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The age of Pre-Training LLMs

https://www.youtube.com/watch?v=1yvBqasHLZs

Autoregressive models trained on text, big network, big datasets 

• GPT-2 [Radford et al., 2019]
• GPT-3 [Brown et al., 2020]
• Scaling laws [Kaplan et al., 2020]
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Why we need new Architecture for LLM

https://www.youtube.com/watch?v=1yvBqasHLZs

•Training Scaling Hits a Wall
•Marginal returns from data and compute 
are diminishing.

•Test-Time Scaling Emerges
•Amplifies the Transformer's core efficiency 
problems.

•The Need for New Architectures
•Must solve both training and test-time 
challenges simultaneously
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Behind LLM: Transformer Architecture

• Training: quadratic time complexity O(L$)	
• Expensive for long sequence modeling (e.g., 

video or DNA modeling)s

• Inference: Linear memory complexity O(𝐿)
• requires storing KV cache for each token
• High memory burdens



Behind LLM: Transformer Architecture

Transformer Architecture

Transformer: 	ℝ)→ ℝ)
• 𝐿:	Sequence length

Multi-Head Attention Architecture Dot-Product Attention Architecture
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𝑄 = 𝑥𝑊0 ∈ ℝ)×3

𝐾 = 𝑥𝑊5 ∈ ℝ)×3
𝑉 = 𝑥𝑊7 ∈ ℝ)×3

𝑂 ≔ softmax 𝑄𝐾A ⊙𝑀 𝑉	 ∈ ℝ)×3~		O(L$)

time complexity mainly comes from dot-product softmax attention 
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Outline – Efficient Attention Variants 

1. Linear Attention Machenism
Ø Data-dependent decay: RetNet, LighteningAttention, Mamba2, GLA
Ø Test time online learning: DeltaNet, Test-Time-Training, Titans, RWKV7, Gated DeltaNet

2. Sparse Attention Mechanisms
Ø Static Sparsity: BigBird, StreamingLLM, H2O
Ø Dynamic Sparsity: Native Sparse Attention (DeepSeek), MoBA (Kimi)

3. Hybrid Attention Mechanisms
Ø Inter-layer mixing: Minimax-01, Jamba, Samba
Ø Intra-layer mixing: Hymba



1.1 Linear Attention : From standard attention
Linear Attention =  Standard attention - softmax
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1.2 Linear Attention: From RNN view

Revisit RNN:

• Training: linear complexity O(𝐿), however, traditional RNNs are not parallelizable.

• Inference: constant memory O(1)



1.2 Linear Attention: From RNN view

Linear Attention = Linear RNN + matrix-valued hidden states



1.3 Challenges in Linear Attention: Instability



1.3 Challenges in Linear Attention: Instability

A simple fix: linear attention with constant decay



1.3 Challenges in Linear Attention: Instability

A simple fix: linear attention with data-dependent decay



1.3 Challenges in Linear Attention

A complicated fix: Linear attention optimizes a negative linear inner product loss via SGD

1.3 Challenges in Linear Attention: Poor Performance
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1.3 Challenges in Linear Attention: Engineering Optimization 

Recurrent Form: 

• Sequential computation limits parallelization opportunities.

• Poor GPU  utilization due to lack of matrix-multiply operations (even with parallel 
scan algorithms)

Parallel Form: 

• Still quadratic in sequence length



1.3 Challenges in Linear Attention: Engineering Optimization 

Engineering Optimization of Linear Architecture: Chunk-wise parallelism

𝑆 G

𝑣 G 	𝑘 G
A

𝑆 GJK

Input 𝑋 ∈ ℝ)×M	 is divided into 𝐶chunks, 𝑆 G ∈ ℝ3×3represent the i-th chunk,𝑣 G ∈ ℝO×3, 𝑖 ∈ {0,1, … ,
)
O
}

𝑆 GJK = S G +	𝑘 G
A 𝑣 G

• Computation within chunks can be parallelized, and the computational complexity of updating 𝑆 G

is:	O )
O
	∗ 𝐶$𝑑	 = O 𝐿𝐶𝑑	

• Becomes standard for training modern linear attention models (e.g., Mamba2, Based, GLA, DeltaNet, 
Lightning Attention, mLSTM · · ·)



1.4 Summary

Tasks SoftMax Attention Linear Attention
Parallelized Training O = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	 𝑄𝐾A 𝑉		 ∈ ℝ)×3 O = 𝑄𝐾A 𝑉

Iterative Inference
𝑜` =a

exp 𝑞`A𝑘e
∑ exp 𝑞gA𝑘e`
hiK

`

eiK

	𝑣e ∈ ℝj 𝑜` =a 𝑞`A𝑘e 𝑣e =a𝑣e	 𝑘eA𝑞` = (a𝑣e	𝑘eA)𝑞`

`

eiK

`

eiK

`

eiK

Storage 𝑘G, 𝑣G GiK⋯` 𝑆` = 𝑆`lK + 𝑣`	𝑘`A ∈ ℝ3×3

Time Complexity Single-step Computational 
Complexity O(L)

Single-step complexity O(1)

Space complexity Single-step O(𝐿d) Single-step O(𝑑$)

Note:
• 𝑆`Without a forgetting mechanism, numerical values can easily explode [2]

• 𝑆`	 lacks In-context retrieval capability [2]

[1] : https://arxiv.org/abs/2210.10340
[2]: https://arxiv.org/abs/2406.06484s



1.4 Comparison of Algorithms for Linear Attention

Core Improvement: Adding nonlinear terms to the loss function𝐿` 𝑆 	, 
𝐿` 𝑆 = K

$
	 |	f(𝑆, 𝑘` ) − 𝑣`	 |$enhances the model's expressive power 

through nonlinear modeling.
Drawback: Nonlinear iterative form makes training difficult to 
parallelize.

Core Improvement: Introducing exponential decay
Drawback: 𝛾	is data-agnostic and lacks selectivity toward the data 
(improved by GLA, Mamba2).

MoM Table 1: Comparison of Different Linear Models. M is same as S in 
previous slides.
https://arxiv.org/abs/2502.13685

Core Improvements: Modeling the update rule of M from the 
perspective of SGD; enhancing the model's in-context retrieval 
capability;
Delta Net: S updating equals SGD optimization for s 𝐿` 𝑀 = K

$
	||𝑆𝑘` −

𝑣`||$
G-Delta Net: Incorporating 𝛼`, which is equivalent to adding an SGD 
momentum term



1.5 Experimental Result
ii. Training speed (+chunk-wise parallel 
training). As the sequence length increases, 
there is a 1–2x performance gain compared 
to Transformer.

Source: Gated DeltaNet, https://arxiv.org/pdf/2412.06464

i. Language task performance: Linear models can match the performance of 
Transformers on some tasks.



1.5 Experimental Result

Source: RWKV-7 https://arxiv.org/pdf/2503.14456
Source: Gated DeltaNet, https://arxiv.org/pdf/2412.06464

iv. Context retrieval performance (+ online learning): G-
DeltaNet outperforms Mamba2 on long sequences.

iii. Stability of training on long sequences (+ decay): 
Token loss corresponding to sequence positions; linear 
models are not affected by position.



1.5 Experimental Result

MiniMax-01 (MiniMax et al. 2025) used 

• Hybrid attention: 7/8 linear attention layers + 1/8 softmax attention layer

• Lightning attention (Qin et al. 2024b): simple linear attention with data-independent 
decay

v. Scaling law: Hybrid linear and softmax attention can achieve GPT-4o level performance
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2. Sparse Attention Mechanisms: Static
Content-independent sparse patterns: BigBird, Window Attention, Streaming LLM, etc.

Content-dependent sparse patterns: H2O

• Widely used in the early stages of LLM 
research, they can simultaneously reduce 
computational complexity and the storage size 
of KV Cache.

• Some information is permanently lost, which 
led to subsequent research on dynamic sparse 
attention.

Underlying structure of H2O

H2O (NIPS23): https://arxiv.org/pdf/2306.14048
NSA (ACL25): https://arxiv.org/pdf/2502.11089
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2. Sparse Attention Mechanisms: Dynamic
Dynamically determining the sparse pattern,

Challenge: How to maintain hardware efficiency?
• Discontinuous sparsity cannot achieve the theoretical sparsity speedup 

ratio.

Common solution: Selecting the top k key/value blocks for different queries.
• Reading each block continuously can better align with hardware.

Works: Native Sparse Attention (DeepSeek), MoBA (Kimi)

H2O (NIPS23): https://arxiv.org/pdf/2306.14048
NSA (ACL25): https://arxiv.org/pdf/2502.11089
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2. Sparse Attention Mechanisms: Dynamic (NSA)

Underlying structure of Native Sparse Attention (DeepSeek)

• Three branches: compression, block selection, sliding window

• Compression and block selection share attention scores; they can be pre-trained directly.

• Key assumption: Each head under each query group selects the same KV block, which 
avoids different heads repeatedly reading different KV blocks, thereby reducing I/O 
overhead.

H2O (NIPS23): https://arxiv.org/pdf/2306.14048
NSA (ACL25): https://arxiv.org/pdf/2502.11089
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2. Sparse Attention Mechanism: Dynamic (MoBA)

MoBA: https://arxiv.org/pdf/2502.13189

Underlying Structure of MoBA (Kimi)

l Minima design, no new parameters introduced 
(mean pooling), no forced selection of 
neighboring blocks.

l Compatible with flash-attention kernel.
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2. Sparse Attention Mechanism: Dynamic

Experimental results for NSA and MoBA,

• NSA can even achieve better results than softmax attention;

• MoBA performs similarly to softmax attention.
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3. Mixed Attention Mechanism

• Mixing ratio: 7 linear attention : 1 softmax attention;

• Since the KV cache for linear attention is negligible, it saves 
7/8 of the KV cache across layers.

Inter-layer mixing: different layers use different attention mechanisms
Example: Jamba, MiniMax-01 (MoE, 456B)

MiniMax01: https://arxiv.org/pdf/2501.08313
Titans: https://arxiv.org/pdf/2501.00663
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3. Mixed Attention Mechanism
Intra-layer mixing: A single layer can have both sparse attention and linear attention 
Example: Hymba

Intra-layer mixing: MAG variant of Titans.

• A single layer can have both sparse attention 
and linear attention

• Sliding window attention: Short-term memory

• Neural memory module: Long-term memory

MiniMax01: https://arxiv.org/pdf/2501.08313
Titans: https://arxiv.org/pdf/2501.00663
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4. Summary of Efficient Attention Variants 
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