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B Our Goal: Provable Sample Efficiency

* Design provably sample-efficient RL algorithm
* Sample efficiency & Computational efficiency

* Function approximation setting



B Background: What is RL?

* RL = decision under uncertainty
* RL models the natural learning-based control process.

* The agent progressively improves its behavioral skills (policy) through iterative
interactions with the environment and feedback in the form of rewards.
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The agent-environment interaction in a MDP



B Markov Decision Process (MDP)

* RL operates within a framework called Markov Decision Process

 MDP’s: General formulation for decision making under
uncertainty
Defined by: (S, A, R, T, )
S : set of possible states [start state = s, optional terminal / absorbing state]
A : set of possible actions
R(s;, a;) : reward given (state, action) tuple
p(slsg, a) : transition probability distribution,
y . discount factor

« Markov property: Current state completely characterizes state of
the world



B A RL Policy

* The agent of a RL model takes in the current state s, at time ¢ and
makes an action a; ~ my(- |s;), where 0 are the parameters of the
policy.

 Most recent observation is sufficient statistic of the next state

St+1 ~ P(S|se ag)

* Rewards can be calculated from a reward functions (determined by the
environment) such that . = R(s¢, a;).

 Following policy  that produces sample trajectories:

St A T St+1 A+ 1, Te+10 0



B Value Function

 How good is a state?

« State-value function V™ (s;) of a policy & at state s; : the expected
future return of & starting from s; :

VT (sy) = Erpr [ki_:oykr(swk; Aryr)|Se]

* How good is a state-action pair?

 Action-value function or the Q-function Q™ (s;, a;) : expected future
return after performing action a; :

(0.0]
Q" (s¢,ap) = Erpr [RE_:OVRT(SHRJ Ar+k)|St At



B Bellman equations: fixed point
* Bellman Equations:
V7(se) = Egrlr(se, ar) + vV (Se41) IS¢

Q™ (s¢,ar) = 1(se, ap) + YE: R Q7 (St+1, Aev1) |Se]

* y<I: right-hand side is a contraction mapping, for § and A are finite
(Tabular RL), can use Temporal-Difference (TD):

VT(st) <« V(st) + he[r(se,ar) + vV (Seer) — VT(se )]

Q" (se,ar) « Q™ (sg,ar) + he[r(se,ar) + vQ™ (Se41, Arq) — Q7 (S, ar)]



BB Objective

* Search policy ™ to maximize the expected value
function

*SO~V[V7T(SO)] — Ly R [7"(50» aO) T VVn(Sl) |So]

" = argmax Eg ., [V"(so)]
JIA




B Proximal Policy Optimization
» Update rule given Q™k:

Tes = arg max Ey.p -2 [Q7(s, @)] — n KL (|| ;)
e It has a closed form solution:
mr4+1(als) o« my(als)exp[nQ™* (s, a)]

* Converge to the optimal policy for finite S and A (or MDP) at
sub-linear rate 1/vVk



B Problem

* Setting:
* n 1.1.d. samples of 1nitial states {S(i)}?zl following a distribution v

* State and action spaces S and A are large and continuous
* Impossible to sample every s € $ and a € A
* Impossible to run TD on every s € § and a € A

* How to generalize TD to an empirical and (nonlinear) functional
setting?

* If the generalization exists, what 1s 1ts convergence property?
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B Kernel Function

* Let K: (AX() — R be a symmetric positive definite kernel function with
(= S§XA,1e.
Kw,w) = ) di@)p(w) = & (@) (w),
l
where {¢,;: (0} = R} are called features.

* Define the linear space: Fx,(Q) = { X1 BiK(, wy), BiE R w; €Q }
* Equip this space with the bilinear form:

( ;ﬂik(,wi),Z?zlcl-K(.,wi)>K = Z:jzlﬁicjx(wi,wj)

* RKHS H () generated by K: the closure of Fy ,,(£2) under inner product
(-, )¢ (Example: Sobolev spaces, discrete set,.. ..



B Representer Theorem

 Given data {w;, y;} , and the functional minimization

f= argminz L(f (wi), yi) + h({f, k)

fEHK(Q)

e The minimizer f admits a closed form solution:

f=) Bk )



B Representer Theorem for Bellman Equation

* If Q resides in a RKHS, given data {w; € Q, w; € Q} , where
(Wi, w;) = (S(i)» a(i): S{» ai) ~ V(S0)T(ao|S0)P (51150, ag)T(a1]51)

* Define the following KRR

ATt — : 1 D) — N —vOT (), 2 2
Q _?gﬁ,%?nz(f(wl) r(wy) —yd (wi)) +Allf Nk

. Q has a closed form solution: @” =2 bi K(w;,)

* Intuition: use to represent the Bellman equation



B Representer Theorem for Bellman Equation

* Cross-covariance operator:

Cw,w = E[lP(w) ® P(w)], Ca),a)/ = IE[(I)((U) X (l)(a)')]
* Bellman equation represented by cross-covariance operator (a weak form):

Ca),a)Qn — (Ca),a)r + wa,wrQn)
* Empirical cross-covariance operator:

A 1" R 1 " ,
Cow=") @)W, Cow==) &)W
n =1

=1 n
* Empirical Bellman equation with penalty

A

Cow QF = (Cowr + 7L Q") + Q7



B Representer Theorem for Bellman Equation

e Take the RKHS functional derivative of the fixed Point RKHS

1 A~
i1 == (@) = r@) = v@"@p) +alIfI

l

By setting VJ/|f] = 0, we can exactly recover the empirical Bellman
equation

A

Cow O = (Cp o7 +vCy Q™) + Q7

* By representer theorem, @” = Zi ,31'* K(w;, )



B Kernel Gradient Descent
* Closed form solution Q" = Y, B/ K (w; , ) where
p* =[K+ Anl —yC] r

[k(wl’ w])] C= [k(wi,' wj)]i,j’ r = [r(wl)]
* Solve B* by '

Bri1= 1A —a)B: +n:(KB, —r—yCH:)

* This 1s exactly the if we parametrized Q by
Y BiK(w; ) but replace [ inner product by (B F ,B') = BK ﬁ (a
precondltloner)



B Kernel Gradient Descent

* Superlinear Convergence of Kernel Gradient Descent

Bivi— B =

I— (al + nK —nyC)]
I— (al + 7K —nyC)]

I— (al + nK —nyC)]

B — [al + nK — nyC]r]
B:—PB]
“1Bo—B"]

e If eigenvalues of [I — (al + nK — nyC)] are small, then 8; — B~

exponentially fast



B Convergence Analysis

* From the empirical Bellman, we have a statistical-approximation error
decomposition:

LS ID™(@)I? — YD (@)D" (@;") = 5, €D (@) — D™, Q")

where D™ = Q™ — QT is the function difference
€; = 1r(w;) + yQ™(w;) — Q™ (w;) is the Bellman residual

* We then can use empirical process to prove the convergence rate



BB Convergence Analysis (Sobolev)

* Suppose QT is the s-time weak differentiable and dim(Q)) = d
(Sobolev RKHS embedded on d-dimensional manifold)

* With step size, weight decay, iteration number, and penalty:

_4a/2
n=n-, a = A, T = C logn, A =n"2s+d

* We have:

S

1Q™ = Qrll2 = Op(n"25%d||Q7| )




B Convergence Analysis (Gaussian)

» Suppose QT is infinitely many differentiable and Q = [0,1]9
(Gaussian RKHS)

* With step size, weight decay, iteration number, and penalty:

1
n=n', a=A T=Clogn, A1=n 2]|logn|?

* We have: .
1Q™ — Qr||,2 = 0,(n"2|logn|?*||Q™ — Qr|lx)
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B Policy Update
* Given Q™k, ;41 has a closed form solution:
Tiv1(als) o my(als)exp[A, 05 (s, @)]
* From 1teration, ;.4 can also be represented by a neural network:

nk+1 OC eXp[f9k+1]
A (k)

where =A + fp., A; can be considered as
Ok+1 kYT 0> =k

In experiments ,both ;.1 and A, @;k)can be represented by neural nets
under the framework of Neural Tangent Kernel



B A Fundamental Inequality

* A fundamental inequality for the convergence of value function to the
optimal:

* Y 20 || = 09| +¢
min By [V ()] = Ey [V7(s)] < S a

» To achieve the best stochastic sub-linear convergence rate 1/vVK, set
Ak =1 / \/E

and we also need HQ”k - Q\;k) Hoo S A



B Sampling Requirement

* Target: HQ”" — @;k) Hoo S A

* As k increases Ay decreases and m;, may becomes more complicate
from || Q™ — Q" H to [[Q7 — 5| to
CO

derive the required sample number n for estlmate Qk:

(1—cv)? 1—cy

B | T ok
NTK O ( l* |15 ) Tabular | @O | (1 —cy)? 1 —cy
3d+1 ,
(1—cy) 41 (f||ﬂk||y) 4
: ||7rk||13€k1i€ “Wk”’;-(k _M) 2m+d
Gaussian | O log 125 ) | Sobolev | ©

27
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. Cart Pole Action Space: 2 discrete actions
e (: Push cart to the left

* 1: Push cart to the right
Goal: to keep the pole upright for as long as

possible. Observation Space/State Space: 4 continuous variables
Num Observation Min Max
0 Cart Position -4.8 4.8
1 Cart Velocity -Inf Inf
2 Pole Angle ~-0.418 rad (-24°) ~ 0.418 rad (24°)
https://gymnasium.farama.org/environments/classic _control/cart_pole/
3 Pole Angular Velocity -Inf Inf

Rewards: Since, by default, a reward of +1 is given for every step taken,
including the termination step. The default reward threshold is 500.

Q network: 3 layers deep neural network

state dim (4) = hidden dim (64) = hidden dim (64) = action dim (2)
® @ o
® ® ® ®
® f : o
O 9 O 29
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* We test three different step-size schedules.

* Each schedule is run for 10 trials using different random seeds.

* Evaluation Metric: Performance 1s measured by the total reward per episode. Learning curves show the mean and
standard deviation across the 10 seeds. Optimal reward: 500.

* We plot raw returns and moving average returns. The results matches our theoretical proof of step size selection.

Step Size Selection on CartPole-v1
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Moving Avg Return (window
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Step Size Selection (Smoothed, w=60) on CartPole-v1
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—— B=k~-15

200 400 600 800 1000
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Results: 7, = k=1 (green) leads to the failrue of convergence, 7, = k%> (orange) gets the global convergence,
nx= k™% (blue) causes global divergence. 30




B Acrobot

Action Space: 3 discrete actions
e 0: apply -1 torque to the actuated joint

Goal: apply torques on the actuated joint to swing the « 1: apply 0 torque to the actuated joint
free end of the linear chain above a given height while o 2:apply 1 torque to the actuated joint

starting from the initial state of hanging downwards. . .
Observation Space/State Space: 6 continuous variables

Num Observation Min Max

0 Cosine of thetal -1 1

1 Sine of thetal -1 1

2 Cosine of theta2 -1 1

3 Sine of theta2 -1 1

4 Angular velocity of thetal ~-12.567 (-4 * pi) ~12.567 (4 * pi)

. - 0 % ~ .

https://gymnasium.farama.org/environments/classic_control/acrobot/ > Angular velocity of theta2 28.274 (-9 * p1) 28274 O * p1)

Rewards

k: : . o
Q network: 3 layers deep neural network The goal is to have the free end reach a designated target height in

as few steps as possible, and as such all steps that do not reach the
goal incur a reward of -1. Achieving the target height results in
termination with a reward of 0. The reward threshold is -100.

state dim (6) = hidden dim (64) = hidden dim (64) =
action dim (3)

31



B Acrobot
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We test three different step-size schedules.

Each schedule 1s run for 10 trials using different random seeds.

Evaluation Metric: Performance is measured by the total reward per episode. Learning curves show the mean and
standard deviation across the 10 seeds. Optimal reward: -100.

We plot raw returns and moving average returns. The results matches our theoretical proof of step size selection.

Step Size Selection on Acrobot-v1
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Results: 7, = k=1 (green) leads to the failrue of convergence, 1;
n,= k=22 (blue) causes global divergence.

Step Size Selection (Smoothed, w=60) on Acrobot-vl
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B 5-armed Bandit

Bernoulli Bandit Env:

* The reward for pulling each lever follows a
Bernoulli distribution. A reward of 1 means
you win, and a reward of 0 means you don't
win.

* Dummy states with all 1s.

Machine 1 Machine 2 Machine 3 Machine 4

Reward

Probabilities

(unknown)

Optimal Action Percentage

Results:

= k™11 (green) leads to the failrue of convergence.
nx= k=5 (orange) gets the global convergence.
n,= k%3 (blue) causes global divergence.

Average Reward per Batch
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5-Armed Bandit: (Step Size Schedule Comparison, Avg over 10 seeds)

AN Ny 0 et g

—— Avg Reward (Global Divergence (t~°3))
—— Avg Reward (Global Convergence (Best, t=0-%))
— Avg Reward (No Global Convergence (t=%1))

200 400 600 800 1000

Steps

Optimal Action Selection (Step Size Schedule Comparison, Avg over 10 seeds)

—— Optimal Action % (Global Divergence (t70-3))
—— Optimal Action % (Global Convergence (Best, t=°-%))
—— Optimal Action % (No Global Convergence (t~11))

200 400 600 800 1000

Steps

action == bandit_env.optimal arm
33




B Theoretical Problems Unsolved

* Due to the KL penalty, the convergence of PPO depends on the L,
convergence H Qmk — @;k) H instead of the L, convergence, the sampling

complexity may not be tight. But we DO NOT know how to prove the L,
convergence of the fixed point KRR because its structure is quite from
classical KRR

* The “complicate” level of policy mj, 1s highly related to the sampling
complexity. We use its RKHS norm || || ¢ to indicate its “complicate”

level (we think it is better than ||Q™k ||, ), but we DO NOT know if we
can have a better statistics to reflect this




Thank you for your attention!

Any questions?
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