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The age of Pre-Training LLMs
Autoregressive models trained on text, big network, big datasets

« GPT-2 [Radford et al., 2019]
GPT-3 [Brown et al., 2020]
Scaling laws [Kaplan et al., 2020]

4.2
—— L=(D/5.4-1013)~0.095 5.6 —— L =(N/8.8-1013)-0.076
. 3.9 48
3 3.6
. 4.0
9 4
g 3.3 32
- 3
3.0
2.4
L = (Cin/2.3 - 10%)~0:030
2 ' . . ' 2.7 . ’ : ’ .
10 1077 10> 10=* 10°' 10! 108 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

https://www.youtube.com/watch?v=1yvBqgasHLZs

Huawei Proprietary - Restricted Distribution &"ﬁ H UAWE'



Why we need new Architecture for LLM

Pre-training as we know it will end

éhferne%. We have, but one Intemat. You could even say you can even go as far as to say.
That data is the fossi fuel of Al It was like, created somehow. And now we use it.

https://www.youtube.com/watch?v=1yvBqasHLZs

Huawei Proprietary - Restricted Distribution

*Training Scaling Hits a Wall
*Marginal returns from data and compute
are diminishing.

*Test-Time Scaling Emerges
Amplifies the Transformer's core efficiency
problems.

*The Need for New Architectures

*Must solve both training and test-time
challenges simultaneously

V2 HUAWEI



Why we need new Architecture for LLM

Foundation Model Context Length

40000
GPT-4-32K
O
30000
20000
[No Title]
GPT-4-
10000 & 7 AL
GPT-3 (2K) Codex (2K) PALM (2K) GPT-3.5 (4K)
.l | ‘ l | | l
0 I 1 1 1 1 I
July 2020 January July 2021 January July 2022 January
2021 2022 2023
Year ?

FlashAttention Paper (May 2022)

https://www.youtube.com/watch?v=1yvBqasHLZs

4 Huawei Proprietary - Restricted Distribution

*Training Scaling Hits a Wall
*Marginal returns from data and compute

are diminishing.

*Test-Time Scaling Emerges
Amplifies the Transformer's core efficiency
problems.

*The Need for New Architectures

*Must solve both training and test-time
challenges simultaneously

V2 HUAWEI



Behind LLM: Transformer Architecture

Output
Probabilities

Add & Norm

Feed Forward

Add & Norm

Feed Forward

Nx

Add & Norm
I B

Multi-Head
Attention

g S

S
Ne— N

~

-
Positional /[~ a0
Encoding W '
Input
Embedding

Inputs

Add & Norm

Mult-Head
Attention

Add & Norm
Y S

Masked
Multi-Head
Attention

ah \ Positional
: = Encoding
Output
Embedding

Outputs

Training: quadratic time complexity O(L?)
« Expensive for long sequence modeling (e.g.,
video or DNA modeling)s

Inference: Linear memory complexity O(L)

« requires storing KV cache for each token
« High memory burdens



Behind LLM: Transformer Architecture

time complexity mainly comes from dot-product softmax attention

. . . . . - i:- ............................ . ._._._._.._._._._._._._._i
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Outline - Efficient Attention Variants

1. Linear Attention Machenism

> Data-dependent decay: RetNet, LighteningAttention, Mamba2, GLA
> Test time online learning: DeltaNet, Test-Time-Training, Titans, RWKV7, Gated DeltaNet

2. Sparse Attention Mechanisms
»  Static Sparsity: BigBird, StreamingLLM, H20
>  Dynamic Sparsity: Native Sparse Attention (DeepSeek), MoBA (Kimi)

3. Hybrid Attention Mechanisms
> Inter-layer mixing: Minimax-01, Jamba, Samba
» Intra-layer mixing: Hymba



1.1 Linear Attention : From standard attention

Linear Attention = Standard attention - softmax

Softmax attention:

Parallel training : O = softmax(QKT oMV € RL*d

t
[terative inference : o = Z
j=1

exp(q; kj) v,
Z/tzl eXP(CItTk/) !

where M € RE*L is the casual mask:

M, — —oo ifj>i
1 if j<i



1.1 Linear Attention : From standard attention
Linear Attention = Standard attention - softmaxs

Linear attention (Katharopoulos et al. 2020):
Parallel training : O = seftmax(QK' © M)V € Rb*d

c RY

t Ti.
Iterative inference : oy = S: v-e*P(qt )

v.
t J
j=1 &~I=1 e’(p(qt k7)

where the denominator is harmful for linear attention’s training
stability and performance (Qin et al. 2022). Therefore, nearly all
recent linear attention models remove this normalization term.




1.1 Linear Attention : From standard attention

Linear Attention = Standard attention - softmax

Linear attention (Katharopoulos et al. 2020):

Parallel training : O = seftmax(QK' © M)V ¢ R

t Tk,
Iterative inference : o = y: v'e*p(Qt )

1 szzl expfqtlk-’)

We abuse the notation M to denote the causal mask for both
softmax and linear attention. Here we have:

M, — 0 ifj>i
1 ifj<i

d
Vj e R

Jj=



1.2 Linear Attention: From RNN view

Ol—[ Ol 0“1

A T A A

V / /
W W \ S g \ S 4 S

SO Ot Ot O t+1

¢ Unfold Wox W W
U U U U

X X1 o o

Revisit RNN:
« Training: linear complexity O(L), however, traditional RNNs are not parallelizable.

« Inference: constant memory 0(1)



1.2 Linear Attention: From RNN view

Linear Attention = Linear RNN + matrix-valued hidden states

t

or =Y _(a/kj)v;

=1

t
=> vikja:) kia:=q/kjeR
j=1
t ——
i (Z vik; )qt By associativity
j=1

N ——’
St"c:pidx d

Let S; = Z?:l vjij € R9%9 pe the matrix-valued hidden state,

J
then:
St = St—l -+ Vtk;r € RdXd

0 = Stqt € Rd

» Linear attention implements elementwise linear recurrence.

» Linear attention has a matrix-valued hidden state,
significantly increasing the state size.



1.3 Challenges in Linear Attention: Instability

St — St—l -+ Vtkz_ S RdXd
0 = S¢q; € R?

» Instability: the hidden state value could explode due to
cumulative sum without decay

» Poor performance: vanilla linear attention models
significantly underperform Transformers in language modeling

perplexity



1.3 Challenges in Linear Attention: Instability

A simple fix: linear attention with constant decay

St = ",“St—l - Vtk: - RdXd
o+ = Stq: c R

» ~ is a constant exponential decay factor 0 < vy < 1.

» Works well in practice: RetNet (Sun et al. 2023), Lightning
Attention (Qin et al. 2024b)

» Lacking selectivity: a potential issue.



1.3 Challenges in Linear Attention: Instability

A simple fix: linear attention with data-dependent decay

St = ";’tst_l -+ Vtk;r c RdXd

0t = Stqt - Rd

» ~: € (0,1) is a data-dependent decay term

» Enables dynamic control of memory retention /forgetting
based on input data.

» Examples: Mamba2 (Dao and Gu 2024), mLSTM (Beck et al.
2024), Gated Retention (Sun et al. 2024b).



1.3 Challenges in Linear Attention: Poor Performance

A complicated fix: Linear attention optimizes a negative linear inner product loss via SGD

The objective predicts the target value v; by transforming the key
kt with S

Lt(S) e —<Skt, Vt>

Performing a single step of SGD:

St - St—l - thVLt(St—l)
=S; 1+ BtVtktT

» Learning rate [3; = 1 recovers vanilla linear attention.

» Mamba2’s update rule S¢ = :S:_1 + vk, can be interpreted
as online SGD with weight decay «.



1.3 Challenges in Linear Attention: Poor Performance

A complicated fix: Linear attention optimizes a online regression loss via SGD

Online regression loss is better for predicting v; from k; and S;_1.

1
L:(S) = 5||Sk¢ — Vt||2
2

Performing a single step of SGD:

St — St—l - Btvct(st—l)
=Si1— Bt (St—lkt - Vt) k;r

» When ; € (0,1), the DeltaNet update rule (Schlag, Irie, and
Schmidhuber 2021; Yang et al. 2024) is recovered.



1.3 Challenges in Linear Attention: Poor Performance

A complicated fix: Linear attention optimizes a online regression loss via SGD

Directly minimize Euclidean distance

St 1k

Objective: L4(S) = %“Skt —ve)?

SGD update: S; =S: 1 — 8:VL:(St—1) = St—1 — Be(St_1ke — ve )k,



1.3 Challenges in Linear Attention: Engineering Optimization

Parallel Form:
0 = (QK' ® M)V € Rt*?

« Still quadratic in sequence length

Recurrent Form:

St - St—l -1 Vtkz_ c RdXd
0 = Sq; c R?

« Sequential computation limits parallelization opportunities.

« Poor GPU utilization due to lack of matrix-multiply operations (even with parallel
scan algorithms)



1.3 Challenges in Linear Attention: Engineering Optimization

Engineering Optimization of Linear Architecture: Chunk-wise parallelism

S1i] Sli+1
883 333 388
otels| otele S0
[00O| [00O0| |000] [0o0| [000o] |000]
vy ki

Input X € R“F is divided into Cchunks, Sj;; € R**?represent the i-th chunk,v;; € R“*%, i € {0,1, %}
Sii+1) = Sty + Ky

« Computation within chunks can be parallelized, and the computational complexity of updating Sy;
is: 0 (g . Czd) — 0(LCd)

« Becomes standard for training modern linear attention models (e.g., Mamba2, Based, GLA, DeltaNet,
Lightning Attention, mLSTM - - )



1.4 Summary

SoftMax Attention

Linear Attention

0 = softmax (QKT)V € RLxd

Parallelized Training

0= (QK")V

. T
Iterative Inference exp(q? k;) e R

t
or=) -
©4iexn(afky)

=

t t t
oc = ) (aFk)vy = ) v (kFar) = O vy kDa
j=1 j=1 j=1

Storage {ki,vitiz1..t S; = Sp_q + v, kT € RExd
Time Complexity Single-step Computational Single-step complexity O(1)
Complexity O(L)

Space complexity Single-step O(Ld)

Single-step O(d?)

Note:

« S:Without a forgetting mechanism, numerical values can easily explode p;

* S; lacks In-context retrieval capability

[1] : https://arxiv.org/abs/2210.10340
[2]: https://arxiv.org/abs/2406.06484s




1.4 Comparison of Algorithms for Linear Attention

Method Memory Update Rule

Core Improvement: Introducing exponential decay

. - Drawback: y is data- tic and lacks selectivity t d the dat
Linear Attn ~ M; = M;_1 + ki v, (mproved by GLA. Mamba2). Y OIS ARE AR
Lightning M; =~yM;_1 + k; v:

RetNet M; = yM;_1 + ki v

t =1 Tt L+ Ry Ut T Core Improvements: Modeling the update rule of M from the
GLA M; = (at I)Mt—l + ki v | perspective of SGD; enhancing the model's in-context retrieval
DeltaNet Mt = (I - k',ftrkt)Mt_l -+ btk:;r'vt Capability; .
G-DeltaNet  M; = a; (I — kakt)Mt—l + btk;rvt Delzta Net: S updating equals SGD optimization for s L.(M) = - ||Sk, —

— . vt”

Tﬁ x M, =M, + btvz(Mt_l’ ko, vt) G-Delta Net: Incorporating a;, which is equivalent to adding an SGD
Titans Mt = atMt—l + til(Mt—]_; kt, 'vt) momentum term

Mamba?2 M,

arMi—1 + btk?vt

Core Improvement: Adding nonlinear terms to the loss functionL.(S),

HGRN? M, — (azl)Mt—l + (1 - at)T’Ut L.(S) :% || £(S, k¢ ) — v, ||*enhances the model's expressive power
RWKV6 M = a:Mi—1 + k;r'vt g]rgovvlg:cE'olgg?\el}iireranroi?eerg?ig\gfe form makes training difficult to
RWKV7 M; = a;M;_ + b VI(M;_y; ki, vy) paraIIeIize-. 7

MoM Table 1: Comparison of Different Linear Models. M is same as S in

previous slides.
https://arxiv.org/abs/2502.13685




1.5 Experimental Result

ii. Training speed (+chunk-wise parallel
training). As the sequence length increases,
there is a 1-2x performance gain compared
to Transformer.

i. Language task performance: Linear models can match the performance of
Transformers on some tasks.

Model Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg. 60
ppld ppll | accT acctT acc_ntT acct acctT acc_ntT acctT acct 2 55
v
Recurrent models 'g 50 t\s\’\t—j
RetNet 19.08 17.27 | 40.52 70.07 49.16 54.14 67.34 33.78 40.78 60.39 52.02 3 1 ‘!\ 1 ]
HGRN2 19.10 17.69 | 39.54 70.45 49.53 52.80 69.40 3532  40.63 56.66 51.79 g 45 S ¢ Iy T
Mamba 17.92 15.06 | 43.98 71.32 52.91 52.95 69.52 35.40 37.76  61.13 53.12 oé 40 \ 1
Mamba?2 16.56 12.56 | 45.66 71.87 55.67 55.24  72.47 37.88 40.20 60.13 54.89 % — * —
DeltaNet 17.71 16.88 | 42.46 70.72 50.93 53.35 68.47 35.66 40.22 5529 52.14 & 35
Gated DeltaNet 16.42 12.17 | 46.65 72.25 5576 5745 71.21 38.39 40.63 60.24 55.32 E —&— Transformer++ DeltaNet
% 30 || —— Gated DeltaNet —— Mambal
Attention or hybrid models é —e— Mamba?2 —o— Gated DeltaNet-H1
Transformer++ 18.53 18.32 | 42.60 70.02 50.23 53.51 68.83 35.10 40.66 57.09 52.25 25 || —e— Samba Gated DeltaNet-H2
Samba 16.13 13.29 | 4494 70.94 53.42 55.56  68.81 36.17 3996 62.11 54.00 K16 1K 8 SKxd )
Gated DeltaNet-H1 16.07 12.12 | 47.73 72.57 56.53 5840 71.75 40.10 4140 63.21 56.40 S Length x Batch Sizk
Gated DeltaNet-H2 1591 1255 | 48.76 72.19 56.88 57.77 7133  39.07 4191 6155 56.18 I

Figure 3: Training throughput comparison of 1.3B models on a single HI00 GPU.
Table 3: Performance comparison on language modeling and zero-shot common-sense reasoning.

Source: Gated DeltaNet, https://arxiv.org/pdf/2412.06464



1.5 Experimental Result

iii. Stability of training on long sequences (+ decay):
Token loss corresponding to sequence positions; linear
models are not affected by position.

iv. Context retrieval performance (+ online learning): G-
DeltaNet outperforms Mamba2 on long sequences.

Table 2: Zero-shot performance comparison on S-NIAH benchmark suite for 1.3B models (see §4 for setups)

S-NIAH-1 S-NIAH-2 S-NIAH-3
(pass-key retrieval) (number in haystack) (uuid in haystack)
Model | IK 2K 4K 8K | IK 2K 4K 8K | IK 2K 4K
DeltaNet 974 96.8 99.0 988 | 984 456 18.6 144|852 470 224
Mamba2 99.2 988 654 304 | 994 988 562 170|644 476 46
3.4 1 Gated DeltaNet 984 884 914 91.8 | 100.0 998 922 29.6 | 86.6 842 27.6

~®— RWKV7 168M Pile

—&— RWKV6 173M Pile

—8— RWKV4 169M Pile
Mamba 130M

w S-NIAH-3: uuid in a haystack

Context:
A special magic uuid is hidden within the following text. Make sure to
memorize it. | will quiz you about the uuid afterwards.
What hard liquor, cigarettes, heroin, and crack have in common is that
they're all more concentrated forms of less addictive predecessors. Most if
not all the things we describe as addictive are. [....] One of the special
magic uuid for vague-ecology is: 8al4be62-295b-4715-8333-e8615fb8d16c.

bt
w

w
N

g
=]

Average Loss
N N w
® © -

O And the scary thing is, the process that created them is accelerating. We
R TS e R Sl A R wouldn't want to stop it. It's the same process that cures diseases: techno-

foken postions logical progress. Technological progress means making things do more of

Figure 5: PG19 loss versus sequence position for RWKV and Mamba models trained on The Pile what we want. When the thing we want is something we want to want, we

datasets. consider technological progress good |[....]

Query: "What is the special magic uuid for vague-ecology?”
Expected answer: "8al4be62-295b-4715-8333-e8615fb8d16¢c”

Source: RWKV-7 https.//arxiv.org/pdf/2503.14456
Source: Gated DeltaNet, https://arxiv.org/pdf/2412.06464




1.5 Experimental Result

v. Scaling law: Hybrid linear and softmax attention can achieve GPT-40 level performance

* Tri Dao & @tri dao - Jan 15 3 e

Hybrid linear-softmax attention working very well at large scale and long-
context! As we've seen with multiple models now, you only need a couple
of (full) attention layers

4 MiniMax (official) €& @MiniMax_ AI - Jan 14

MiniMax-01is Now Open-Source: Scaling Lightning Attention for the Al
Agent Era

We are thrilled to introduce our latest open-source models: the
foundational language model MiniMax-Text-01 and the visual multi-...

MiniMax-01 (MiniMax et al. 2025) used
« Hybrid attention: 7/8 linear attention layers + 1/8 softmax attention layer

 Lightning attention (Qin et al. 2024b): simple linear attention with data-independent
decay



Outline - Efficient Attention Variants

1. Linear Attention Machenism

> Data-dependent decay: RetNet, LighteningAttention, Mamba2, GLA
> Test time online learning: DeltaNet, Test-Time-Training, Titans, RWKV7, Gated DeltaNet

2. Sparse Attention Mechanisms
»  Static Sparsity: BigBird, StreamingLLM, H20
>  Dynamic Sparsity: Native Sparse Attention (DeepSeek), MoBA (Kimi)

3. Hybrid Attention Mechanisms
> Inter-layer mixing: Minimax-01, Jamba, Samba
» Intra-layer mixing: Hymba



2. Sparse Attention Mechanisms: Static

Content-independent sparse patterns: BigBird, Window Attention, Streaming LLM, etc.

Content-dependent sparse patterns: H20

Underlying structure of H20

Dynamic Sparsity Static Sparsity (Strided) Static Sparsity (Local) Static Sparsity w. Hy O
— « Widely used in the early stages of LLM
research, they can simultaneously reduce
computational complexity and the storage size
of KV Cache.
Lrluldrenllanghed and Iplayed I___l_n____J' _________ wr_s_g;ng__\_'__: _________ _;_____._____‘" . 75 ; N
N Rl « Some information is permanently lost, which
1] g .
Tos i ' led to subsequent research on dynamic sparse
< 60+ ~—*— Static Sparsity (Strided) | \ .
""""""""""" o103 g5 | [ St Sy ol || y attention.
H2 O Query il 50 ™= Dynamic Sparsity 1
0 20 40 60 8 100
Memory Reduction (%)
Figure 1: Upper plots illustrate symbolic plots of an attention map deploying different KV cache policies in
LLM generation. Lower right: contrasts their accuracy-memory trade-off. Left: the overview of H>O framework.
27 Huawei Proprietary - Restricted Distribution H20 (NIPS23): https:/arxiv.org/pdf/2306.14048 §Vé HUAWEI

NSA (ACL25): https://arxiv.org/pdf/2502.11089




2. Sparse Attention Mechanisms: Dynamic

Dynamically determining the sparse pattern,

Challenge: How to maintain hardware efficiency?
 Discontinuous sparsity cannot achieve the theoretical sparsity speedup
ratio.

Common solution: Selecting the top k key/value blocks for different queries.
« Reading each block continuously can better align with hardware.

Works: Native Sparse Attention (DeepSeek), MoBA (Kimi)

28 Huawei Proprietary - Restricted Distribution H20 (NIPS23): https:/arxiv.org/pdf/2306.14048 @74 HUAWEI
NSA (ACL25): https://arxiv.org/pdi/2502.11089




2. Sparse Attention Mechanisms: Dynamic (NSA)

Underlying structure of Native Sparse Attention (DeepSeek)
HNEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE Native Sparse Attention Mechanism

k:h V4 Split to Continuous Blocks | .
BRI (TTTTTTT) CTTTTTTT] 5
L T _ J Compressed Attention Mask
Compress .. IR

i Compression : ]

1T 18 ® sliding Selected Attention Mask
- ~ '

qt Compressed Attention Shding Attention =
. 1]
Sliding Attention Mask

D Output [:] Output D Output

[ G.“dl Output ] [ Attention score [I] Query Token [ J[] Activated Token - tvicted Token [ ignored Token

« Three branches: compression, block selection, sliding window
« Compression and block selection share attention scores; they can be pre-trained directly.
« Key assumption: Each head under each query group selects the same KV block, which

avoids different heads repeatedly reading different KV blocks, thereby reducing I/O
overhead.

29 Huawei Proprietary - Restricted Distribution H20 (NIPS23): https://arxiv.org/paf/2306.14048 @@ HUAWEI
NSA (ACL25): https://arxiv.org/pd/2502.11089




2. Sparse Attention Mechanism: Dynamic (MoBA)

Underlying Structure of MoBA (Kimi)

® Minima design, no new parameters introduced
(mean pooling), no forced selection of
neighboring blocks.

ﬂ ) ® Compatible with flash-attention kernel.

ol i
(b)

Figure 1: Illustration of mixture of block attention (MoBA). (a) A running example of MoBA; (b) Integration of
MoBA into Flash Attention|

v
Attention Output

2pP01q DPROIY
&
3 “
5 S e
2 L
S Kl
L

MoBA: https://arxiv.org/pdf/2502.13189
30 Huawei Proprietary - Restricted Distribution ° pesandvorg® s" HUAWEI



2. Sparse Attention Mechanism: Dynamic

Model SQA MQA Synthetic Code Avg
MFQA-en MFQA-zh Qasper HPQ 2Wiki GovRpt Dur PassR-en PassR-zh LCC

H20 0.428 0429 0308 0112 0101 0231 0208 0704 0421 0.092 0303

InfLLM 0.474 0517 035 0306 0250 0277 0257 0766 0486 0.143 0383

Quest 0.495 0561 0365 0295 0245 0293 0257 0792 0478 0.135 0392

Exact-Top  0.502 0605 0397 0321 0288 0316 0291 0810 0548 0.156 0.423 L(C) | MoBA | Full

Full Attn  0.512 0623 0409 0350 0305 0324 0294 0830 0560 0.163 0437 5063 5063

NSA 0.503 0.624 0432 0437 0356 0307 0341 0905 0550 0.232 0.469 LM loss (seqlen=8K) | 2.625 x C ’ 2622 x C
Generation Token Limit 8192 16384 Trailing LM loss (seqlen=32K, last 2K) | 1.546 x C~0-108 ’ 1.464 x C 9097
Full Attention-R 0.046 0.092
NSA-R 0121  0.146

Table 3 | AIME Instruction-based Evaluating after supervised fine-tuning. Our NSA-R demon-
strates better performance than Full Attention-R at both 8k and 16k sequence lengths

Experimental results for NSA and MoBA,
« NSA can even achieve better results than softmax attention;

« MoBA performs similarly to softmax attention.

31 Huawei Proprietary - Restricted Distribution s" H UAWE'



Outline - Efficient Attention Variants

1. Linear Attention Machenism

> Data-dependent decay: RetNet, LighteningAttention, Mamba2, GLA
> Test time online learning: DeltaNet, Test-Time-Training, Titans, RWKV7, Gated DeltaNet

2. Sparse Attention Mechanisms
»  Static Sparsity: BigBird, StreamingLLM, H20
>  Dynamic Sparsity: Native Sparse Attention (DeepSeek), MoBA (Kimi)

3. Hybrid Attention Mechanisms
> Inter-layer mixing: Minimax-01, Jamba, Samba
» Intra-layer mixing: Hymba



3. Mixed Attention Mechanism

Inter-layer mixing: different layers use different attention mechanisms
Example: Jamba. MiniMax-01 (MoE. 456B)

QOutput Hidden

....................

i

—
RMSNorm
L oo « Mixing ratio: 7 linear attention : 1 softmax attention;
D s - Since the KV cache for linear attention is negligible, it saves
G ;A'gN';;n;""‘; ' 7/8 of the KV cache across layers.

Lightning .~ E
Attention )

Figure 3 | The architecture of MiniMax-Text-01.

33 Huawei Proprietary - Restricted Distribution MiniMax01: https://arxiv.org/pdf/2501.08313 sm HUAWEI
Titans: https://arxiv.org/pdf/2501.00663 ==



3. Mixed Attention Mechanism

Intra-layer mixing: A single layer can have both sparse attention and linear attention
Example: Hymba

Intra-layer mixing: MAG variant of Titans.

Sliding Window + Long-term Memory .
(Short-term Memory) (Short- and Long-term Memory) + Pesistent Memory . .
H H H « A ssingle layer can have both sparse attention
i and linear attention
« Sliding window attention: Short-term memory
H HH H « Neural memory module: Long-term memory
1 [
L1 | |
@ Short-term Memory @ Long-term Memory @ Persistent Memory

(b) Memory as Gating (MAG). We use sliding window attention
(SWA) as a short-term memory and our neural memory module
as a long-term memory, combining by a gating.

34 Huawei Proprietary - Restricted Distribution MiniMax01: https://arxiv.org/pdf/2501.08313 s,‘ HUAWEI
Titans: https://arxiv.org/pdf/2501.00663 ==




4. Summary of Efficient Attention Variants

. training inference
representative ublish time core improve se
works P P 9 model size GPUs seq lenth task
length
. . pass-key
linear SGD loss for enhancing 0.1B/0.4B/ . 100% /91%
attention Gated DeltaNet MIT, 25.03 context retrieval 4k 158/ 2.9B H100 20k retru_eglal 14 1 42%
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ZETA: LEVERAGING Z-ORDER CURVES FOR “~RESONA: Improving Context Copying in Linear Recurrence
EFFICIENT TOP-k ATTENTION Models with Retrieval
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ABSTRACT

Over recent years, the Transformer has become a fundamental building block for
sequence modeling architectures. Yet at its core is the use of self-attention, whose
memory and computational cost grow quadratically with the sequence length N,
rendering it prohibitively expensive for long sequences. A promising approach is
top-£ attention, which selects only the & most relevant tokens and achieves per-
formance comparable to vanilla self-attention while significantly reducing space
and computational demands. However. causal masks require the current query
token to only attend to past tokens, preventing existing top-k attention method
from efficiently searching for the most relevant tokens in parallel, thereby limiting
training efficiency. In this work, we propose ZETA, leveraging Z-Order Curves
for Efficient Top-k Attention, to enable parallel querying of past tokens for entire
sequences. We first theoretically show that the choice of key and query dimensions
involves a trade-off between the curse of dimensionality and the preservation of
relative distances after projection. In light of this insight, we propose reducing
the dimensionality of keys and queries in contrast to values and further leverage
Z-order curves to map low-dimensional keys and queries into one-dimensional
space, which permits parallel sorting, thereby largely improving the efficiency for
top-£ token selection. Experimental results demonstrate that ZETA matches the
performance of standard attention on the synthetic MULTI-QUERY ASSOCIATIVE
RECALL task and outperforms attention and its variants on LONG RANGE ARENA
and WIKITEXT-103 language modeling.
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Abstract

Recent shifts in the space of large language model (LLM) research have
shown an increasing focus on novel architectures to compete with proto-
typical Transformer-based models that have long dominated this space.
Linear recurrent models have proven to be a viable competitor due to their
computational efficiencty. However, such models still demonstrate a sizable
gap compared to Transtormers in terms of in-context learning among other
tasks that require recalling information from a context. In this work, we
introduce RESONA, a simple and scalable framework for augmenting lin-
ear recurrent models with retrieval. RESONA augments models with the
ability to integrate retrieved information from the provided input context,
enabling tailored behavior to diverse task requirements. Experiments on a
variety of linear recurrent models demonstrate that RESONA-augmented
models observe significant performance gains on a variety of synthetic as
well as real-world natural language tasks, highlighting its ability to actas a
general purpose method to improve the in-context learning and language
modeling abilities of linear recurrent LLMs.
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