Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Song Mei UC Berkeley

Joint work with

Yu Bai (Salesforce Research), Fan Chen (Peking U -> MIT PhD), Huan Wang (Salesforce Research), Caiming Xiong (Salesforce Research)

Large Language model

- Task: next word prediction.
- Input: sequence of words. Output: the next word.
- Training data: texts from the whole internet, e.g.,
 Wikipedia, Reddit, Shakespeare books, etc.
- Network architecture: transformers.

An emergent capability: In-context learning (ICL)

Supervised learning vs In-context learning

Dataset : $\{(x_i, y_i)\}_{i \in [N]}, (x_{N+1}, y_{N+1}) \sim \mathbb{P}$

- Supervised learning:
- 1. Train a model $y = f(x; \hat{w})$ using the training set $\{(x_i, y_i)\}_{1 \le i \le N}$.
- 2. Output prediction $\hat{y}_{N+1} = f(x_{N+1}; \hat{w}) \approx y_{N+1}$
- In-context learning:
- 1. Pre-train a model $h = f(H; \hat{\theta})$ using an enormous meta-dataset.
- 2. Take $H = [x_1, y_1, x_2, y_2, ..., x_N, y_N, x_{N+1}]$ as the context input.
- 3. Output prediction $\hat{y}_{N+1} = f(H; \hat{\theta}) \approx y_{N+1}$.

An ICL experiment on a synthetic dataset

A Task :
$$\{(x_i, y_i)\}_{i \in [N]}$$
, $\beta \sim \mathcal{N}(0, I_d/d)$,
$$x_i \sim \mathcal{N}(0, I_d)$$
, $y_i = x_i^{\mathsf{T}} \beta + \varepsilon_i$, $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

- A dataset of (size N) is a meta-datapoint: $H = [x_1, y_1, x_2, y_2, ..., x_N, y_N]$.
- A meta-dataset (size n): $\{H^{(j)} = [x_1^{(j)}, y_1^{(j)}, x_2^{(j)}, y_2^{(j)}, ..., x_N^{(j)}, y_N^{(j)}]\}_{j \in [n]}$.
- Train the GPT2 model using $\{H^{(j)}\}_{j\in[n]}$ (a smaller version of ChatGPT).
- d = 5, N = 40, n = 19,200,000
- Evaluate the test performance of GPT2 on a new independent task.

Trained GPT2 performs as good as Bayesian predictor!

Today

Why can GPT (transformers) perform in-context learning (ICL)?

[Bai, Chen, Wang, Xiong, Mei, 2023].

Related work: [Xie et al., 2021], [Garg et al. 2022], [Akyurek et al., 2022], [von Oswald et al., 2022], [Dai et al., 2022]

Transformers

- A transformer* is a sequence-to-sequence neural network $\mathsf{TF}_{\theta}: \mathbb{R}^{D \times N} \to \mathbb{R}^{D \times N}$.
- Input sequence: $H = [h_1, h_2, ..., h_N] \in \mathbb{R}^{D \times N}$; each $h_i \in \mathbb{R}^D$ is called a token.

- Transformer output: $H' = \mathsf{TF}_{\theta}(H) = [h'_1, \dots, h'_N] \in \mathbb{R}^{d \times N}$.
- Final output: $\hat{y} = \text{read}(\mathsf{TF}_{\theta}(H))$.

^{*} Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017). We focus on the encoder architecture.

Transformers: Feedforward layer

A transformer is an iterative composition of FF layers and Attention layers

$$\mathsf{TF}_{\boldsymbol{\theta}}(\,\cdot\,) = \mathsf{FF}_{W^{(L)}} \circ \mathsf{ATTN}_{A^{(L)}} \circ \cdots \circ \mathsf{FF}_{W^{(1)}} \circ \mathsf{ATTN}_{A^{(1)}}$$
$$\boldsymbol{\theta} = (W^{(L)}, A^{(L)}, \dots, W^{(1)}, A^{(1)})$$

- Feedforward layer: $H' = \text{FF}_{W}(H) : \mathbb{R}^{D \times N} \to \mathbb{R}^{D \times N}$, $W = (W_1, W_2), \quad W_1, W_2^{\top} \in \mathbb{R}^{D' \times D}$
- Token-wise function:

$$h_i' = h_i + \mathbf{W_2} \cdot \sigma(\mathbf{W_1} h_i)$$

^{*} Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Transformers: Attention layer

A transformer is an iterative composition of FF layers and Attention layers

$$\mathsf{TF}_{\boldsymbol{\theta}}(\,\cdot\,) = \mathsf{FF}_{W^{(L)}} \circ \mathsf{ATTN}_{A^{(L)}} \circ \cdots \circ \mathsf{FF}_{W^{(1)}} \circ \mathsf{ATTN}_{A^{(1)}}$$
$$\boldsymbol{\theta} = (W^{(L)}, A^{(L)}, \dots, W^{(1)}, A^{(1)})$$

- Attention layer: $H' = \mathsf{ATTN}_A(H) : \mathbb{R}^{D \times N} \to \mathbb{R}^{D \times N}$ $A = (Q_m, K_m, V_m)_{m \in [M]}, \qquad Q_m, K_m, V_m \in \mathbb{R}^{D \times D}$
- Minibileneous a tabletetriction halves/re $h_i'h_i'=h_ih_i+\sum_{m}^M\sum_{j\neq 1}^M\sum_{j\neq 1}^N\sum_{j\neq 1}^N\sum_{m}^N(Q_mh_ih_j) h_mh_j h_m h_j h_m h_j h_m h_j h_m h_j h_m h_j h_m h_j h_mh$

^{*} Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Transformers: the whole structure

- BERT (2018): L = 24, M = 12, D = 1024, #para = 340M
- GPT2 (2019): L = 48, M = 25, D = 1600, #para = 1.5B
- GPT3 (2020): L = 96, M = 96, D = 12288, #para = 175B
- PALM (2022): L = 118, M = 48, D = 11432, #param = 540B

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018). Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAl blog 1.8 (2019): 9. Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901. Chowdhery, Aakanksha, et al. "Palm: Scaling language modeling with pathways." arXiv preprint arXiv:2204.02311 (2022).

ICL by transformers

$$\{(x_i, y_i)\}_{i \in [N+1]} \sim_{iid} \mathsf{P}, \qquad y_i = f(\langle x_i, w_* \rangle) + \varepsilon_i$$

- Empirical observation: on pre-trained Transformers, $\mathbb{E}\ell(\hat{y}_{N+1}^{\mathsf{TF}}, y_{N+1})$ is small.
- Explanation: transformers can approximate GD on $\widehat{R}_N(w) = \frac{1}{N} \sum_{i=1}^N \ell(x_i^T w, y_i)$

$$w^{t+1} = w^t - \frac{\eta}{N} \sum_{i=1}^N \partial_1 \ell(x_i^\top w^t, y_i) \times x_i$$

[Akyurek et al., 2022], [von Oswald et al., 2022], [Dai et al., 2022] have rough ideas of this kind.

One-step gradient descent by an attention layer

Transformer versus multi-step GD

Transformer versus proximal gradient descent

In-context GD

Important parameters:

Embedding dimensions D, number of layers L, number of ATTN heads M,

FF width D', and norm of parameters $|||\theta|||$

Thm [In-context gradient descent]: There exists a transformer with

 $D = \mathcal{O}(d), L = \mathcal{O}(1/\eta), M = M(\varepsilon), D' = \mathcal{O}(d), \|\|\theta\|\| = \mathcal{O}(\text{Poly}(D, L, M, D', N)),$

that output \hat{w}^L that is close to the GD iterates w_{GD}^L

$$\|\hat{w}^L - w_{\text{GD}}^L\|_2 \le L\eta\varepsilon.$$

- TFs with competitive or better performance can be efficiently found by performing pre-training using particular loss functions (more details later).
- Some empirical evidence that pre-trained TF are indeed performing theoreticallyconstructed algorithms (more details later).

In-context ridge, logistic, LASSO

```
Thm: There exists three transformers with D = D' = \mathcal{O}(d), \| \theta \| = \mathcal{O}(\operatorname{Poly}(\cdot)) Ridge: L = \mathcal{O}(\log(N)), M = 3, M = N/d, M = 2, that output \hat{y}_{N+1} implementing Ridge, Logistic, LASSO, with Ridge: \mathbb{E}[(\hat{y}_{N+1} - y_{N+1})^2] \leq \mathcal{O}(d/N), \mathbb{E}[(\hat{y}_{N+1} - \mathbb{E}[y_{N+1} | x_{N+1}])^2] \leq \mathcal{O}(d/N), \mathbb{E}[(\hat{y}_{N+1} - y_{N+1})^2] \leq \mathcal{O}(d/N), \mathbb{E}[(\hat{y}_{N+1} - y_{N+1})^2] \leq \mathcal{O}(d/N).
```

Generalization bound for pre-training

Setting of pre-training:

Meta-dataset $\{Z^{(j)}\}_{j \in [n]} \sim_{iid} \pi$, with $Z^{(j)} = \{(x_i^{(j)}, y_i^{(j)})\}_{i \in [N]}$ iid.

Form empirical risk $\widehat{L}_{icl}(\theta) = \frac{1}{n} \sum_{j=1}^{n} \mathscr{E}_{icl}(Z^{(j)}, \theta)$. Consider TF class

 $\Theta_{L,M,D',B} = \left\{ \boldsymbol{\theta} : L \text{ layers, } M \text{ heads, } D' \text{ width, } B \text{ norm} \right\}$

Thm [Generalization for pre-training]: The generalization bound gives

$$\sup_{\boldsymbol{\theta} \in \Theta_{L,M,D',B}} \left| \widehat{L}_{\mathsf{icl}}(\boldsymbol{\theta}) - \mathbb{E}[\widehat{L}_{\mathsf{icl}}(\boldsymbol{\theta})] \right| \leq \mathcal{O}\!\!\left(\sqrt{\frac{L^2(MD^2 + DD')\!\log B}{n}} \right) \! .$$

For example, if π is sparse linear model (LASSO), the overall error with N in-context sample and n meta-training samples gives

$$L_{\mathsf{icl}}(\hat{\boldsymbol{\theta}}) - \sigma^2 = \tilde{\mathcal{O}}\left(\sqrt{\frac{d^4}{n}} + \frac{s \log d}{N}\right)$$

Simulations

Comparison of ICL error of pre-trained transformers. Parameters D = D' = 64, L = 12, M = 8, ReLU attention. Use Adam with learning rate 1e - 4, batch size 64 for 300k steps.

More surprising experiments

A surprising experiment

- Two meta-tasks:
- 1. Regression tasks $\hat{\pi}_{reg}$: $\beta \sim \mathcal{N}(0, I_d/d)$, $y_i = x_i^{\top} \beta$.
- 2. Classification tasks $\hat{\pi}_{cls}$: $\beta \sim \mathcal{N}(0, I_d/d)$, $y_i = \text{Logit}(x_i^{\mathsf{T}}\beta)$.
- Three Transformers (same architecture but different pre-training):
- 1. Train TF_reg using $\{Z_{\text{reg}}^{(j)}\} \sim_{iid} \hat{\pi}_{\text{reg}}$.
- 2. Train TF_cls using $\{Z_{\text{cls}}^{(j)}\} \sim_{iid} \hat{\pi}_{\text{cls}}$.
- 3. Train a TF_unnamed using mixture $\{Z_{\text{reg}}^{(j)}\} \sim_{iid} \hat{\pi}_{\text{reg}}$ and $\{Z_{\text{cls}}^{(j)}\} \sim_{iid} \hat{\pi}_{\text{cls}}$.
- As demonstrated:

TF_reg performs linear regression.

TF_cls performs logistic regression.

What algorithm does TF_unnamed perform?

Algorithm selection capability of pre-trained TF

• We give TF_unnamed a name TF_alg_select.

TF_alg_select selects a proper algorithm on any task.

This is what statisticians do in data analysis

Another surprising experiment

TF alg select 1.4 TF_noise_1 TF_noise_2 1.2 ridge lam 1 ridge_lam_2 1.0 8.0 0.6 0.4 20 30 10 40 in-context examples

Linear model with small noise

Linear model with large noise

TF_alg_select selects ridge regression with optimal regularization.

This is what statisticians do in data analysis

How statisticians perform algorithms selection?

Two strategies:

- Strategy 1: Run K algorithms in parallel. Select the algorithm with the smallest validation error.
- Strategy 2: Perform a hypothesis test to select the algorithm.

Transformers efficiently implement:

- Mechanism 1: Post-ICL validation.
- Mechanism 2: Pre-ICL testing.

Post-ICL validation mechanism

Linear model with large noise

- There exists a transformer that performs the following:
- 1. Run K different algorithms on \mathcal{D}_{train} , using L steps GD with L layers TF.
- 2. Choose the prediction function that minimizes the loss on the validation set \mathcal{D}_{val} , and predict \hat{y}_{N+1} . This uses in total 3 layers.

Thm [Select optimal ridge regularization; informal]: For Bayesian linear model with *K* different noise levels, there exists a transformer that uses the post-ICL validation mechanism to efficiently implement the ridge regression with optimal regularization parameter. Such a transformer can be pre-trained efficiently.

Pre-ICL testing mechanism

- There exists a transformer that performs the following:
- 1. Perform a simple hypothesis test on the dataset (binary test/correlation test, etc) and decide which algorithm to choose. This uses constant depth TF.
- 2. Run the selected algorithm on the whole dataset, and predict \hat{y}_{N+1} .

Thm [Select regression vs classification; informal]: There exists a TF that uses the pre-ICL testing mechanism to efficiently implement linear regression on regression tasks, and implement logistic regression on classification tasks. Such a transformer can be pre-trained efficiently.

Summary

- Transformers can efficiently implement basic ICL algorithms using the gradient descent mechanism.
- Transformers can efficiently implement algorithm selection (pre-ICL validation, post-ICL testing), similar to a statistician.
- Such transformers can be pre-trained statistically efficiently.
- Paper will come out this week.