
A Sample Complexity Analysis of PPO in RKHS

Liang Ding

Fudan University

Joint work with Shuang Li, Wendy Ren, Lu Zou

Content

• Background

• Reproducing Kernel Hilbert Space (RKHS)

• Proximal Policy Optimization

• Numerical Experiments

Our Goal: Provable Sample Efficiency

• Design provably sample-efficient RL algorithm

• Sample efficiency & Computational efficiency

• Function approximation setting

2

Background: What is RL?

• RL = decision under uncertainty
• RL models the natural learning-based control process.
• The agent progressively improves its behavioral skills (policy) through iterative

interactions with the environment and feedback in the form of rewards.

5

Markov Decision Process (MDP)

• RL operates within a framework called Markov Decision Process

• MDP’s: General formulation for decision making under
uncertainty

• Markov property: Current state completely characterizes state of
the world

Defined by:
𝒮	: set of possible states [start state = s0, optional terminal / absorbing state]
𝒜	: set of possible actions
𝑅(𝑠', 𝑎') : reward given (state, action) tuple
𝕡 𝑠 𝑠', 𝑎' : transition probability distribution,
𝛾	: discount factor

A RL Policy

• The agent of a RL model takes in the current state 𝑠' at time 𝑡 and
makes an action 𝑎' ∼ 	𝜋0 ⋅	 𝑠'),	where 𝜃	are the parameters of the
policy.

• Most recent observation is sufficient statistic of the next state
𝑠'34 ∼ 𝕡(𝑠|𝑠', 𝑎')

• Rewards can be calculated from a reward functions (determined by the
environment) such that 𝑟' = 	𝑅(𝑠', 𝑎').

• Following policy 𝜋 that produces sample trajectories:

⋯𝑠' , 𝑎', 𝑟', 𝑠'34, 𝑎'34, 𝑟'34, ,⋯

7

Value Function

• How good is a state?
• State-value function 𝑉:(𝑠') of a policy 𝜋 at state 𝑠' : the expected

future return of 𝜋 starting from 𝑠'	:

• How good is a state-action pair?
• Action-value function or the Q-function 𝑄:(𝑠', 𝑎')	: expected future

return after performing action 𝑎'	:

𝑉:(𝑠') = 𝔼:,=,>[∑
ABC

D
𝛾A𝑟(𝑠'3A, 𝑎'3A)|𝑠'].

𝑄:(𝑠', 𝑎') = 𝔼:,=,>[∑
ABC

D
𝛾A𝑟(𝑠'3A, 𝑎'3A)|𝑠', 𝑎'].

Bellman equations: fixed point

• Bellman Equations:

𝑉:(𝑠') = 𝔼:,>[𝑟 𝑠', 𝑎' + 𝛾𝑉:(𝑠'34）|𝑠']

𝑄: 𝑠', 𝑎' = 𝑟 𝑠', 𝑎' + 𝛾𝔼:,>[𝑄:(𝑠'34, 𝑎'34）|𝑠']

• 𝛾<1: right-hand side is a contraction mapping, for 𝒮 and 𝒜 are finite
(Tabular RL), can use Temporal-Difference (TD):

9

𝑉: 𝑠'	 ← 𝑉 𝑠'	 + ℎ'[𝑟 𝑠', 𝑎' + 𝛾𝑉: 𝑠'34	 − 𝑉: 𝑠']

𝑄: 𝑠', 𝑎' ← 𝑄: 𝑠', 𝑎' + ℎ'[𝑟 𝑠', 𝑎' + 𝛾𝑄: 𝑠'34, 𝑎'34 − 𝑄: 𝑠', 𝑎']

Objective

• Search policy 𝜋	 to maximize the expected value
function

𝔼KL∼M[𝑉
:(𝑠C)] = 𝔼M,:,>[𝑟 𝑠C, 𝑎C + 𝛾𝑉:(𝑠4）|𝑠C]

𝜋∗ = argmax
:

𝔼KL∼M[𝑉
:(𝑠C)]

10

Proximal Policy Optimization

• Update rule given 𝑄:T:

𝜋A34 = 𝑎𝑟𝑔max
:
𝔼K∼V,W∼: 𝑄:T 𝑠, 𝑎 − 𝜂	𝐾𝐿(𝜋||𝜋A)

• It has a closed form solution:

𝜋A34 𝑎 𝑠 ∝ 𝜋A a s exp[𝜂𝑄:T 𝑠, 𝑎]

• Converge to the optimal policy for finite 𝒮 and 𝒜 (or linear MDP) at
sub-linear rate 1/ 𝑘�

11

Problem

• Setting:
• 𝑛 i.i.d. samples of initial states 𝑠Cd dB4

e
following a distribution 𝜈

• State and action spaces 𝒮 and 𝒜 are large and continuous

• Impossible to sample every 𝑠 ∈ 𝒮 and 𝑎 ∈ 𝒜

• Impossible to run TD on every 𝑠 ∈ 𝒮 and 𝑎 ∈ 𝒜

• How to generalize TD to an empirical and (nonlinear) functional
setting?

• If the generalization exists, what is its convergence property?
12

Content

• Background

• Reproducing Kernel Hilbert Space (RKHS)

• Proximal Policy Optimization

• Numerical Experiments

Kernel Function

• Let 𝐾:Ω×Ω → ℝ be a symmetric positive definite kernel function with
Ω = 	𝒮×𝒜, i.e.

K 𝜔,𝑤	 =p𝜙r 𝜔 𝜙r 𝑤 = 𝚽t 𝜔 𝚽 𝑤 ,
�

r

	

where {𝜙r: Ω → ℝ} are called features.
• Define the linear space: 𝐹x,e Ω = 	∑ 𝛽d𝐾 ⋅, 𝜔d ,e

dB4 	𝛽d ∈ ℝ,𝜔d ∈ Ω		
• Equip this space with the bilinear form:

p 𝛽d𝐾 ⋅, 𝜔d ,
e

dB4
p 𝑐d𝐾 ⋅, 𝜔d

e

dB4 x
≔p 𝛽d𝑐|𝐾 𝜔d, 𝜔|

e

d,|B4

• RKHS ℋx Ω generated by 𝐾: the closure of 𝐹x,e Ω under inner product
⋅,⋅ x (Example: Sobolev spaces, discrete set,….)

14

Representer Theorem

• Given data 𝜔d, 𝑦d 	, and the functional minimization

𝑓� = 𝑎𝑟𝑔min
�∈ℋ� �

p𝐿(𝑓(𝜔d), 𝑦d) + ℎ(𝑓, 𝑓 x)
�

d

• The minimizer 𝑓� admits a closed form solution:

𝑓� =p𝛽d∗𝐾(𝜔d	,⋅)
�

d

15

Representer Theorem for Bellman Equation

• If 𝑄 resides in a RKHS, given data 𝜔d ∈ Ω,𝜔d� ∈ Ω 	, where

(𝜔d, 𝜔d�) = (𝑠Cd , 𝑎Cd , 𝑠4d , 𝑎4d) ∼ 𝜈(𝑠C)𝜋(𝑎C|𝑠C)𝕡(𝑠4|𝑠C, 𝑎C)𝜋(𝑎4|𝑠4)

• Define the following fixed point KRR

𝑄�: = 𝑎𝑟𝑔min
�∈ℋ� �

1
𝑛
p 𝑓 𝜔d − 𝑟 𝜔d − 𝛾𝑄�: 𝜔d�

�
+ 𝜆

�

d

𝑓 x
�

• 𝑄� has a closed form solution: 𝑄�: = ∑ 𝛽d∗𝐾(𝜔d	,⋅)�
d

• Intuition: use cross-covariance operator to represent the Bellman equation
16

Representer Theorem for Bellman Equation

• Cross-covariance operator:

𝐶�,� = 𝔼 𝚽 𝜔 ⊗𝚽 𝜔 , 𝐶�,�� = 𝔼[𝚽 𝜔 ⊗𝚽 𝜔′]
• Bellman equation represented by cross-covariance operator (a weak form):

𝐶�,�𝑄: = 𝐶�,�𝑟 + 𝛾𝐶�,��𝑄:

• Empirical cross-covariance operator:

𝐶��,� =
1
𝑛
p 𝚽 𝜔d ⊗𝚽 𝜔d

e

dB4
, 𝐶��,�� =

1
𝑛
p 𝚽 𝜔d ⊗𝚽 𝜔′d

e

dB4
• Empirical Bellman equation with penalty

𝐶��,�	𝑄�: = 𝐶��,�𝑟 + 𝛾𝐶��,��𝑄�: + 𝜆𝑄�: 17

Representer Theorem for Bellman Equation

• Take the RKHS functional derivative of the fixed Point RKHS

𝐽 𝑓 =
1
𝑛
p 𝑓 𝜔d − 𝑟 𝜔d − 𝛾𝑄�: 𝜔d�

�
+ 𝜆

�

d

𝑓 x
�

• By setting ∇𝐽 𝑓 = 0, we can exactly recover the empirical Bellman
equation

𝐶��,�	𝑄�: = 𝐶��,�𝑟 + 𝛾𝐶��,��𝑄�: + 𝜆𝑄�:

• By representer theorem, 𝑄�: = ∑ 𝛽d∗𝐾(𝜔d	,⋅)�
d 18

Kernel Gradient Descent

• Closed form solution 𝑄�: = ∑ 𝛽d∗𝐾(𝜔d	,⋅)�
d where

𝜷∗ = 𝐊 + 𝜆𝑛𝐈 − 𝛾𝐂 �𝟏𝐫

													𝐊 = 𝑘 𝜔d, 𝜔| d,�
，𝐂 = 𝑘 𝜔d′, 𝜔| d,�

, 𝐫 = [r(𝜔d)]

• Solve 𝜷∗ by Kernel Gradient Descent:

𝜷'34 = 1 − 𝛼' 𝜷' + 𝜂'(𝐊𝜷' − 𝒓 − 𝛾𝐂𝜷')

• This is exactly the Temporal-Difference if we parametrized 𝑄� by
∑ 𝛽d𝐾(𝜔d	,⋅)�
d but replace 𝑙� inner product by 𝜷,𝜷� = 𝜷𝐊 𝜷� (a

preconditioner)
19

Kernel Gradient Descent

• Superlinear Convergence of Kernel Gradient Descent

𝜷'34 − 𝜷∗ = 𝐈 − 𝛼𝐈 + 𝜂𝐊 − 𝜂𝛾𝐂 𝜷' − 𝛼𝐈 + 𝜂𝐊 − 𝜂𝛾𝐂 �𝟏𝐫
= 𝐈 − 𝛼𝐈 + 𝜂𝐊 − 𝜂𝛾𝐂 [𝜷'−𝜷∗]
= 𝐈 − 𝛼𝐈 + 𝜂𝐊 − 𝜂𝛾𝐂 𝒕3𝟏[𝜷𝟎−𝜷∗]

• If eigenvalues of 𝐈 − 𝛼𝐈 + 𝜂𝐊 − 𝜂𝛾𝐂 are small, then 𝜷' → 𝜷∗
exponentially fast

20

Convergence Analysis

• From the empirical Bellman, we have a statistical-approximation error
decomposition:

4
e
∑ |𝐷: 𝜔d |�	 − 𝛾𝐷: 𝜔d 𝐷: 𝜔d′ =

4
e
∑ 𝜖d𝐷: 𝜔d − 𝜆⟨𝐷:�
d

�
d , 𝑄�:⟩x

where 𝐷: = 𝑄�: − 𝑄: is the function difference
𝜖d = 𝑟 𝜔d + 𝛾𝑄: 𝜔d� − 𝑄: 𝜔d is the Bellman residual

• We then can use empirical process to prove the convergence rate

21

Convergence Analysis (Sobolev)

• Suppose 𝑄: is the 𝑠-time weak differentiable and dim Ω = 𝑑
(Sobolev RKHS embedded on 𝑑-dimensional manifold)

• With step size, weight decay, iteration number, and penalty:

𝜂 ≍ 𝑛�4	, 𝛼 = 𝜆, 𝑇 ≥ 𝐶	 log 𝑛, 𝜆 ≍ 𝑛�
ª/�
�K3ª

• We have:
||𝑄: − 𝑄�«||¬­ = 𝑂¯(𝑛

� K
�K3ª||𝑄:||x)

22

Convergence Analysis (Gaussian)

• Suppose 𝑄: is infinitely many differentiable and Ω = 0,1 °

(Gaussian RKHS)

• With step size, weight decay, iteration number, and penalty:

𝜂 ≍ 𝑛�4	, 𝛼 = 𝜆, 𝑇 ≥ 𝐶	 log 𝑛, 𝜆 ≍ 𝑛�
4
�	 log 𝑛 ª

• We have:
||𝑄: − 𝑄�«||¬­ = 𝑂¯(𝑛

�4� log 𝑛 ª||𝑄: − 𝑄�«||x)

23

Content

• Background

• Offline Reinforcement Learning

• Proximal Policy Optimization

• Numerical Experiments

Policy Update

• Given 𝑄:T, 𝜋A34	 has a closed form solution:

𝜋A34 𝑎 𝑠 ∝ 𝜋A a s exp[ΔA𝑄�«
(A) 𝑠, 𝑎]

• From iteration, 𝜋A34 can also be represented by a neural network:

𝜋A34 ∝ exp[𝑓𝜽T³´]
where 𝑓𝜽T³´ = ΔA𝑄�«

(A) + 𝑓𝜽T, ΔA can be considered as step size

In experiments ,both 𝜋A34 and ΔA𝑄�«
(A)can be represented by neural nets

under the framework of Neural Tangent Kernel
25

A Fundamental Inequality

• A fundamental inequality for the convergence of value function to the
optimal:

min
4µAµx

𝔼M∗ 𝑉:
∗ 𝑠 − 𝔼M∗ 𝑉:T 𝑠 ≤

∑ 	2ΔA 𝑄:T − 𝑄�«
A

D
+ 𝐶	�

A

∑ 	ΔA	�
A

• To achieve the best stochastic sub-linear convergence rate 1/ 𝐾� , set

ΔA = 1/ 𝑘�

and we also need 𝑄:T − 𝑄�«
A

D
≲ ΔA

26

Sampling Requirement

• Target: 𝑄:T − 𝑄�«
A

D
≲ ΔA

• As 𝑘 increases Δ¹ decreases and 𝜋A may becomes more complicate

• Interpolation inequality from 𝑄:T − 𝑄�«
A

�
to 𝑄:T − 𝑄�«

A
D

to
derive the required sample number 𝑛(A) for estimate 𝑄:T:

27

Content

• Background

• Offline Reinforcement Learning

• Proximal Policy Optimization

• Numerical Experiments

Cart Pole

29

Action Space: 2 discrete actions
• 0: Push cart to the left
• 1: Push cart to the right

Observation Space/State Space: 4 continuous variables

Num Observation Min Max

0 Cart Position -4.8 4.8

1 Cart Velocity -Inf Inf

2 Pole Angle ~ -0.418 rad (-24°) ~ 0.418 rad (24°)

3 Pole Angular Velocity -Inf Inf

Q network: 3 layers deep neural network

state dim (4) à hidden dim (64) à hidden dim (64) à action dim (2)

.

.

.

.

.

.

https://gymnasium.farama.org/environments/classic_control/cart_pole/

Rewards: Since, by default, a reward of +1 is given for every step taken,
including the termination step. The default reward threshold is 500.

Goal: to keep the pole upright for as long as
possible.

Cart Pole

• We test three different step-size schedules.
• Each schedule is run for 10 trials using different random seeds.
• Evaluation Metric: Performance is measured by the total reward per episode. Learning curves show the mean and

standard deviation across the 10 seeds. Optimal reward: 500.
• We plot raw returns and moving average returns. The results matches our theoretical proof of step size selection.

30
Results:	𝜂A	= 𝑘�4.º	 green leads to the failrue of convergence, 	𝜂A	= 𝑘�C.º	 orange 	gets	the	global	convergence,
	𝜂A= 𝑘�C.�	 blue causes global divergence.

Acrobot

31

Goal: apply torques on the actuated joint to swing the
free end of the linear chain above a given height while
starting from the initial state of hanging downwards.

Action Space: 3 discrete actions
• 0: apply -1 torque to the actuated joint
• 1: apply 0 torque to the actuated joint
• 2: apply 1 torque to the actuated joint

Observation Space/State Space: 6 continuous variables

Num Observation Min Max

0 Cosine of theta1 -1 1

1 Sine of theta1 -1 1

2 Cosine of theta2 -1 1

3 Sine of theta2 -1 1

4 Angular velocity of theta1 ~ -12.567 (-4 * pi) ~ 12.567 (4 * pi)

5 Angular velocity of theta2 ~ -28.274 (-9 * pi) ~ 28.274 (9 * pi)

Rewards
The goal is to have the free end reach a designated target height in
as few steps as possible, and as such all steps that do not reach the
goal incur a reward of -1. Achieving the target height results in
termination with a reward of 0. The reward threshold is -100.

Q network: 3 layers deep neural network

state dim (6) à hidden dim (64) à hidden dim (64) à
action dim (3)

https://gymnasium.farama.org/environments/classic_control/acrobot/

Acrobot

32

• We test three different step-size schedules.
• Each schedule is run for 10 trials using different random seeds.
• Evaluation Metric: Performance is measured by the total reward per episode. Learning curves show the mean and

standard deviation across the 10 seeds. Optimal reward: -100.
• We plot raw returns and moving average returns. The results matches our theoretical proof of step size selection.

Results:	𝜂A	= 𝑘�4.º	 green leads to the failrue of convergence, 	𝜂A	= 𝑘�C.º	 orange 	gets	the	global	convergence,
	𝜂A= 𝑘�C.�	 blue causes global divergence.

5-armed Bandit

33

Bernoulli Bandit Env:
• The reward for pulling each lever follows a

Bernoulli distribution. A reward of 1 means
you win, and a reward of 0 means you don't
win.

• Dummy states with all 1s.

Results:
	𝜂A= 𝑘�4.4	 green leads to the failrue of convergence.
	𝜂A= 𝑘�C.º	 orange gets	the	global	convergence.
	𝜂A= 𝑘�C.Á	 blue causes global divergence. action == bandit_env.optimal_arm

Theoretical Problems Unsolved

• Due to the KL penalty, the convergence of PPO depends on the 𝐿D
convergence 𝑄:T − 𝑄�«

A
D

instead of the 𝐿� convergence, the sampling
complexity may not be tight. But we DO NOT know how to prove the 𝐿D
convergence of the fixed point KRR because its structure is quite from
classical KRR

• The “complicate” level of policy 𝜋A is highly related to the sampling
complexity. We use its RKHS norm 𝜋A x to indicate its “complicate”
level (we think it is better than 𝑄:T x), but we DO NOT know if we
can have a better statistics to reflect this

34

18

