3.10
DeepDock (2021) 43.9% 61.4% 82.5% 16.41 7.36 5.16

SurfBind-S 54.4% 71.9% 86.0% 20.98 8.13 5.12
SurfBind-V 54.4% 73.7% 84.2% 20.68 8.23 5.20

SurfBind 54.4% 73.7% 84.2% 20.43 8.10 5.08

derive rational conformations adapting to protein surface,
reducing surface intersection issue. Fig. 3 shows multiple
surface clash cases by DeepDock. Given identical input as
DeepDock, SurfBind can elude such collision. As shown in
Table 3, for the molecules with more than 30 rotatable bonds,

Figure 3: Surface intersection examples for ligand 1z6e, 3jvr,
4cra, 4crc, 4de2, 2qbp respectively (left to right, top to bot-
tom). Green: DeepDock, Blue: SurfBind, Red: Crystal Struc-
ture. For DeepDock, the ligand may go inside the protein
surfaces (see the yellow circle). While for SurfBind, the gen-
erated ligand can avoid surface collision with protein surface.

Table 2: Docking Power for SurfBind, DeepDock and Top 4
score functions. The correlation is based on 0-10Å.

Docking Power ↑ Top 1 Top 2 Top 3 Spearman’s
correlation

DeepDock
(2021) 87.0% 92.6% 94.4% 0.830

DrugScoreCSD

(2005) 87.4% 93.3% 95.1% 0.609

GlideScore-SP
(2004; 2004)

(2006)
87.7% 91.9% 93.7% 0.512

∆VinaRF20

(2015) 89.1% 94.4% 96.5% 0.608

Autodock Vina
(2012; 2010) 90.2% 95.8% 97.2 % 0.605

SurfBind 95.4% 97.9% 98.2% 0.901
SurfBind-S 95.8% 97.5% 98.2% 0.899
SurfBind-V 95.1% 97.9% 99.3% 0.713

Table 3: Ligand RMSD performance on ultra-large molecules
with a large number of rotatable bonds and atoms.

Ligand
RMSD ↓

rotatable bounds atoms
> 10 > 30 Top 10% > 40 Top 10%

DeepDock
(2021) 3.96 6.47 3.95 4.48 3.95

SurfBind 3.62 4.59 3.63 3.90 3.49
SurfBind-S 3.55 4.46 3.56 3.82 3.33

the average RMSD is reduced from 6.47 to 4.46. For the
molecules with more than 40 atoms, the average RMSD is
reduced from 4.48 to 3.82.

4.2 Ranking Task
In docking power and screening power, SurfBind surpasses
the performance of DeepDock and other 4 best score func-
tions. As docking power results shown in Table. 2, all three
versions of SurfBind outperform DeepDock and the other
score functions evaluated in the same benchmark. Results
on screening power in Table. 1 are consistent with docking
power, showing our method possess advantage in identify-
ing acceptable binding poses as top-ranked. The SurfBind-V,
to finetune SurfBind score with Autodock Vina score, is a
successful attempt to boost the performance.

5 Conclusion
We introduce a ligand-protein docking scheme to calculate
pairwise distance distribution as statistical potential. The
use of a trainable surface point cloud encoder and scalar
features makes the model Euclidean invariant. With the SDF
constraint and pseudo-edge construction, SurfBind can derive
more rational conformations matching the pocket shape and
reduce RMSDs for generated ligands. Working as a score
function, SurfBind achieves surpassing results on the docking
and screening power for CASF-2016 benchmark. Further
exploration contains multiple directions, e.g., to incorporate
SDF and ligand generation in an end-to-end manner, explore
relaxed restriction on rigid protein position.
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