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Summary

» We have shown:
» CNN Architectures: LeNet5, Alexnet, VGG, GoogleNet, Resnet
» Recurrent Neural Networks and LSTM (GRU)

» Attention and Transformer

=» Today:

» Applications of Transformer
= BERT, GPT, and ViT
» Reference:
» Feifei Li, Stanford cs231n

» Chris Manning, Stanford cs224n
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Table 2.1: In our network configurations, Sublayer refers to either a feed-forward
neural network (FFN) or a self-attention module within a Transformer layer. The
symbol d represents the size of the hidden states in the network. The position em-
bedding at a specific position / is denoted by pi. In the attention mechanism, A;
signifies the attention score computed between a given query and its corresponding
key. The difference in positions between the query and the key is represented by r;_;,
a learnable scalar value. Finally, the term Ry ; refers to a rotary matrix, which rotates
by an angle determined by multiplying t by 6.

Configuration Method Equation
Normalization Post Norm [1] Norm(x + Sublayer(x))
position Pre Norm [2] x + Sublayer(Norm(x))
Sandwich Norm [3] x + Norm(Sublayer(Norm(x)))
Normalization LayerNorm [4] ’i/_g Y+ B U= % Z;le Xj, O = \/% Zf-il(x,- - u)?
method RMSNorm [5] ase - 7 RMS(x) = {1 22, %2
DeepNorm [6] LayerNorm(« - x + Sublayer(x))
Activation ReLlU [7] ReLU(x) = max(0, x)
function GeLU [8] GeLU(x) = 0.5x R (1 +tanh (\/g (x+ 0.044715x3)))
Swish [9] f(x)=x" i
SwiGLU [10] f(x)=x0o(Wx+b)
GeGLU [10] Similar to SwiGLU with GeLLU
Positional Absolute [1] Xi = X;j + pi
embeddings Relative [11] Ajj = qu,-ij Wi +ri_j
RoPE [12] Aij = WoxiRa,i—jx| Wi
Alibi [13] Aj = qu,-ij Wi — m(i — j)

Key: [1] (Vaswani et al., 2017), [2] (Radford et al., 2019), [3] (Ding et al., 2021), [4] (Ba et al., 2016),

[5] (Zhang and Sennrich, 2019), [6] (Wang et al., 2022), [7] (Nair and Hinton, 2010), [8] (Wang et al., 2019),
[9] (Ramachandran et al., 2017), [10] (Shazeer, 2020), [11] (Raffel et al., 2020), [12] (Su et al., 2021),

[13] (Press et al., 2021)



Empirical advantages of Transtormer vs.
LSTM

» |, Self-attention == no locality bias
» | ong-distance context has “equal opportunity”

» 7. Single multiplication per layer == efficiency on TPU

Transformer LSTM

X00 | X01 | X02 | Xo03 X 00|l Xo01 [[xo02 | Xxo03

X10 | X11 | X12 | Xx13 X10|| X11 [[Xx12 | x13




Major disadvantage of Transtormer

» Quadratic compute in self-attention (today):

» Computing all pairs of interactions means our computation grows quadratically
with the sequence length!

» [For recurrent models, it only grew linearly!

T
-
—|_Add & Norm

Feed Forward

Add & Norm

Multi-Head
Self-Attention

Positional A ;E,, Be— it
in eddin:
Input Embedding Output Embedding

inputs targets

Figure 1: Architecture of the standard Transformer (Vaswani et al., 2017)




Quadratic computation as a function of
sequence length

= One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

» However, its fotal number of operations grows as 0( n? d ), where n is the
sequence length, and d is the dimensionality.

» Think of d as around 1,000 (though for large language models it's much largerl).
e So, for a single (shortish) sentence, n < 30; n? <900.
* In practice, we set a bound like n = 512.
e But what if we'd like n = 50,000? For example, to work on long documentse

Need to compute all
XQ = XQK"XxT pairs of interactions!

KT XT c RTLXTL 0(7’lzd)




Improving quadraftic self-attention cost

» Considerable recent work has gone into the question, Can we build models
like Transformers without paying the all-pairs self-attention coste

» [or example, Linformer [Wang et al., 2020, Linformer: Self-Attention with
Linear Complexity, arXiv:2006.04768]

T 120 F ——— Linformer, k=2048
1 —e— Linformer, k=1024
] - —&— Linformer, k=512
Key idea: map the i — o L | -== Linformer, k=256
- 112 S SC-’ —.~ Linformer, k=128
sequence len g th Scaled Dot-Product y F= Transformer
. . Attention e
dimension to a lower- T — 8 ol
. . 1 - <
dimensional space for progcion | [ Proeion 3
Y 10 ’e pe r —
values, keys - ' = . =1 %
= S ﬂ — . INmszszsoscochooo-ooomooImInInE
v/ v/ v/ 512/128 1024/64 2048/32 4096/16 8192/8 16384/4 32768/2 65536/1
A\ K Q

Sequence length / batch size



Efficient Transformers

Charformer
(Tay et al., 2021)

TokenLearner

Perceiver (Ryoo et al., 2021)

(Jaegle et al., 2021)

Transformer-XL

) Nystromformer
(Dai et al., 2019)

(Xiong et al., 2019)

Memory /
Downsampling

Set Transformer
(Lee et al.,, 2019)

Memory

Compressed
(Liu et al., 2018)

Recurrence

Compressive

Transformer
(Rae et al., 2018)

Routing
: Transformer
Funnel  Poolingformer (Royetal, 2020)
berformer ‘ Transformer  (@hangetal,2021)
(Choromanski et al., 2020) (beteteL2020)

Big Bird

(Zaheer et al., 2020)

ETC

(Ainslie et al., 2020)

Low-Rank Transformer

(Winata et al., 2020) Longformer Swin
(Beltagy et al., 2020) -
Tfﬂﬂ??{;!;f r Sinkhorn
Low Rank / ) Transforme
Linformer Long Short

(Tay et al., 2020b)

weges2om  Kernels |Transformer)  Fixed/Factorized/
, Random Patterns
Random Feature Attention S()rlar;glffgzzogr CC-Net

(Genaetetizezl) Blockwise Transformer

(Qiu et al., 2019)

(Huang et al., 2018)

Axial Transformer
(Hoetal., 2019)

(Lepikhin et al., 2020)

Linear
Transformer Sparse Transformer Sparse (Dufttfv"zﬂm
(Katharopoulos et al, 2020) Image Transformer (Eeiel 20k Switch
P: I, 2018
(Parmar et a ) Transformer Product Key

(Fedus et al., 2021)

Clusterformer
(Wang et al., 2020)

Reformer
(Kitaev et al., 2020)

Learnable
Patterns

Clustered Attention
(Vyas et al., 2020)

Adaptive
Sparse

Transformer
(Correia et al., 2019)

GShard

Memory
(Lample et al., 2019)

Scaling Transformer
(Jaszczur et al., 2021)

Figure 2: Taxonomy of Efficient Transformer Architectures.

Yi Tay, Mostafa Dehghani, Dara Bahri, Donald Metzler (2020), Efficient Transformers: A Survey, arXiv:2009.06732v3



Mixture of Experts (MoOE)

» MoE layer replaces the standard
feed-forward blocks by multiple
parallel "experts’ as feed-forward

By

MoE ayer blocks weighted by probability
gaftes.
» MOE architecture simultaneously
k e vouter Y ® activates only a few experts. This
' [ sparse activation allows the
R EUN architecture to support larger
model sizes without a proportional
increase in computational
demand, maintaining efficient
Fig. 2.9: Mixture-of-experts variant of the Transformer architecture. pe rformance.

Shazeer, Noam; Mirhoseini, Azalia; Maziarz, Krzysztof; Davis, Andy; Le, Quoc; Hinton, Geoffrey; Dean, Jeff (2017).
"Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”. arXiv:1701.06538




Multi-Head Latent Attention:
Deepseek v-2 and v-3

DeepSeekMoE

[OOOO AAAAAA OOOO] C] Routed Expert

Activated Parameters (Billions)

RoPE

QO ~ OO Latent c?

---------------------------------------- ' Deepseek-V2, arXiv:2405.04434
Deepseek-V3, arXiv:2412.19437
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Prefraining for three types of architectures
IN Transformers

The transformer architecture influences the type of pretraining:

» Decoders:

= Unidirectional Language models! What
L2227 Decoders )
we've seen so far.

» Nice to generate from; can’'t condition on
future words: GPT

» EFncoders:

» Gets bidirectional context — can condition
on future!

= Wait, how do we pretrain them? -- BERT

» Encoder-Decoders:
» Good parts of decoders and encoderse
=& Decoders
» What's the best way to pretrain theme --T5




GPT (Generative Pre-Training): uni-
directional transformer decoder

» mproving Language Understanding by Generative Pre-Training, OpenAl,
2018
Train Deep (12-layer) Fine-tune on
Transformer LM Classification Task
open N bank POSITTIVE
T T T Transformer Transformer Transformer
Transformer Transformer Transformer - > T T T
I f f
<s> open a

<s> open a




Prefraining decoders

It’s natural to pretrain decoders as language models and then

use them as generators, finetuning their pg(W¢|[wy.t-1)!

This is helpful in tasks where the output is a
sequence with a vocabulary like that at
pretraining time!

e Dialogue (context=dialogue history)

e Summarization (context=document)

hi, ..., hy = Decoder(wy, ..., wy)
Wt ~ Aht—l + b

Where A, b were pretrained in the language
model!

Wi Wy W3 Wy Ws

[Note how the linear layer has been pretrained.]



Finetuning decoders

When using language model pretrained decoders, we can ignore

that they were trained to model p(W;|wq.¢—1).

We can finetune them by training a classifier
on the last word’s hidden state.

hi, ..., hy = Decoder(wy, ..., wy)
Where A and b are randomly initialized and
specified by the downstream task.

Gradients backpropagate through the whole
network.

@/Cf?
Linear A4,b

[Note how the linear layer hasn’t been
pretrained and must be learned from scratch.]



GPT (Generative Pre-Trained Transformer):
uni-directional tfransformer-decoder

® ?7018’s GPT was a big success in pretraining a decoder!

* Transformer decoder with 12 layers.

768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.
* Byte-pair encoding with 40,000 merges

* Trained on BooksCorpus: over 7000 unique books.

* Contains long spans of contiguous text, for learning long-distance dependencies.
GPT-3 (2020) and GPT-3.5 (ChatGPT 2022) has 175 billion parameters or more

 Llama3.1: > 400 billion parameters

* Deepseek-v3: > 600 billion parameters

* Language models! What we’ve seen so far.
1222271  Decoders _ , »
Nice to generate from; can’t condition on future words




Model size increases

MLP: ResNet-152:

Transformer:

GPT-2: GPT-3
<< 1 million 60.3 million 340 million 1.5 billion
parameters parameters parameters parameters
AlexNet GPT-4
® ® ® ® — <5 @ >
before 2012 2012 2015 2017 2019 2020 2022 Deepseek-v3

(685B/37B)
Llamma 4
(Maverick

400B/17B)



rena score vs. Cost

LMArena ELO score vs. cost

1425

® Llama 4 Maverick 03-26 Experimental

® GPT-40 (Mar 25)
1490 ® GPT-4.5 Preview
1375
© DeepSeek V3.1 (Mar 25)
© DeepSeek R1
g s ® Gemini 2.0 Flash .ol S05EA5.45
® Qwen 2.5 Max
1325 ® o03-mini (high)
QwQ 328 g"b DeepSeek V3 (Dec 24)
© Command A
1300
Claude 3.7
1275
$0.10 $1.00 $10.00 $100.00
COSsT

Assumptions

+ Cost estimates assume distributed inference with speculative decoding, fp8 quantization, and persistent caching, as well as a disaster
recovery buffer and a $2/hr H100 operating cost.

» To deliver a user experience with a decode latency of 30ms for each token after a one-time 350ms prefill latency, we estimate that the
model can be served within a range of $0.19 to $0.49 per million tokens (3:1 blend).

» LMArena testing was conducted using Llama 4 Maverick optimized for conversationality.




Transtformers, In-context learning, and very
large models

» So far, we've interacted with pretrained models in two ways:
» Sample from the distributions they define (maybe providing a prompt)

» Fine-tune them on a task we care about, and take their predictions.

» Very large language models seem to perform some kind of learning without
gradient steps simply from examples you provide within their contexis.

» GPT-3is the canonical example of this (Brown et al. NeurlPS 2020).

» Researchers try to interpret in-context learning of fransformers as nearest
neighbor matching.

Brown et al. Language models are few-shot learners. NeurlPS 2020.
Bai et al. Transformers as Statisticians. NeurlPS 2023.
Collins et al. In-Context Learning with Transformers: Softmax Attention Adapts to Function Lipschitzness. NeurlPS 2024.




llustration of In-Context Learning

ATask: {(y)biey B~ N(0.1,/d),

e Adataset of (size N) is a meta-datapoint: H = [xy, ¥, Xy, V5, -, Xy, Yyl

e A meta-dataset (size n): {HY) = [xl(j),yl(f),xz(j),yz(j), ...,x]E]j), jf,f)] Vet

e Train the GPT2 model using {H"} ., (a smaller version of ChatGPT).
e d=35, N =40, n = 19,200,000

e Evaluate the test performance of GPT2 on a new independent task.

Noisy linear regression

—— TF_NLR
—— ridge_lam=0.125

— ridge_lam=1.25 €¢—————— Bayes Optlmal

- ridge_lam=12.5

squared error
o
[=)]

0.4

0 5 10 15 20 25 30 35 40
in-context examples

¢ Trained GPT2 performs as good as Bayesian predictor!

Mei, Song. Transformers as Statisticians. NeurlPS 2023 and talk slides.




How about bi-directional franstormers?e
— BERT

BERT (Ours) OpenAl GPT




BERT: Devlin, Chang, Lee, Toutanova (2018)

» BERT (Bidirectional Encoder Representations from Transformers):

» Pre-training of Deep Bidirectional Transformers for Language
Understanding, which is then fine-tuned for a task

» Want: truly bidirectional information flow without leakage in a
deep model

* Gets bidirectional context — can condition on future!

Encoders
* Wait, how do we pretrain them?




Masked Language Model

=» Problem: How the words see each other in bi-directionse

» Solution: Mask out k% of the input words, and then predict the masked
words

» We always use k = 15%

store gallon

! !

the man went to the [MASK] to buy a [MASK] of milk

» Too litftle masking: Too expensive 1o train

®» Too much masking: Not enough context




Masked LM

= Problem: Masked token never seen at fine-tuning

» Solution: 15% of the words to predict, but don't replace with [MASK] 100% of the
time. Instead:

» 80% of the time, replace with [MASK]

®» went fo the store — went to the [MASK]

» 10% of the time, replace random word

» went fo the store — went to the running

» 0% of the time, keep same

» went to the store — went to the store




Next Sentence Prediction

» To learn relationships between sentences, predict whether Sentence B is
actual sentence that proceeds Sentence A, or a random sentence

Sentence A = The man went to the store. Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.
Label = IsNextSentence Label = NotNextSentence




BERT sentence pair encoding

» Token embeddings are word pieces (30k)
®» | earned segmented embedding represents each sentence

» Positional embedding is as for other Transformer architectures

Input [CLS] my || dog is ‘ cute | [SEP] he | likes H play | ##ing ’

Token

Embeddings E[CLSI EmY Edog Eis Ecute E[SEP] Ehe EIikes EpIay E##ing
nf= L L L = L o L nfe L L

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB
+ =+ =+ = + =+ =+ + =+ =+

Position

Embeddings E0 E1 E2 E3 E4 E5 E6 E7 E8 E9




PreTraining

®» ? model released:
» BERT-Base: 12-layer, 768-hidden, 12-head, 110 million params.
» BERT-Large: 24-layer, 1024-hidden, 16-head, 340 million params.
= Training Data:
» BookCorpus (800M words)
» English Wikipedia (2.5B words)
Batch Size: 131,072 words
» (1024 sequences * 128 length or 256 sequences * 512 length)

Training Time: 1M steps (~40 epochs)
Optimizer: AdamW, le-4 learning rate, linear decay
Trained on 4x4 or 8x8 TPU slice for 4 days

Pretraining is expensive and impractical on a single GPU; Finetuning is practical
and common on a single GPU




BERT model fine tuning

» Simply learn a classifier built on the top layer for each task that you fine

tune for
ma Mask LM Mask LM \ ﬁmo Start/End Span\
* _® 5 5 * o o
- EAEMEa - ENEMEA
e .’.
SRR d . .»
BERT b a|e s o s 0 u . BERT
M‘E | Ey HEISEPlHE'l . |EM'| HE | Ex ||E[sgp]|| E1'|... |EM'|
m! T () (o) (o) m! (o) (o)) . [m0)
\_'_l \_|_l

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning




BERT model fine tuning

Class

Label

_‘

m[ A BEBEmE A
BERT

[ L& | [ [ B[ & ][]

-

5

L‘_I [_'_]

Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,

RTE, SWAG
L)) Gl ) ()
BERT
[seafl & ) [& ][ Emn] & ] [&]

Class
Label
— =
DERES ()
BERT
] & | &

ik

T
ets) || Tok1 || Tok2 Tok N
l

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColLA

——{r -o—{{—{

Question Paragraph

(c) Question Answering Tasks:
SQUAD v1.1

(o} B-PER (o}
% & <F
e T, | T, '
BERT
el = ] =]
B g g §
[(CLS] ]{ Tok 1 ” TokZ]

I

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER




Rapid Progress tor Pre-fraining
(GLUE Benchmark)

ALBERT

| |
90 : : XLNet RoBERTa
: I BERT-Large
| | BERT-Base
v : : GPT
8 | |
% ]
(N | |
- I |
— | |
) | |
| |
| |
| |
| |
| |

60

Over 3x reduction in error in 2 years, “superhuman” performance




But let’s change the x-axis to
computational cost...

90
1.9e20 FLOPs
6.4e19 FLOPs
@®BERT-Large
o @® BERT-Base
o ® GPT
(&)
n
Ll
= |®@ELMo
O@Glove
60

Pre-Train FLOPs
BERT-Large uses 60x more compute than ELMo




But let’s change the x-axis to
computational cost...

90 @® ROBERTa
@® XLNet

@ BERT-Large
® BERT-Base

|®GPT

ELMo
GloVe

60

GLUE Score

Pre-Train FLOPs
RoBERTa uses 16x more compute than BERT-Large




More compute, more bettere

90 ®ROBERTa @ ALBERT

@®XLNet

BERT-Large
BERT-Base

GPT

ELMo
GloVe

GLUE Score

60
Pre-Train FLOPs

ALBERT uses 10x more compute than RoBERTa




ELECTRA: “Efficiently Learning an Encoder to
Classify Token Replacements Accurately”

» Clark, Luong, Le, and Manning, ICLR 2020.
hitps.//openreview.net/pdi2id=rixMH1BtvB

» Bidirectional model but learn from all tokens

orlgmal replaced orlgmal orlgmal replaced

-— .
~ S<¢ =2,
[ vfflsz’.gga-lfz :l’:s,«:/ I
~
I - ’I\A’Z "? I~f ~< X -~ \ll\ ~ N |
PP L P e NN



Generating Replacements

the —> [MASK] —>
artist—>» artist —
sold — sold —>»
the — the —>

painting —» [MASK] —>»

sample
----» the —> —> original
artist—» | —> original
Gen_erator Discriminator g
(typically a sold —> ELECTRA —> original
small MLM) ( ) g
the —> —> original
F---» car —> —>replaced
A sample
I A
I |
MLM Loss '

Binary classification loss



Results: GLUE Score vs Compute

EL-Large EL-Large

100k steps____ @ —®ROBERTa

EL-Bas¢ T-large

BERT-Base

EL-Smalle® GPT

ELMo
GloVe

0 Pre-Train FLOPs




Limitations of Pretrained Encoders vs.
Decoders

» BERT and other pretrained encoders are good for classifications, but don’'t
naturally lead to nice autoregressive (1-word-at-a-time) generative methods.

» Decoders like GPT are good at generatfing sequences in autoregressive way.

Iroh

goes

make/brew/craft

to

[MASK] tasty

tea

goes to make tasty tea END
O R R

Pretrained Decoder

Iroh  goes make tasty tea



Pretraining encoders-decoders: TS

» Pretraining encoder-decoders: what pretfraining objective to use?¢
» What Raffel et al., 2018 found to work best was span corruption: T5.

» Replace different-length spans from the input with unique placeholders;
decode out the spans that were removed!

» The |largest T5 model had 11 billion parameters.

Original text

Thank you fef inviting me to your party 1351[ week.

Targets

A for inviting <v> last <7>
]

Inputs

¥ ¥
Thank you <X> me to your party <Y> week.



Pretraining revolution

0.2

J = Human
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§ 0.01 — ——— Switchboard
T —— ImageNet
g —0.21 SQuAD 1.1
= —— SQuAD 2.0
8 GLUE
% —0.41 —— SuperGLUE
3
g ~0.61
N
E
& —0.81
]
Z
-1.0 y y ; y v
2000 2005 2010 2015 2020
Year
110 —
Reset zoom
100
ALBERT + DAAF + Verifier (ensemble) FPNet (ensemble) _
90 BERT + ConvLSTM + MTL + Verifier (grg_sgmge)——f“.'_'.—.—f Q - -
BERT finetune baseline,(ensemble)
S a0 BERT (single modg . .
E et gl 1 Gains from pretrained language models
SAN (ensemble model) ./'
70 —° =
60
50
Jan'18 May '18 Sep '18 Jan'19 May '19 Sep'19 Jan'20 May '20 Sep '20 Jan'21 May '21

Other models  -o- Models with highest EM




Exponential increase of computing

The blessings of scale

Al training runs, estimated computing resources used

Floating-point operations, selected systems, by type, log scale
PaLM (540B)

24
GPT-3 oA L.
. GPT-2 "
® Drawing Language DALL-E 1020
@® Visicn Other BERT-Large
NPLM 100
@ L
NetTalk ® 10
. o .
Neocognitron ° ® 108
2
ADALINE 4
® 10
OTheseus .
| ’ I ' 1 ! I ! I ' 1 ' | ! | e
1950 60 70 80 90 2000 10 22

Sources: "Compute trends across three eras of machine learning”, by J. Sevilla et al., arXiv, 2022; Our World in Data



Vision Transformer

Transformer for images?




Vision Transformer (ViT)

Computer vision model Linear projection
with no convolutions! to C-dim vector
of predicted
Output vectors class scores
Exact same as T f
NLP Transformer! ransrormer
Add positional Special extra input:
embedding: learned D- |: |: [ [ [ [ [ [ I classification token
dim vector per position + + + + (D dims, learned)
Linear projection to :|

D-dimensional vector Q
N input patches, each
of shape 3x16x16 ) ‘
Cat image is free for commercial

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 use under a Pixabay license




Vision Transformer (ViT) vs ResNets

Recall: ImageNet
dataset has 1k
categories, 1.2M
images

When trained on
ImageNet, ViT
models perform
worse than ResNets

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

\O
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o0
N
L 1 L L 1

S

)

Q
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=

Q

Q
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— 80+

(o]

@)

=

Z 75 ResNets ViT-L/32
oD I > ViT-B/32 ViT-L/16
g ViT-B/16 ViT-H/14

70 1 1 I 1
ImageNet ImageNet-21k JFT-300M

Pre-training dataset

B = Base
L = Large
H = Huge

/32, /16, /14 is patch
size; smaller patch
size is a bigger model
(more patches)



Vision Transformer (ViT) vs ResNets

90

ImageNet-21k has
14M images with 21k

o0
9}
1

size is a bigger model
(more patches)

better: big ViTs match

big ResNets 704 , ,
ImageNet ImageNet-21k JFT-300M

Pre-training dataset

ViT-B/16 ViT-H/14
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021




Vision Transformer (ViT) vs ResNets

. 90
JFT-300M is an _—— |
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If you pretrainon 2" IEI:_L::ggZ
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ImageNet, large % 75 A ResNets ViT-L/32 | /32,/16, /14 is patch
ViTs outperform e0 ! ViT-B/32 ViT-L/16 | Siz& smaller patch
g ] ] size is a bigger model
large ResNets = 70_. ViT-B/16 ViT-H/14 (more patches)
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Pre-training dataset

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021




ViT vs CNN o

‘ Layer Normalization ‘

In most CNNs (including

ResNets), decrease resolution 31 block:
and increase channels as you 768 X 14 X 14
go deeper in the network
Stage 3: (Hierarchical architecture)
256 x 14 x 14
Useful since objects in images
can occur at various scales
Stage 2 ‘ | 2"d block:
. Layer Normalization
128 x 28 x 28 In a ViT, all blocks have 4@? 768x14x 14
same resolution and T —
number of channels R A
(Isotropic architecture)
Stage 1: " )
64 X 56 X 56 1* block:
768 x 14 x 14
Can we build a hierarchical ViT model?
Input: Input:
3x224 x 224

3x224 x 224




Hierarchical ViT: Swin Transformer

c H W 2 H W
X — X — X — X —
4 4 8 8
7 Stagel w70 Smge2 N
1 1
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= =] 1! 50 1
IXHXW 3| |= L = I
21 1 i=, ) 1! B0 . [
1 | B Swin |5 Swin I
Images [P & —> 5 > Transformer—:+) = Transformer [
Sl | = Block i |8 Block I
= L 3 L 1
Al = 1 : = [
N Gl BN plr \ J!
‘. X2 M X2 s
Divide image into 4x4 Merge 2x2
patches and project neighborhoods;
to C dimensions now patches are

(effectively) 8x8

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

H/4

W/4

H/8

W/8

H/8

W/8

4C

2C

Concatenate
groups of
2x2 features

Linear
projection
from 4C to
2C channels
(1x1 conv)



Hierarchical ViT: Swin Transformer

C W 2C oW 4C 8C W
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1
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Images [P & > LTEJ > Transformer—:—:') = Transformer—:—:) = PP Transformer | = [ Transformer [P
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=1 e L I~ | = e I
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. X2 o X2 4N x6 Y X2 s
Divide image into 4x4 Merge 2x2 Merge 2x2 Merge 2x2
patches and project neighborhoods; neighborhoods; neighborhoods;
to C dimensions now patches are now patches are now patches are
(effectively) 8x8 (effectively) 16x16 (effectively) 32x32

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021




Swin Transformer: Window Attention

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

With H x W grid of tokens, each attention
matrix is H¥W? — quadratic in image size

Rather than allowing each token to attend
to all other tokens, instead divide into
windows of M x M tokens (here M=4); only
compute attention within each window

Total size of all attention matrices is now:
M4(H/M)(W/M) = M2HW

Linear in image size for fixed M!
Swin uses M=7 throughout the network



Swin Transformer: Window Attention

Problem: tokens only interact with other tokens within
the same window; no communication across windows

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021




Swin Transformer: Shifted Window Attention

Solution: Alternate between normal windows and
shifted windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Detail: Relative Positional Bias

ViT adds positional embedding to
input tokens, encodes absolute
position of each token in the image

Swin does not use positional
embeddings, instead encodes
relative position between patches
when computing attention:

Attention with relative bias:

A = Soft <QKT+B>V
= Softmax

VD
Q,K,V:M? x D (Query, Key, Value)

B: M? x M? (learned biases)



Other Hierarchical Vision Transformers

MVIT

Fan et al, “Multiscale Vision
Transformers”, ICCV 2021

Swin-V2

B |WQ | IWK I IWV “4— Attention
Parameterized

xll

Layer N
MLP

Layer Norm

Ax, A y '—I—i _At(entlon

Liu et al, “Swin Transformer V2: Scaling
up Capacity and Resolution”, CVPR 2022

Improved MVIiT

‘Dog’ (‘Dog’, ) ‘Running’

i

mNE
o @ e &

-i =

(a) Image classification (b) Object detection (c) Video recognition

—

{up8

Li et al, “Improved Multiscale Vision Transformers
for Classification and Detection”, arXiv 2021



Thank you!




