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Data augmentation

An effective regularization technique, contributing to the
empirical success of deep learning models across various
applications.

Making the model more robust to small perturbations.

Figure: Data Augmentation.
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Random smoothing data augmentation

Random smoothing data augmentation involves adding
random noise, such as Gaussian or Laplace noise, to the input
data during the training process.

Address the adversarial vulnerability;
Applied in self-supervised contrastive learning methods;

A simple example: adding Gaussian noise εi ∼ N (0, λI) to xi
to linear regression:

min
W

Eε
1

n

n∑
i=1

∣∣∣WT (xi + εi )− yi
∣∣∣2 = min

W

1

n

n∑
i=1

∣∣∣WTxi − yi
∣∣∣2 + λWTW

LSE → ridge regression, more robust

In spite of the empirical success of random smoothing in
various applications, there is a lack of systematic research on
the regularization effect of random smoothing in the literature.
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Our contributions

We examine the classic nonparametric regression problem
from the perspective of random smoothing regularization.

We present a unified framework that can learn a wide range of
D-dimensional ground truth functions belonging to the
classical Sobolev spaces (Wmf ) in an effective and adaptive
manner.

Optimal convergence rates can be achieved by utilizing
random smoothing regularization and appropriate early
stopping and/or weight decay techniques.
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Our contributions

We investigate two possible function spaces that may contain the
target function.

Sobolev space of low intrinsic dimensionality d ≤ D

Gaussian random smoothing: n−mf /(2mf +d)(log n)D+1;

Polynomial random smoothing with data size adaptive
smoothing degree: n−mf /(2mf +d)(log n)2mf +1.

Mixed smooth Sobolev spaces

Polynomial random smoothing of degree mε:

n−2mf /(2mf +1)(log n)
2mf

2mf +1

(
D−1+ 1

2(m0+mε)

)
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Problem Formulation

Suppose we have observed data (xj , yj) for j = 1, ..., n, which
follows the relationship given by

yj = f ∗(xj) + ϵj . (1)

Here, xj ’s are independent and identically distributed (i.i.d.)
following a marginal distribution PX with support
supp(PX) = Ω ⊂ RD .

We employ reproducing kernel Hilbert spaces (can be viewed as
two-layer infinite wide neural network).

(Example: K = Eϕ∼S [ϕ⊗ ϕ] where ϕ is feature map and S
spectral density.)
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Reproducing kernel Hilbert space (RKHS)

Let K : Ω× Ω → R be a symmetric positive definite kernel function.
Define the linear space

FK (Ω) =

{
n∑

k=1

βkK (·, xk) : βk ∈ R, xk ∈ Ω, n ∈ N

}
,

and equip this space with the bilinear form〈
n∑

k=1

βkK (·, xk),
m∑
j=1

γjK (·, x ′
j )

〉
K

:=
n∑

k=1

m∑
j=1

βkγjK (xk , x ′
j ).

RKHS HK (Ω) generated by K : the closure of FK (Ω) under the
inner product ⟨·, ·⟩K ;

Inner product: ⟨·, ·⟩HK (Ω) is induced by ⟨·, ·⟩K ;

Norm: ∥f ∥HK (Ω) =
√
⟨f , f ⟩HK (Ω);
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Consider loss function: C [f ] = 1
n

∑n
j=1(yj − f )2.

Representation theorem ft = K (·,X )W :

Θt+1 = (1− αt)Θt + βt

(√
Ky − KΘt

)
where Θt =

√
KW ∈ Rn, K = [K (xi , xj)]i ,j , and

K (·,X ) = [K (·, x1), · · · ,K (·, xn)]
Asymptotically equivalent to Kernel Ridge regression

ft = arginf
h∈HK

1

n

n∑
j=1

(h(xj)− yj)
2 + λ∥h∥2HK

where λ = λ(t, αt , βt) with limt→∞ λ = 0

Early stop t << n
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Random smoothing

We construct N augmentations for each observed input point
xj by adding i.i.d. noise εjk with a continuous probability
density function pε.

Then take the average, i.e., the estimator is constructed as

f (x) =
1

N

N∑
k=1

h(x + εk) (2)

for h ∈ HK (Ω).

Augmentations smooth the estimator. In the case of NTK, we
have

Ks = Ef∼S ,ε,ε′∼p̂ε,N [f (·+ ε)⊗ f (·+ ε′)]
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Random Smoothing KGD with Early Stopping

The kernel becomes

KS(xl − xj) :=
1

N2

N∑
k1=1

N∑
k2=1

K (xl + εk1 − (xj + εk2)). (3)

The same update rule with a smooth path:

ft+1 = (1− αt)ft + βtΦKS
(⟨y − f , ·⟩n)

Θt+1 = (1− αt)Θt + βt

(√
KSy − KSΘt

)
We are interested in the prediction error with early stop

∥f ∗ − ft∥L2(PX), (4)
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Random smoothing noise

The elements of εk are i.i.d. mean zero sub-Gaussian random variables.

(C1) (Polynomial noise) There exists mε > D/2 such that the
characteristic function of εk satisfies

c1(1 + σ2
n∥ω∥22)−mε ≤ E(e iω

Tεk ) ≤ c2(1 + σ2
n∥ω∥22)−mε ,∀ω ∈ RD .

(C2) (Tensor Polynomial noise) There exists mε > 1/2 such that the
characteristic function of εk satisfies

c1

D∏
j=1

(1 + σ2
nω

2
j )

−mε ≤ E(e iω
Tεk ) ≤ c2

D∏
j=1

(1 + σ2
nω

2
j )

−mε ,∀ω ∈ RD .

(C3) (Gaussian noise) The elements of εk are normally distributed with
variance σ2

n.

Here the constants c1 and c2 do not depend on σn and mε. We call σn

the smoothing scale in this work.
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Sobolev space of low intrinsic dimensionality

Low intrinsic dimension

There exist positive constants c1 and d ≤ D such that for all
δ ∈ (0, 1), we have

NℓD∞
(δ,Ω) ≤ c1δ

−d ,

where ℓD∞ is the RD space equipped with ℓ∞ norm.

Ω ⊂ RD is bounded and has a positive Lebesgue measure,
then d = D;

Ω is a bounded D ′-dimensional differentiable manifold, then
d = D ′.
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Polynomial smoothing

We have

∥ft − f ∗∥2L2(PX)
=OP

(
n
− 2mf

2mf +d (log n)2mf +1

)
.

for N > N0, where N is the number of augmentations.

The above statements hold for both cases where early
stopping is

without weight decay (iteration number t ≍ n
2(m0+mε)
2mf +d σ2mε

n );

with weight decay (weight decay rate α ≍ n
−1− 2(m0+mε)

2mf +d σ−2mε
n ,

and iteration number t ≥ C2(
mf

2mf +d + 1/2) log n/(log(1− α))).
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Gaussian smoothing

We have

∥ft − f ∗∥2L2(PX)
=OP

(
n
− 2mf

2mf +d (log n)D+1

)
.

for N > N0, where N is the number of augmentations.

Stepsize: β = n−1C1 with C1 ≤ (2 supx∈RD KS(x))−1;

Smoothing scale: σn ≍ n
− 1

2mf +d .

The above statements hold for both cases where early
stopping is

without weight decay (iteration number t ≍ n
2m0+2mf
2mf +d );

with weight decay (weight decay rate α ≍ n
−1− 2(m0+mε)

2mf +d , and
iteration number t ≥ C2(

mf

2mf +d + 1/2) log n/(log(1− α)).).
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Mixed smooth Sobolev Space

For a function f defined on RD , the mixed smooth Sobolev norm is
defined as

∥f ∥MWm(RD ) =

∫
RD

|F(f )(ω)|2
D∏
j=1

(1 + |ωj |2)mdω

1/2

. (5)

Under appropriate choice of the smoothing scale, stepsize, and
iteration number, we have

∥ft − f ∗∥2L2(PX)
=OP

(
n
− 2mf

2mf +1 (log n)
2mf

2mf +1

(
D−1+ 1

2(m0+mε)

))
. (6)

for N > N0, where N is the number of augmentations.

The above statements hold for both cases where early stopping is
with weight decay and is without weight decay.
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Numerical experiments
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Figure: Simulated data spaces in the forms of: line (D = 1), circle
(D = 2) and sphere (D = 3).
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Numerical experiments
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Figure: Underlying truth (blue curve), training data (blue dots), and
neural network predictions (orange dots) when training size is 200.
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Conclusions

This work studies random smoothing kernel and random
smoothing regularization, which have a natural relationship
with data augmentations.

We show that by applying random smoothing, with
appropriate early stopping and/or weight decay techniques,
the resulting estimator can achieve fast convergence rates,
regardless of the kernel function used in the construction of
the random smoothing kernel estimator.
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