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ABSTRACT
In crowdsourced preference aggregation, it is often assumed
that all the annotators are subject to a common preference
or utility function which generates their comparison behav-
iors in experiments. However, in reality annotators are sub-
ject to variations due to multi-criteria, abnormal, or a mix-
ture of such behaviors. In this paper, we propose a parsimo-
nious mixed-effects model based on HodgeRank, which takes
into account both the fixed effect that the majority of anno-
tators follows a common linear utility model, and the ran-
dom effect that a small subset of annotators might deviate
from the common significantly and exhibits strongly person-
alized preferences. HodgeRank has been successfully applied
to subjective quality evaluation of multimedia and resolves
pairwise crowdsourced ranking data into a global consensus
ranking and cyclic conflicts of interests. As an extension, our
proposed methodology further explores the conflicts of inter-
ests through the random effect in annotator specific varia-
tions. The key algorithm in this paper establishes a dynamic
path from the common utility to individual variations, with
different levels of parsimony or sparsity on personalization,
based on newly developed Linearized Bregman Algorithms
with Inverse Scale Space method. Finally the validity of the
methodology are supported by experiments with both simu-
lated examples and three real-world crowdsourcing datasets,
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which shows that our proposed method exhibits better per-
formance (i.e. smaller test error) compared with HodgeRank
due to its parsimonious property.
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1. INTRODUCTION
With the Internet and its associated explosive growth of

information, individuals today in the world are facing with
the rapid expansion of multiple choices (e.g., which book
to buy, which hotel to book, etc.). Inferring user’s prefer-
ence or utility over a set of alternatives has thus become
an important issue. Among various methods to infer user
viewpoint/preference, crowdsourcing technology is becom-
ing a new paradigm, which collects voting data from a large
crowd or population on Internet and pursue some statis-
tical preference aggregations. For example, the following
platforms are frequently used by researchers to crowdsource
voting data of participants: MTurk, InnoCentive, Crowd-
Flower, CrowdRank, and AllOurIdeas, etc. A typical and
perhaps the simplest scenario is the pairwise comparison
experiment. Specifically, there are a set of items to rank,
and participants are asked to choose between various pairs
among these items; the goal is to aggregate these pairwise
comparisons into a global consensus ranking that summa-
rizes the preference of all users. We have seen that re-
searchers exploit such a paradigm to evaluate the quality
of multimedia content [4, 27], predict image/video interest-
ingness [10], estimate ages from face pictures [11], and rank
taste of food [12] etc.

However, different individuals might very well have dis-
tinct preferences, such that participants of the crowdsourced

http://dx.doi.org/10.1145/2964284.2964298
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Figure 1: An illustrative example on estimation of human
ages, with the fixed effect of common ranking and random
effects of user’s personalized ranking. The faces in the first
column are ordered according to a common ranking score
aggregated from crowdsourced pairwise comparisons, while
other columns are according to personalized rankings of d-
ifferent users. The ground truth ages in the first column,
in a top-down order, are 46, 51, 36, 30, 25, 23, 10, and 2,
respectively.

experiments might vote under different criteria or condition-
s. It might be misleading to merely look at a global con-
sensus while ignoring personal diversity. For example Fig.1
shows an age estimation from photos that will be discussed
in detail later in this paper. The majority is not always
correct, as the common ranking by mistake thinks 46 older
than 51! Moreover, even though User2 is largely deviated
from the common ranking, it is noticeable that he/she makes
correct judgements between the faces of year 46 and 51. So
if one is looking for features that correctly predict the ages
of these two particular faces, User2 is a better consultant
than the majority. Particularly, User1 is clearly an adver-
sarial voter, whose personalized ranking is largely against
the common ranking reflecting the majority, so should be
removed from a preference aggregation procedure.

Moreover, in crowdsourcing experiments, the participants
are distributed over the Internet with a diverse environmen-
t. Even they might share the same preference or utility
function in making choices, they might suffer various distur-
bances during the experiments. For example, i) one typically
clicks one side more often than another. As some pairs are
highly confusing or annotators get too tired, in these cas-
es, some annotators tend to click one side hoping to simply
raise their record to receive more payment; while for pairs
with substantial differences, they click as usual. ii) some
extremely careless annotators, or robots pretending to be
human annotators, actually do not look at the instances
and click one side all the time to quickly receive payment
for work. Such a kind of behavior is called the annotator’s
position bias which has been studied in [6, 26].

These examples above suggest us that we have to take
into account of user or annotator specific variations in a

crowdsourced preference aggregation task. As the classical
social choice theory [1] points out, preference aggregation
toward a global consensus is doomed to meet the conflicts
of interests. What is a suitable way to quantitatively analyze
the conflicts of interests?

In this paper, we pursue the Hodge-theoretic approach
by [13] which decomposes the pairwise comparison data into
three orthogonal components: the global consensus ranking,
the local inconsistency as triangular cycles, and the global
inconsistency as harmonic cycles. The latter two are both
cycles, collectively decoding all the conflicts of interests in
the data. Instead of the merely extracting from the da-
ta the global ranking component, often called HodgeRank
which has been introduced into the quality assessment of
multimedia by [25], we extend it here by including some
annotator-specific random effects to further decompose the
cycles. To decipher the sources of the conflicts of interests,
we mainly consider two types of annotator-specific variation-
s: annotator’s personalized preference deviations from the
common ranking which characterize multi-criteria in data,
and annotator’s position bias which deteriorates the quality
of data. This results in a linear mixed-effects extension of
HodgeRank, called Mixed-Effects HodgeRank here.

To initiate a task of crowdsourced preference aggregation,
we usually assume the majority of participants share a com-
mon preference interest and behave rationally, while devi-
ations from that exist but are sparse. So a parsimonious
model is assumed in this paper, with sparsity structure on
personalized preference deviations and position biases. Due
to the unknown amount of such sparse random effects in re-
ality, it is natural to pursue a family of parsimonious models
at a variety levels of sparsity. Algorithmically we adopt the
Linearized Bregman Iteration, which is a simple iterative
procedure generating a sequence of parsimonious models, e-
volving from the common global ranking in HodgeRank, to
annotator’s personalized ranking till a full model. Fig.1 is
in fact a result of our algorithm. As the algorithm iterates,
typically the abnormal annotators with large preference de-
viations and/or position biases appear early, and the an-
notators who behave normally appear at a later stage. In
practice when the number of participants is large and sam-
ple size is relatively small, early stopping regularization is
needed to prevent the overfitting in full model.

Equipped with such a new scheme, given a set of enti-
ties, we choose a set of entity pairs and ask Internet crowds
which entity is more preferable in each pair. Based on the
feedback we not only can derive the common preference on
population-level, but also can estimate rapidly an annota-
tor’s large preference/utility deviation in an individual-level,
and an abnormal annotator’s position bias. Individual pref-
erence deviations from the population common ranking are
helpful to understand different criteria among annotators
when they judges, and especially to monitor the adversar-
ial users. On the other hand, annotator’s position bias is
a helpful tool to monitor the quality of his/her voting da-
ta, through the mixing behavior that the annotator simply
clicks one side of the pair in comparisons without paying
attention to their contents. Such a statistical mixed-effects
framework simultaneously considers both the fixed effect of
common ranking as the HodgeRank and the random effects
of annotator-specific variations, which, up to the author’s
knowledge, has not been seen in literature.



As a summary, our main contributions in this new frame-
work are highlighted as follows:

(A) A linear mixed-effects extension of HodgeRank includ-
ing both the fixed effect of common ranking, and the
random effects of annotator’s preference deviation with
position bias;

(B) A path of parsimonious estimates of the preference de-
viation and position bias at different sparsity levels,
based on Linearized Bregman Iterations.

The remainder of this paper is organized as follows. Sec.2
contains a review of related works. Then we systematical-
ly introduce the methodology for parsimonious mixed-effects
HodgeRank estimation in Sec.3. Extensive experimental val-
idation based on one simulated and three real-world crowd-
sourced datasets are demonstrated in Sec.4. Finally, Sec.5
presents the conclusive remarks.

2. RELATED WORK

2.1 Statistic Ranking Aggregation
Statistical preference aggregation, in particular ranking

or rating from pairwise comparisons, is a classical problem
which can be traced back to the 18th century. Various algo-
rithms have been studied for this problem, including max-
imum likelihood under a Bradley-Terry model assumption,
rank centrality (PageRank/MC3) [5, 15], HodgeRank [13] ,
and a pairwise variant of Borda count [7] among others.
In [21], it shows that under a natural statistical model, where
pairwise comparisons are drawn randomly and independent-
ly from some underlying probability distribution, the rank
centrality (PageRank) and HodgeRank algorithms both con-
verge to an optimal ranking under a “time-reversibility” con-
dition. However, PageRank is only able to aggregate the
pairwise comparisons into a global ranking over the item-
s. HodgeRank not only provides us a mean to determine
a global ranking under various statistical models, but also
measures the inconsistency of the global ranking obtained.

HodgeRank, as an application of combinatorial Hodge
theory to the preference or rank aggregation problem from
pairwise comparison data, was first introduced in [13], in-
spiring a series of studies in statistical ranking [18–20], game
theory [3], and computer vision [30], etc. It is a general
framework to decompose paired comparison data on graphs,
possibly imbalanced (where different video pairs may receive
different number of comparisons) and incomplete (where ev-
ery participant may only give partial comparisons), into
three orthogonal components. In these components HodgeR-
ank not only provides us a mean to determine a global rank-
ing from paired comparison data under various statistical
models (e.g., Uniform, Thurstone-Mosteller, Bradley-Terry,
and Angular Transform), but also measures the inconsisten-
cy of the global ranking obtained. The inconsistency shows
the validity of the ranking obtained and can be further s-
tudied in terms of its geometric scale, namely whether the
inconsistency in the ranking data arises locally or globally.
Local inconsistency can be fully characterized by triangular
cycles, while global inconsistency involves cycles consisting
nodes more than three, which may arise due to data in-
completeness and once presented with a large component
indicates some serious conflicts in ranking data. However

through random graphs, we can efficiently control global in-
consistency.

However, all of these methods have a major drawback:
they aim to find one ranking thus cannot model the discrep-
ancies across users. Therefore, in recent years, personalized
ranking methods arise to fill in this gap. This task can be
seen as rank aggregation analog to the standard collabo-
rative filtering (CF) problem. There have been many CF
algorithms, including Bayesian networks, clustering model-
s, and latent semantic models, etc. Recent algorithms for
collaborative filtering are mostly based on matrix factoriza-
tion [22,23]. The key idea behind them is to find a low rank
user rating matrix that best approximates the observed rat-
ings. Most recently, the application of the nuclear norm ap-
proach to CF was first proposed by [28], which shows good
empirical evidence for using such a nuclear norm regularized
based approach. The key difference between our study and
the low rank matrix collaborative filtering algorithms is that
we assume the majority of voters share a fixed effect of com-
mon ranking while some annotators might deviate from that
significantly. Such parsimonious model from population to
individual is a natural fit for crowdsourcing scenarios.

2.2 Linearized Bregman Iteration (LBI)
Linearized Bregman Iteration (LBI) was firstly introduced

in [29] in the literature of variational imaging and compres-
sive sensing. It is well-known that LASSO estimators are
always biased [9]. On the other hand, [16] notices that Breg-
man iteration may reduce bias, also known as contrast loss,
in the context of Total Variation image denoising. Now L-
BI can be viewed as a discretization of differential equations
(inclusions), called Inverse Scale Spaces, which may produce
unbiased estimators under nearly the same model selection
consistency conditions as LASSO [17].

Beyond such a theoretical attraction, LBI is an extreme-
ly simple algorithm which combines an iterative gradient
descent algorithm together with a soft thresholding. It is
different to the well-known iterative soft-thresholding algo-
rithm (ISTA) (e.g., [2, 8] and references therein) which con-
verges to the biased LASSO solution. To tune the regular-
ization parameter in noisy settings, one needs to run ISTA
with many different thresholding parameters and chooses
the best among them; in contrast, LBI only runs in a single
path and regularization is achieved by early stopping like
boosting algorithms [17], which may save the computational
cost greatly and thus suitable for large scale implementation,
e.g., distributive computation [31].

3. METHODOLOGY
In this section, we systematically introduce the methodol-

ogy for parsimonious mixed-effects HodgeRank estimation.
Specifically, we first start from extending the HodgeRank
to a linear mixed-effect model. Then we present a simple
iterative algorithm called Linearized Bregman Iterations to
generate paths of parsimonious models at different sparsity
levels. Early stopping regularization is discussed in the end.

3.1 Mixed-Effects HodgeRank on Graphs
In crowdsourced pairwise comparison experiments, Let

V = {1, 2, . . . , n} be the set of nodes and E = {(u, i, j) :
i, j ∈ V, u ∈ U} be the set of edges, where U is the set of
all annotators. Suppose the pairwise ranking data is given
as y : E → R. yuij > 0 means u prefers i to j and yuij ≤ 0



otherwise. The magnitude of yuij can represent the degree of
preference and it varies in applications. The simplest setting
is the binary choice, where

yuij =

{
1 if u prefers i to j,
−1 otherwise.

(1)

The general purpose of preference aggregation is to look
for a global score θ : V → R such that

min
θ∈R|V |

∑
i,j,u

ωuij l(θi − θj , yuij), (2)

where l(x, y) : R×R→ R is a loss function, ωuij denotes the
confidence weights on {i, j} made by rater u (for simplicity,
assumed to be ωuij = 1 for the existing voting data), and θi
(θj) represents the global ranking score of item i (j, respec-
tively). In HodgeRank, one benefits from the use of square
loss l(x, y) = (x− y)2 which leads to fast algorithms to find
optimal global ranking θ, which becomes one component of
a general orthogonal decomposition of paired comparison
data [13], i.e.

y = global ranking ⊕ cycles,

where the component cycles can be further decomposed into

cycles = local cycles⊕ global cycles.

Local cycles are triangular cycles, e.g. i � j � k � i;
while global cycles, also called harmonic cycles, are loops
involving nodes more than three (e.g. i � j � k � ... �
i) and typically traversing all nodes in the graph. These
cycles may arise due to conflicts of interests in ranking data.
Therefore to analyze the statistical models of cycles is crucial
to understand the conflicts of interests.

In crowdsourcing scenarios, the conflicts of interests are
mainly due to two kinds of sources: the multi-criteria adopt-
ed by different annotators when they compare items in V ;
the abnormal behavior of annotators in the experiments, e.g.
simply clicking one side of the pair when they got bored,
tired, or distracted. To quantitatively characterize these ef-
fects, we propose the following model of cycles

cycles = personalized ranking + position bias+ noise.

To be specific, together with the global ranking compo-
nent in HodgeRank, we consider the following linear mixed
effects model for annotator’s pairwise ranking:

yuij = (θi + δui )− (θj + δuj ) + γu + εuij , (3)

where

• θi is the common global ranking score, as a fixed effect;

• δui is the annotator’s preference deviation from the
common ranking θi such that θui := θi + δui becomes
annotator u’s personalized ranking score, as a random
effect;

• γu is an annotator’s position bias, which captures the
careless behavior by clicking one side during the com-
parisons;

• εuij is the random noise which is assumed to be in-
dependent and identically distributed with zero mean
and being bounded.

Putting in matrix form, (3) becomes

y = dθ +Xβ + ε, (4)

where d ∈ R|E|×|V | satisfies dθ(u, i, j) = θi − θj , β = [δ, γ] ∈
R(|V |+1)|U| and X = [D,A], where D ∈ R|E|×|V ||U| satisfies

Dδ(u, i, j) = δui − δuj and A ∈ R|E|×|U| satisfies γ(u, i, j) =
γu.

Here θ is population-level parameter which indicates some
common score on V . In crowdsourcing studies, as the da-
ta vary greatly across individual annotators, we thus allow
each annotator to have personalized parameters θu. These
personalized parameters can be obtained by adding some
random effects δu to the population parameter θ, represent-
ing individual deviations from the population behavior. Be-
sides, γu measures an annotator’s position bias, i.e. the
tendency of u always clicking one side in paired comparison
experiments. Under the random design of pairwise com-
parison experiments, a candidate should be placed on the
left or the right randomly, so the position should not affect
the choice of a careful annotator. However, some annota-
tor might get confused, tired or distracted in experiments,
such that he/she always clicks one side during some period-
s in experiments. Such a type of position bias captures a
kind of noise in data not included in the zero mean ε and
may severely deteriorates the quality of data. The remain-
der εuij measures the random noise in sampling which is of
zero mean and bounded (hence subgaussian).

3.2 Parsimonious Paths with Linearized Breg-
man Iteration

In crowdsourced preference aggregation scenarios with good
controls, it is natural to assume a parsimonious model. In
such a model, the majority of annotators carefully follows
the common behavior governed by the fixed effect parameter
θ, while only a small set of annotators might have nonzero
personalized deviations and abnormal behavior in position
bias. This amounts to assume that parameter δu to be group
sparse, i.e. δui vanishes for all i simultaneously, and γu to
be sparse as well, i.e. zero for most of careful annotators.
Such a sparsity pattern motivates us to consider the follow-
ing penalty function with a mixture of LASSO (L1) penalty
on γ and group LASSO penalty on δ:

P (β) = ‖γ‖1 +
∑
u

‖δu‖2, β = (δ, γ). (5)

Remark 1. Usually a normalization factor
√
n is used

before a group lasso penalty ‖δu‖2, where n is the group size
of δu. But here all the δu have the same group size, and
‖Du‖F =

√
2‖Au‖F , so the column norm of Du is on aver-

age
√
2√
n

times of ‖Au‖F , this basically cancels out the factor
√
n. So here we just use this simple formula.

Following the square loss in HodgeRank, the Euclidean
distance (mean square error) in RE can be used for the total
loss function:

L(θ, β) =
1

2m
‖y − dθ −Xβ‖22. (6)

The following Linearized Bregman Iterations (LBI) give



rise to a sequence of parsimonious (sparse) models:

θk+1 = θk − ακ∇θL(θk, βk) (7a)

zk+1 = zk − α∇βL(θk, βk), (7b)

βk+1 = κ · proxP (zk+1), (7c)

where β0 = 0, θ0 = arg minθ L(θ, 0), and variable z is an
auxiliary parameter used for gradient descent, z = ρ +
β/κ, ρ ∈ ∂P (β). Besides, the proximal map associated with
the penalty function P is given by

proxP (z) = arg min
v∈R(|V |+1)|U|

(
1

2
‖v − z‖2 + P (z)

)
.

The Linearized Bregman Iteration (7) generates a path of
global ranking score estimators θk and sparse estimators for
preference deviation and position bias, βk = (δk, γk). It s-
tarts from the common HodgeRank as θ0 = arg minθ L(θ, 0),
and evolves into parsimonious mixed effect models with d-
ifferent levels of sparsity until the full model, often overfit-
ted. To avoid the overfitting, early stopping regularization
is required to find an optimal tradeoff between the model
complexity and in-sample error. For more details, we refer
the readers to see [17] and references therein. In this paper,
we find that cross validation works to find the early stopping
time that will be discussed in Sec.3.3.

The Linearized Bregman algorithm was firstly introduced
in [29] extended from Bregman iteration [16] as a scalable
algorithm for large scale image restoration and compressed
sensing. It has several advantages than the widely used
LASSO-type convex regularizations. First of all, it is simpler
than LASSO in generating the sparse regularization paths:
instead of a parallel run of several optimization problem over
a grid of regularization parameters, a single run of LBI gen-
erates the whole regularization path. LBI is thus desired in
dealing with big problems. Moreover, it can be less biased
than LASSO as if nonconvex regularizations [9]. In fact, it
is shown recently in [17] that as κ → ∞ and α → 0, the
limit dynamics of Linearized Bregman Iterations in sparse
linear regression with LASSO (L1) penalty may achieve the
model selection consistency under nearly the same condition
as LASSO yet return the unbiased Oracle estimator, while
the LASSO estimator is well-known biased.

Here we give some remarks on the implementation details
of the Linearized Bregman Iterations (7).

• The parameter κ determines the bias of the sparse es-
timators, a bigger κ leading to the less biased ones.
The parameter α is the step size which determines the
precise of the path, with a large α rapidly traversing
a coarse grained path. However one has to keep ακ
small to avoid possible oscillations of the paths, e.g.
ακ‖XTX‖2/m < 2. The default choice in this paper
is α = m

κ‖XTX‖2
as a tradeoff between performance

and computation cost.

• The step (7a) can also be replaced by

θk+1 = arg min
θ
L(θ, βk)

if it is easy to solve.

• Now we turn to simplify the third step (7c) with an
explicit formula for the proximal map with the partic-
ular penalty function defined in Eq. (5). Recovering

βk+1 from zk+1 is equivalent to the following group
shrinkage on each group component of β, i.e. γu and
δu:

βk+1 = κShrinkage(zk+1) (8)

,

{
δu,k+1 = κmax(0, 1− 1/‖zδu‖2)zδu

γu,k+1 = κmax(0, 1− 1/|zγu |)zγu

Now we are ready to give the following Linearized Breg-
man Algorithm for our Mixed-Effects HodgeRank as

Algorithm 1 LBI for ME-HodgeRank

Input: Data (d,X, y), damping factor κ, step size α.
Initialize: β0 = 0, θ0 = (dT d)−1dT y, z0 = 0, t0 = 0.
for k = 0, . . . ,K do

1. θk+1 = (dT d)−1dT (y −Xβk).

2. zk+1 = zk + α
m
XT (y − dθk −Xβk).

3. βk+1 = κShrinkage(zk+1)

4. tk+1 = (k + 1)α.

end for
Output: Solution path {tk, θk, βk}k=0,1,...,K .

3.3 Early Stopping Regularization
The Alg.1 actually returns a solution path with many es-

timators of different sparsity. So we need to find an optimal
stopping time among tk = αk to choose some best estima-
tors and avoid overfitting. Here we sketch the procedure of
cross-validation to choose the optimal stopping time:

• Given the training data, fix κ and α, then split the
data into K folds. Then choose a list of parameter t.

• for k = 1, . . . ,K do

1. Run Alg.1 on the training data except k-th fold
to get the solution path.

2. For pre-decided parameter list of t, use a linear
interpolation to get (θ(t), β(t)).

3. On the k-th fold of training data, use the esti-
mator (θ(t), β(t)) to predict, and then compute
prediction error.

end for

• Return the optimal tcv with minimal average predic-
tion error.

Remark: Because the Alg.1 only returns the estimator at
discrete {tk} and may not contain the pre-decided parame-
ter t, so we use a linear interpolation of the nearest two esti-
mator (θk, zk) and (θk+1, zk+1) to approximate (θ(t), z(t)).
β(t) is further obtained by using Shrinkage(z(t)).

4. EXPERIMENTS
In this section, four examples are exhibited with both

simulated and real-world data to illustrate the validity of
the analysis above and applications of the methodology pro-
posed. The first example is with simulated data while the
latter three exploit real-world data collected by crowdsourc-
ing.



(a) Annotators with personalized
ranking

(b) Position-biased annotators

Figure 2: Annotators with personalized ranking and position bias detected in simulated data.

4.1 Simulated Study
Settings We validate the proposed algorithm on simu-

lated data labeled by 500 annotators. Specifically, we first
generate the true θi ∼ N(0, 1). Then each annotator has a
probability p1 = 0.4 having a nonzero γu and a probability
p2 = 0.4 having a nonzero δu. Those nonzero γu is drawn
randomly from N(0, 0.22). And each entry δui of nonzero δu

is drawn randomly from N(0, s2) with s ∼ U(0, 0.3). The
noise εuij is i.i.d. N(0, 0.32). At last, we draw Nu samples
for each user randomly following the model (3). The sample
number Nu uniformly spans in [N1, N2] = [100, 500]. Here
we choose n = |V | = 30, which is consistent with the first
real-world dataset. Finally, we obtain a multi-edge graph
with 150,494 pairwise comparisons annotated by 500 anno-
tators.
Results Fig.2(a) shows the annotators exhibiting person-

alized preferences selected via cross-validation, where each
color dot represents one annotator. The optimal t obtained
via cross-validation is shown in Fig.3. The scores derived
from each user are denoted as θ̂u and the common ranking
as θ̂. Here the scores are the least squares solution of Eq.(3).
The X-axis represents the L2-distance between each user’s
personalized ranking and the common ranking, ‖θ̂u − θ̂‖.
The Y-axis counts the number of pairwise comparisons each
user provides. Clearly one can see the larger the L2-distance
and sample size, the more earlier this user is treated as one
with personalized ranking (from color red to blue). This in-
dicates that users jumped out earlier are those with large
deviation from the population’s opinion and a big sample
size indicating a high confidence. Similar results of position-
biased user is illustrated in Fig.2(b), in which the X-axis (γ
difference) represents the absolute difference of γ between
each user and the population.

Finally, to see whether our proposed method could pro-
vide more precise preference function for users by introduc-
ing individual-specific parameters (i.e., δ and γ), we split
the data into training set (70% of the total pairwise com-
parisons) and testing set (the remaining 30%). To ensure
the statistical stability, we repeat this procedure 20 times.
Tab.1 shows the experimental results of the proposed mixed-
effects model compared with HodgeRank, which indicates
that our method exhibits smaller test error with an aver-
age of 0.0948 ± 0.0008 (in contrast to 0.1298 ± 0.0008 in
HodgeRank) due to its parsimonious property.

Figure 3: Optimal t with minimal average prediction error
in simulated data.

Table 1: HodgeRank vs. Mixed-effects model in simulated
data.

min mean max std
HodgeRank 0.1282 0.1298 0.1315 0.0008
Mixed effects model 0.0934 0.0948 0.0961 0.0008

4.2 Human Age

Figure 4: Images in Human age dataset.

Settings In this dataset, 30 images from human age dataset
FG-NET 1 are annotated by a group of volunteer users on
ChinaCrowds platform, as is illustrated in Fig.4. The anno-
tator is presented with two images and given a binary choice
of which one is older. Totally, we obtain 14,011 pairwise
comparisons from 94 annotators.

Results Tab.2 shows the mean test error (70% data for
training, 30% for testing) results of 20 times achieved by
this scheme. It is shown that this mixed-effects model could

1http://www.fgnet.rsunit.com/

http://www.chinacrowds.com/


Table 2: HodgeRank vs. Mixed-effects model in Human
age dataset.

min mean max std
HodgeRank 0.5542 0.5716 0.5907 0.0101
Mixed effects model 0.4199 0.4455 0.4680 0.0111

(a) LBI regularization path of δ.
(Red: top 10)

(b) Jumping out order.

Figure 5: Top 10 annotators with personalized ranking in
Human age dataset.

provide better approximate results of the annotators’ pref-
erence than the HodgeRank estimator, with an average test
error of 0.4455 ± 0.0111 (in contrast to 0.5716 ± 0.0101 in
HodgeRank).

To further investigate the characteristics of annotators
with personalized ranking, Fig.5(a) illustrates annotator’s
LBI regularization paths of preference deviations with opti-
mal t (i.e., tcv) returned by cross-validation, while Fig.5(b)
shows the relationships among L2-distance to the common
ranking, sample number and jumping out order of each an-
notator. The red curves in Fig.5(a) represent the top 10
annotators who jumped out early which are also marked in
Fig.5(b). Similar to the simulated data, annotators jumped
out earlier are those with a large deviation (L2-distance)
from the common ranking and a big sample size showing
high confidence of such deviations. Moreover, Fig.6 shows
the order comparisons of common ranking (i.e., com.) and
personalized ranking of 9 representative annotators at tcv.
The X-axis represents user index: user = 2, 3, 4 jumped
out early corresponding to paths labeled with red stars in
Fig.5(a); user = 5, 6, 7 jumped out in the middle time cor-
responding to green stars; user = 8, 9, 10 jumped out late
corresponding to blue stars. The order of faces in Y-axis is
arranged from lower to higher (i.e., from color blue to red)
according to the common ranking score calculated by our
method. The color represents the ranking position returned
by the corresponding user. It is easy to see users jumped

Table 3: Top 10 position-biased annotators in Human age
dataset, together with the click counts of each side (i.e., Left
and Right).

Order ID Left Right Order ID Left Right

1 12 90 270 6 91 79 5

2 70 191 9 7 51 63 0

3 59 213 66 8 50 60 3

4 38 110 15 9 18 74 25

5 43 79 1 10 40 40 0

Figure 6: Comparison of common vs. personalized rankings
of 9 representative annotators in Human age dataset.

Figure 7: LBI regularization path of γ in Human age
dataset. (Red: top 10 position-biased annotators; Blue: bot-
tom 5 position-biased annotators)

out late exhibit almost consistent ranking order with the
common ranking, while the earlier ones are almost the ad-
versarial against the common. A subset of this has been
shown in Fig.1 in introduction.

Moreover, Fig.7 illustrates the LBI regularization paths of
annotator’s position bias with red lines represent the top 10
annotators. Tab.3 further shows the click counts of each side
(i.e., Left and Right) for these top 10 position-biased anno-
tators. It is easy to see that these annotators can be divided
into two types: (1) click one side all the time (with ID in
blue); (2) click one side with high probability (others). Al-
though it might be relatively easy to identify the annotators
of type (1) above by inspecting their inputs, it is impossible
for eye inspection to pick up those annotators of type (2)
with mixed rational and abnormal behaviors. Therefore it
is essential to design such a statistical methodology to quan-
titatively detect these kind of position-biased annotators for
crowdsourcing platforms in market.

4.3 Image Quality Assessment (IQA)
Settings Two publicly available datasets, LIVE [24] and

IVC [14], are used in this work. The LIVE dataset contains
29 reference images and 779 distorted images. Considering
the resolution limit of most test computers, we only choose
6 different reference images (480 × 720) and 15 distorted
versions of each reference, for a total of 96 images. The sec-
ond dataset, IVC, which is also a broadly adopted dataset in
the community of multimedia quality evaluation, includes 10



Figure 8: Images in LIVE and IVC dataset.

Table 4: HodgeRank vs. Mixed-effects model in IQA
dataset (reference image 1).

min mean max std
HodgeRank 0.4918 0.5135 0.5429 0.0134
Mixed effects model 0.2922 0.3241 0.3576 0.0158

reference images and 185 distorted images derived from four
distortion types–JPEG2000, JPEG, LAR Coding, and Blur-
ring. Following the collection strategy in LIVE, we further
select 9 different reference images (512×512) and 15 distort-
ed images of each reference. Totally, we obtain a medium-
sized image set that contains a total of 240 images from
15 references, as illustrated in Fig.8. Finally, 342 observers
of different cultural background, each of whom performs a
varied number of comparisons via Internet, provide 52, 043
paired comparisons in total. The number of responses each
reference image receives is different.

Table 5: Top 10 position-biased annotators in IQA dataset
(reference image 1).

Order ID Left Right Order ID Left Right

1 259 96 0 6 2 55 0

2 334 90 0 7 260 49 2

3 177 77 0 8 23 42 0

4 103 74 4 9 207 46 2

5 29 58 0 10 287 34 0

To validate whether the annotators’ preference function
we estimated is good enough, we randomly take reference
image 1 as an illustrative example while other reference im-
ages exhibit similar results.

Results In terms of prediction performance, it can be seen
that the mixed-effects model is more accurate than HodgeR-
ank by significantly reducing the mean test error, as is shown
in Tab.4.

Besides, Fig.9(a) and 9(b) shows the regularization paths
of personalized ranking with top 10 annotators (red curves)
selected early in the paths, as well as comparisons in order of
jumping, sample size, and common ranking. It is easy to see
that among these 10 annotators, 9 of them (except annotator
with ID = 133) exhibit almost the same L2-distance with
the common ranking. The reason behind this is these 9
annotators click one side all the time (i.e., position-biased
annotators), thus inducing a large γ. In this case, each image
quality scores estimated from each annotator are close to
0 (though have differences), thus deriving the almost the
same L2-distance with the common ranking scores. Similar
to the Age dataset, the common ranking vs. personalized
ranking results of 9 representative users is shown in Fig.10,
corresponding to the red/green/blue stars in Fig.9(a).

Moreover, the LBI regularization paths of position bias
γ and click counts of top 10 annotators in this dataset are
shown in Fig.11 and Tab.5. It is easy to see that annotators

(a) LBI regularization path of δ.
(Red: top 10)

(b) Jumping out order.

Figure 9: Top 10 annotators exhibiting personalized ranking
in IQA dataset (reference image 1).

Figure 10: Comparison of common vs. personalized rank-
ings of 9 representative annotators in IQA dataset (reference
image 1).

picked out are mainly those clicking on one side almost all
the time. Besides, it is interesting to see that all these anno-
tators highlighted with blue color in Tab.5 click the left side
all the time. We then go back to the crowdsourcing platform
and find out that the reason behind this is a default choice
on the left button, which induces some lazy annotators to
cheat for the task.

4.4 WorldCollege Ranking
Settings We now apply the proposed method to the World-

College dataset, which is composed of 261 colleges. Using
the Allourideas crowdsourcing platform, a total of 340 dis-
tinct annotators from various countries (e.g., USA, Canada,
Spain, France, Japan) are shown randomly with pairs of
these colleges, and asked to decide which of the two univer-
sities is more attractive to attend. Finally, we obtain a total
of 8,823 pairwise comparisons.

Results We apply the proposed method to the resulting
dataset and find out that, similar to the simulation and oth-
er two real-world datasets, the mixed-effects model could
produce better performance than Hodgerank with smaller
mean test error, shown in Tab.6. Noting that in this dataset,
only 7 annotators are treated as annotators with distinc-
t personalized rankings at optimal t (i.e., tcv) selected via
cross-validation, as is shown in Fig.12(a) and 12(b). The
reason why others with relative big δ are not detected out
lies in the small sample size they provide indicating high
variances. The common ranking vs. personalized ranking of
these 7 users is shown in Fig.13 with a similar observation

http://www.allourideas.org/


Figure 11: LBI regularization path of γ in IQA dataset (ref-
erence image 1). (Red: top 10 position-biased annotators;
Blue: bottom 5 position-biased annotators).

to the other datasets. Besides, the regularization paths of
position bias and click counts of top 10 annotators in this
dataset are shown in Fig.14 and Tab.7. It is easy to see that
similar to the human age dataset, these annotators are ei-
ther clicking one side all the time, or clicking one side with
high probability in mixed behaviors.

Table 6: HodgeRank vs. Mixed-effects model in WorldCol-
lege ranking dataset.

min mean max std
HodgeRank 0.8089 0.8217 0.8406 0.0078
Mixed effects model 0.7066 0.7199 0.7398 0.0088

(a) LBI regularization path of δ.
(Red: top 7; Blue: others)

(b) Jumping out order.

Figure 12: The 7 annotators with personalized ranking in
WorldCollege ranking dataset.

5. CONCLUSIONS
In this paper, we propose a parsimonious mixed-effects

model based on HodgeRank to learn user’s preference or u-
tility function in crowdsourced ranking, which takes into ac-
count both the personalized preference deviations from the
common and position biases of the annotators. To be specif-
ic, common preference scores indicate the consistent ranking
on population-level which approximates the behavior of all
users, while a small set of annotators might have nonzero
personalized deviations and abnormal behavior in position

Figure 13: Comparison of common vs. personalized rank-
ings of 7 annotators in WorldCollege ranking dataset.

Table 7: Top 10 position-biased annotators in WorldCollege
ranking dataset.

Order ID Left Right Order ID Left Right

1 268 148 0 6 270 20 70

2 209 127 0 7 267 45 0

3 156 189 67 8 276 16 54

4 320 253 324 9 166 35 0

5 87 11 62 10 115 34 0

bias. Equipped with the newly developed Linearized Breg-
man Iteration, which is a simple iterative procedure gen-
erating a sequence of parsimonious models, we establish a
dynamic path from the common utility to individual varia-
tions, with different levels of parsimony or sparsity on per-
sonalization. Experimental studies are conducted with both
simulated examples and real-world datasets. Our results
suggest that the proposed methodology is an effective tool
to investigate the diversity in annotator’s behavior in mod-
ern crowdsourcing data.
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