
One-step full gradient suffices for low-rank fine-tuning,

provably and efficiently

Fanghui Liu
fanghui.liu@warwick.ac.uk

Department of Computer Science, University of Warwick, UK
Centre for Discrete Mathematics and its Applications (DIMAP), Warwick
[joint work with Yuanhe Zhang (Warwick) and Yudong Chen (UW-Madison)]

at HKUST@CS



My research

❐ Research interests

• Foundations of machine learning (ML)

• Theory-grounded efficient algorithm design

• Trustworthy ML

❐ Research goal

• characterize learning efficiency in theory

• contribute to practice

Statistical
efficiency

Computational
efficiency

# Sample
complexity

# Time complexity

Learning efficiency (Curse of Dimensionality, CoD)

Machine learning works in high dimensions that can be a curse!
— David Donoho, 2000. (Richard E. Bellman, 1957)

Data Model Algorithm Compute

2



My research

❐ Research interests

• Foundations of machine learning (ML)

• Theory-grounded efficient algorithm design

• Trustworthy ML

❐ Research goal

• characterize learning efficiency in theory

• contribute to practice

Statistical
efficiency

Kernel
approximation

Computational
efficiency Fine-tuning

# Sample
complexity

# Approximate
kernel function

# Time complexity # Approximate
feature shift

Learning efficiency (Curse of Dimensionality, CoD)

Machine learning works in high dimensions that can be a curse!
— David Donoho, 2000. (Richard E. Bellman, 1957)

Data Model Algorithm Compute

2



My research

❐ Research interests

• Foundations of machine learning (ML)

• Theory-grounded efficient algorithm design

• Trustworthy ML

❐ Research goal

• characterize learning efficiency in theory

• contribute to practice

Statistical
efficiency

Kernel
approximation

Computational
efficiency Fine-tuning

# Sample
complexity

# Approximate
kernel function

# Time complexity # Approximate
feature shift

Learning efficiency (Curse of Dimensionality, CoD)

Machine learning works in high dimensions that can be a curse!
— David Donoho, 2000. (Richard E. Bellman, 1957)

Data Model Algorithm Compute

2



My research

❐ Research interests

• Foundations of machine learning (ML)

• Theory-grounded efficient algorithm design

• Trustworthy ML

❐ Research goal

• characterize learning efficiency in theory

• contribute to practice

Statistical
efficiency

Kernel
approximation

Computational
efficiency Fine-tuning

# Sample
complexity

# Approximate
kernel function

# Time complexity # Approximate
feature shift

Learning efficiency (Curse of Dimensionality, CoD)

Machine learning works in high dimensions that can be a curse!
— David Donoho, 2000. (Richard E. Bellman, 1957)

Data Model Algorithm Compute

2



My research

❐ Research interests

• Foundations of machine learning (ML)

• Theory-grounded efficient algorithm design

• Trustworthy ML

❐ Research goal

• characterize learning efficiency in theory

• contribute to practice

Statistical
efficiency

Kernel
approximation

Computational
efficiency Fine-tuning

# Sample
complexity

# Approximate
kernel function

# Time complexity # Approximate
feature shift

Learning efficiency (Curse of Dimensionality, CoD)

Machine learning works in high dimensions that can be a curse!
— David Donoho, 2000. (Richard E. Bellman, 1957)

Data Model Algorithm Compute
2



In the era of machine learning (Pre-training)

relationship between data-centric, large model, huge compute resources

MLP:
<< 1 million
parameters

ResNet-152:
60.3 million
parameters

Transformer:
340 million
parameters

GPT-2:
1.5 billion

parameters

GPT-3, Chat-GPT:
175 billion
parameters

before 2012 2017 2019 202020152012

AlexNet

2022

GPT-4
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From pre-training to (parameter-efficient) fine-tuning

• GPT3: 175 billion parameters

• Llama3.1: > 400 billion parameters

• Deepseek-v3: > 600 billion parameters
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From pre-training to (parameter-efficient) fine-tuning

• GPT3: 175 billion parameters

• Llama3.1: > 400 billion parameters

• Deepseek-v3: > 600 billion parameters

Motivation

• Parameter-Efficient Finetuning (PEFT) is the study of adapting LLMs to
downstream applications by finetuning only a very small set of parameters.

(b) LoRA (d) RoCoFT

• Can we design PEFT methods which are simpler than the state-of-the-art
methods and capable of adapting LLMs to diverse downstream tasks in a more
efficient way?

2

(a) Prefix & Prompt (c) LoRA variants
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Low-rank adaption (LoRA) for fine-tuning [2]

W FT = W pre +∆ ∈ Rd×k

• ∆ ≈ AB with A ∈ Rd×r and B ∈ Rr×k

• initialization

[A0]ij ∼ N (0, α2) and [B0]ij = 0 , α > 0 . (LoRA-init)

• updated by gradient-based algorithms, e.g., SGD, AdamW

• obtain (At ,Bt)
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Motivation: non-linear dynamics and subspace alignment

◦ Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

[
At+1

B⊤
t+1

]
=

[
I d η1G ♮

η2G ♮⊤ I k

][
At

B⊤
t

]
+ nonlinear term .

• G ♮: one-step full gradient (from full fine-tuning)

• The dynamics (At ,Bt) heavily depends on G ♮!

Target
• Q1: How to characterize low-rank dynamics of LoRA and the associated

subspace alignment in theory?

• Q2: How can our theoretical results contribute to algorithm design for
LoRA in practice?
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Alignment and theory-grounded
algorithm



Problem setting and assumptions

◦ Pre-trained model: known W ♮ ∈ Rd×k and the ReLU activation σ

fpre(x) :=

{
(x⊤W ♮)⊤ ∈ Rk linear

σ[(x⊤W ♮)⊤] ∈ Rk nonlinear
.

◦ Unknown low-rank feature shift ∆: W̃
♮
:= W ♮ +∆

◦ Rank(∆) = r∗ < min{d , k} with unknown r∗

◦ Downstream well-behaved data {(x̃ i , ỹi )}Ni=1 for fine-tuning:

ỹ :=

(x̃⊤W̃
♮
)⊤ ∈ Rk , {x̃ i}Ni=1

i.i.d.∼ sub-Gaussian, linear

σ[(x̃⊤W̃
♮
)⊤], {x̃ i}Ni=1

i.i.d.∼ N (0, I d) nonlinear
.

◦ We assume N > d , e.g., MetaMathQA, Code-Feedback, d = 1, 024 and
N ∼ 105
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Full fine-tuning and LoRA updates

◦ full fine-tuning (initialized at W 0 := W ♮)

L(W ) :=
1

2N


∥∥∥X̃W − Ỹ

∥∥∥2

F
linear∥∥∥σ(X̃W )− Ỹ

∥∥∥2

F
nonlinear

◦ LoRA update

L̃(A ,B) :=
1

2N


∥∥∥X̃ (W ♮+AB)−Ỹ

∥∥∥2

F
linear∥∥∥σ(X̃ (W ♮+AB)

)
−Ỹ

∥∥∥2

F
nonlinear

◦ Gradient descent with different step-size, e.g., LoRA+ [1]

At+1 = At − η1∇AL̃(At ,Bt)

Bt+1 = Bt − η2∇B L̃(At ,Bt)

◦ Evaluation by ∥AtBt −∆∥F: optimization and generalization!
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Alignment on B t

◦ one-step full gradient: G ♮ ∈ Rd×k and rank(G ♮) = r∗

G ♮ := −∇W L(W ♮) =
1
N

X̃
⊤
(Ỹ − X̃W ♮) =

1
N

X̃
⊤
X̃∆ .

Theorem (Alignment between G ♮ and Bt)

For the linear setting, consider the LoRA updates with (LoRA-init). We have∥∥∥V⊤
r∗,⊥

(
G ♮

)
V r∗(Bt)

∥∥∥
op

= 0 , ∀t ∈ N+ .

Remark: B1 = η1A⊤
0G ♮ with Rank(B1) ≤ r∗
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Alignment on At

Theorem (Informal)

For r ≥ r∗, recall [A0]ij ∼ N (0, α2) in (LoRA-init), for any ϵ ∈ (0, 1),

choosing α = O
(
ϵd− 3

4κ
♮− 1

2

)
, running GD with t∗ ≍ ln d√

η1η2
, then we have∥∥∥U⊤

r∗,⊥(G
♮) U r∗(At∗)

∥∥∥
op

≲ ϵ ,w .h.p.

• small initialization: better
alignment and better
generalization performance

• imbalanced step-size finishes
alignment earlier
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Key message: Algorithm design principle

◦ Take the SVD of G ♮: G ♮ = ŨG♮ S̃G♮Ṽ
⊤
G♮

A0 =
√
γ
[
ŨG♮

]
[:,1:r ]

[
S̃

1/2
G♮

]
[1:r ]

.

B0 =
√
γ

[
S̃

1/2
G♮

]
[1:r ]

[
Ṽ G♮

]⊤
[:,1:r ]

.

(Spectral-initialization)

Message

If we choose (Spectral-initialization), for both linear/nonlinear models, we can
directly achieve the alignment at initialization.

∥A0B0 −∆∥F ≤ ϵ∥∆∥op , w .p. 1− C exp(−ϵ2N)
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Toy example (I)
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Figure 2: Comparison of the GD trajectories between LoRA and ours. A ∈ R2 and
B ∈ R. The set of global minimizers is {a∗1 = 2/t , a∗2 = 1/t , b∗ = t | t ∈ R}
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Toy example (II): Phase portrait
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One-step full gradient may suffice for low-rank fine-tuning!

Dataset MNLI SST-2 CoLA QNLI MRPC
Size 393k 67k 8.5k 105k 3.7k

Full 86.33±0.00 94.75±0.21 80.70±0.24 93.19±0.22 84.56±0.73

Pre-trained - 89.79 59.03 49.28 63.48
One-step GD - 90.48 73.00 69.13 68.38

LoRA8 85.30±0.04 94.04±0.09 72.84±1.25 93.02±0.07 68.38±0.01

Time cost

• CoLA LoRA: 47s, one-step: <1s

• MRPC LoRA: 25s, one-step: <1s
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Clarification on gradient alignment based work

◦ Motivation: make LoRA’s gradients align to full fine-tuning [5]

◦ best-2r approximation: rank(∇AL̃(At ,Bt)) + rank(∇B L̃(At ,Bt)) ≤ 2r

A0 ←
[
ŨG♮

]
[:,1:r ]

,B0 ←
[
Ṽ G♮

]⊤
[:,r+1:2r ]

. (LoRA-GA)

◦ But! Bt will align to the right-side rank-r∗ singular subspace of G ♮.
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◦ But! Bt will align to the right-side rank-r∗ singular subspace of G ♮.
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Experiments



Key features in our LoRA-One algorithm

Algorithm 1 LoRA-One training for a specific layer

Input: Pre-trained weight W ♮, batched data {Dt}Tt=1, LoRA rank r , LoRA
alpha α, loss function L

Output: W ♮ + α√
r
ATBT

Compute ∇W L(W ♮) and U ,S ,V ← SVD
(
∇W L(W ♮)

)
A0 ←

√
γ ·U [:,1:r ]

B0 ←
√
γ · V⊤

[:,1:r ]

W ♮ ←W ♮ − α√
r
A0B0

for t = 1, . . . ,T do

GA
t ← ∇AL̃(At−1,Bt−1)

(
Bt−1B⊤

t−1 + λI r
)−1

GB
t ←

(
A⊤

t−1At−1 + λI r
)−1
∇B L̃(At−1,Bt−1)

Update At ,Bt ← AdamW
(
GA

t ,GB
t

)
end 16



Experiments on NLP tasks from GLUE385
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One-step full gradient suffices for low-rank fine-tuning, provably and efficiently

Table 2: Accuracy comparison on various NLP tasks from GLUE across several typical LoRA based algorithms. Results are
reported as accuracy (%) with standard deviations with 3 runs (best in bold). The subscript indicates the used rank. “-” on
MNLI indicates that the test accuracy remains zero after one-step update, see Appendix F.2 for illustration.

Dataset MNLI SST-2 CoLA QNLI MRPC
Size 393k 67k 8.5k 105k 3.7k

Full 86.33±0.00 94.75±0.21 80.70±0.24 93.19±0.22 84.56±0.73

Pre-trained - 89.79 59.03 49.28 63.48
One-step GD - 90.48 73.00 69.13 68.38

LoRA8 (Hu et al., 2022) 85.30±0.04 94.04±0.09 72.84±1.25 93.02±0.07 68.38±0.01

LoRA32 85.23±0.11 94.08±0.05 70.66±0.41 92.87±0.05 67.24±0.58

LoRA128 85.53±0.13 93.96±0.05 69.45±0.25 92.91±0.13 65.36±0.31

LoRA+8 (Hayou et al., 2024) 85.81±0.09 93.85±0.24 77.53±0.20 93.14±0.03 74.43±1.39

LoRA+32 85.88±0.16 94.15±0.25 79.29±0.96 93.25±0.08 79.49±0.64

LoRA+128 86.07±0.15 94.08±0.30 78.59±0.73 93.06±0.23 78.76±0.12

P-LoRA8 (Zhang & Pilanci, 2024) 85.28±0.15 93.88±0.11 79.58±0.67 93.00±0.07 83.91±1.16

P-LoRA32 85.07±0.11 94.08±0.14 76.54±1.29 93.00±0.08 79.49±0.50

P-LoRA128 85.38±0.11 93.96±0.24 72.04±1.89 92.98±0.06 79.66±1.44

LoRA-GA8 (Wang et al., 2024a) 85.70±0.09 94.11±0.18 80.57±0.20 93.18±0.06 85.29±0.24

LoRA-GA32 83.32±0.10 94.49±0.32 80.86±0.23 93.06±0.14 86.36±0.42

LoRA-GA128 84.75±0.06 94.19±0.14 80.95±0.35 93.12±0.11 85.46±0.23

LoRA-One8 (Ours) 85.81±0.03 94.69±0.05 81.08±0.36 93.22±0.12 86.77±0.53

LoRA-One32 86.08±0.01 94.73±0.37 81.34±0.51 93.19±0.02 87.34±0.31

LoRA-One128 86.22±0.08 94.65±0.19 81.53±0.36 93.34±0.11 88.40±0.70
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Figure 3: Ablation study of LoRA-One (Algorithm 1),
LoRA-One (-) (without preconditioners), LoRA-GA (-)
(original LoRA-GA from Wang et al. (2024a)), and LoRA-
GA (+) (with preconditioners) on CoLA and MRPC from
GLUE (Wang, 2018) under ranks r = 8 , 32 , 128.

(Wang et al., 2024a). More experimental details can be
found in Appendix F.2. We use these algorithms to fine-tune
T5-base model (Raffel et al., 2020). Table 2 demonstrates
the superiority of our theory-grounded algorithm LoRA-
One. Due to page limit, experiments on Llama 2-7B are
given in Appendix F.3. LoRA-One achieve better perfor-
mance than LoRA-GA in various rank settings on GSM8K,
and Human-eval benchmarks.

Ablation study: We perform two types of ablation study.
First, in Table 2, comparing “One-step GD” and “Pre-
trained”, we see that one-step full gradient descent signif-
icantly improves on pre-training and even performs better
than LoRA on CoLA and MRPC. This supports our claim
on one-step full gradient. Second, Fig. 3 compares the av-
eraged accuracy of LoRA-One and LoRA-GA, with and
without preconditioners. LoRA-One, which uses top-r sin-
gular subspace selection for B0, consistently outperforms
LoRA-GA-based algorithms. Comparing LoRA-One with
its preconditioner-less version, LoRA-One (-), we see that
preconditioning primarily enhances accuracy in high-rank
scenarios. Thus, we recommend LoRA-One (-) for fine-
tuning with small ranks and LoRA-One for large ranks.
More details are provided in Appendix F.4.

6. Conclusion
This paper theoretically demonstrates how LoRA can be im-
proved from our theoretical analysis in both linear and non-
linear models: the alignment between LoRA’s gradient up-
date (At,Bt) and the singular subspace of G♮, and adding
preconditioners. Our theory clarifies some potential issues
behind gradient alignment work and the theory-grounded
algorithm, LoRA-One, obtains promising performance in
practical fine-tuning benchmarks.

8
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Experimental results on fine-tuning Llama 2-7B

GSM8K Human-eval

Full 59.36±0.85 35.31±2.13

LoRA8 46.89±0.05 (6.33h) 15.67±0.60 (6.75h)
LoRA32 47.44±0.74 16.02±0.85

LoRA128 47.33±0.32 15.57±0.75

LoRA-GA8 53.60±0.13 20.45±0.92

LoRA-GA32 55.12±0.30 20.18±0.19

LoRA-GA128 55.07±0.18 23.05±0.37

LoRA-One8 53.80±0.44 (+0.5h) 21.02±0.01 (+0.25h)
LoRA-One32 56.61±0.29 23.86±0.01

LoRA-One128 58.10±0.10 26.79±0.21

18



Ablation study
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• (-): no preconditioners
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Theory and proof...



• subspace alignment

• global convergence

20



Proof of sketch: Control the dynamics for alignment

[
At+1

B⊤
t+1

]
︸ ︷︷ ︸
:=Z t+1

=

[
I d η1G ♮

η2G ♮⊤ I k

]
︸ ︷︷ ︸

:=H

[
At

B⊤
t

]
︸ ︷︷ ︸
:=Z t

− 1
N

[
0 η1X̃

⊤
X̃AtBt

η2B⊤
t A

⊤
t X̃

⊤
X̃ 0

][
At

B⊤
t

]
.

◦ Approximated linear dynamical system Z lin
t := H tZ 0

• Schur decomposition of H
• obtain the dynamics of Z lin

t (decouple Alin
t and Blin

t and obtain the
alignment to G ♮)

• Define the residual term E t := Z t − Z lin
t , control ∥E t∥op in early stage

t < T1 ∼ ln
(

∥G♮∥op

∥A0∥2
op

)
◦Transfer the alignment from Alin

t to At [4] (Stöger & Soltanolkotabi)

∥U⊤
r∗,⊥(G

♮)U r∗(At)∥op ≲ ∥U⊤
r∗,⊥(P

A
t )U r∗(PA

t A0 + E t)∥op is small , w .h.p .
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Global convergence on
nonlinear models



Recall problem setting and assumptions for nonlinear model

◦ Pre-trained model fpre(x) = σ[(x⊤W ♮)⊤] ∈ Rk

◦ Unknown low-rank feature shift ∆: W̃
♮
:= W ♮ +∆ with Rank(∆) = r∗

◦ We assume r = r∗.
◦ Downstream well-behaved data ỹ = σ[(x̃⊤W̃

♮
)⊤], {x̃ i}Ni=1

i.i.d.∼ N (0, I d)

◦ training loss

L̃(A ,B) :=
1

2N

∥∥∥σ(X̃ (W ♮+AB)
)
−Ỹ

∥∥∥2

F
.

◦ gradient updates

∇AL̃(At ,Bt) = −JW tB
⊤
t , ∇B L̃(At ,Bt) = −A⊤

t JW t ,

where we define

JW t :=
1
N

X̃
⊤
[
σ(X̃W̃

♮
)− 1

N
X̃

⊤
σ(X̃W t)

]
︸ ︷︷ ︸

JGLM
W t

⊙σ′(X̃W t) .

◦ GLM-tron style: [3, 6]
22
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Global convergence

Theorem (Linear convergence rate)

Under (Spectral-initialization) and JGLM
W t

for gradient update (adding
preconditioners), choose constant step-size η < 1, we have

∥AtBt −∆∥F ≲
(
1− η

4

)t

λr∗(∆) ,w .h.p

• holds for standard gradient update, but requires more assumptions.
• ∥A0B0 −∆∥F ≤ ϵ∥∆∥op,w .h.p.

A bit proof sketch at

• recover at initialization:
∥A0B0 −∆∥F ≤ ∥A0B0 − γG ♮∥F + concentration on G ♮ + ρλ∗

r∗ ,w .h.p

• Ex̃
[
−JGLM

W t

]
= 1

2 (AtBt −∆) by Stein’s lemma ⇒ Ex̃ [G ♮] = Ex̃
[
JGLM

W ♮

]
= 1

2∆

• concentration:∥∥∥∥JGLM
W t
− Ex̃

[
JGLM

W t

]∥∥∥∥
F
≲
√
dϵ∥AtBt −∆∥F ,w .h.p.⇒ controlG ♮
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Proof of sketch on AtB t −∆

∥At+1Bt+1 −∆∥F ≲ ∥J
GLM
W t
− cH(AtBt −∆)∥F [concentration+Hermite]

+ (1− η)
∥∥∥UAtU

⊤
At
(AtBt −∆)V BtV

⊤
Bt

∥∥∥
F

+
∥∥∥(I d −UAtU

⊤
At

)
(AtBt −∆)

(
I k − V BtV

⊤
Bt

)∥∥∥
F

+ other projections

L =

[
UAt 0d×r

0k×r V Bt

]
∈ R(d+k)×2r ,

then LL⊤ is a projection matrix, I d+k − LL⊤ = L⊥L⊤⊥

◦ transformed to lower bound
∥∥∥L⊤⊥∆L

∥∥∥2

F

◦ upper bound
∥∥∥L⊤⊥U

∥∥∥
op

< 1 by Wedin’s sin-θ theorem
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Takeaway messages

◦ arXiv: 2502.01235 and code

• subspace alignment: G ♮ and (At ,Bt) ⇒ theory-grounded algorithm design
• clarification on gradient alignment based algorithms

Target

• How to handle nonlinearity at a theoretical level (e.g., training dynamics)

• How to precisely and efficiently approximate nonlinearity at a practical
level under theoretical guidelines

25

https://arxiv.org/abs/2502.01235
https://github.com/YuanheZ/LoRA-One


Takeaway messages

◦ arXiv: 2502.01235 and code

• subspace alignment: G ♮ and (At ,Bt) ⇒ theory-grounded algorithm design
• clarification on gradient alignment based algorithms

Target

• How to handle nonlinearity at a theoretical level (e.g., training dynamics)

• How to precisely and efficiently approximate nonlinearity at a practical
level under theoretical guidelines

25

https://arxiv.org/abs/2502.01235
https://github.com/YuanheZ/LoRA-One


References i

Soufiane Hayou, Nikhil Ghosh, and Bin Yu.
LoRA+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen.
LoRA: Low-rank adaptation of large language models.
In International Conference on Learning Representations, 2022.

Sham M Kakade, Varun Kanade, Ohad Shamir, and Adam Kalai.
Efficient learning of generalized linear and single index models with
isotonic regression.
In Advances in Neural Information Processing Systems, 2011.



References ii

Dominik Stöger and Mahdi Soltanolkotabi.
Small random initialization is akin to spectral learning:
Optimization and generalization guarantees for overparameterized
low-rank matrix reconstruction.
In Advances in Neural Information Processing Systems, pages
23831–23843, 2021.

Shaowen Wang, Linxi Yu, and Jian Li.
LoRA-GA: Low-rank adaptation with gradient approximation.
In Advances in Neural Information Processing Systems, 2024.



References iii

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan
Gu, and Sham M Kakade.
Finite-sample analysis of learning high-dimensional single relu
neuron.
In International Conference on Machine Learning, pages 37919–37951,
2023.


	Alignment and theory-grounded algorithm
	Experiments
	Theory and proof...
	Global convergence on nonlinear models
	Appendix

