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Summary

´ We have shown: 
´ CNN Architectures: LeNet5, Alexnet, VGG, GoogleNet, Resnet

´ Recurrent Neural Networks and LSTM (GRU)

´ Attention and Transformer

´ Today:
´ Applications of Transformer

´ BERT and GPT

´ Reference: 
´ Feifei Li, Stanford cs231n

´ Chris Manning, Stanford cs224n



A Brief History in NLP
´ In 2013-2015, LSTMs started achieving state-of-the-art results 

´ Successful tasks include: handwriting recognition, speech 

´ recognition, machine translation, parsing, image captioning 

´ LSTM became the dominant approach 

´ Now (2019), other approaches (e.g. Transformers) have become more dominant for 
Machine Translation. 
´ For example in WMT (a MT conference + competition): 

´ In WMT 2016, the summary report contains ”RNN” 44 times 

´ In WMT 2018, the report contains “RNN” 9 times and “Transformer” 63 times 

´ Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, 
http://www.statmt.org/wmt16/pdf/W16-2301.pdf 

´ Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, 
http://www.statmt.org/wmt18/pdf/WMT028.pdf 



Motivation of TransformerThe Motivation for Transformers

• We want parallelization but RNNs are inherently sequential

• Despite LSTMs, RNNs generally need attention mechanism to 
deal with long range dependencies – path length between 
states grows with distance otherwise

• But if attention gives us access to any state… maybe we can just 
use attention and don’t need the RNN?

• And then NLP can have deep models … and solve our vision envy
45



The Transformer Encoder-Decoder
[Vaswani et al. 2017]
´ Looking back at the whole model

The Transformer Encoder-Decoder [Vaswani et al., 2017]
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Empirical advantages of Transformer vs. 
LSTM

´ 1. Self-attention == no locality bias 
´ Long-distance context has “equal opportunity”

´ 2. Single multiplication per layer == efficiency on TPU 

Model Architecture

● Empirical advantages of Transformer vs. LSTM:
1. Self-attention == no locality bias

● Long-distance context has “equal opportunity”

2. Single multiplication per layer == efficiency on TPU
● Effective batch size is number of words, not sequences

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

Transformer LSTM



What would we like to fix about the 
Transformer? 
´ Quadratic compute in self-attention (today): 

´ Computing all pairs of interactions means our computation grows quadratically
with the sequence length! 

´ For recurrent models, it only grew linearly! 



Quadratic computation as a function of 
sequence length
´ One of the benefits of self-attention over recurrence was that it’s highly 

parallelizable. 

´ However, its total number of operations grows as 𝑂( 𝑛2 𝑑 ), where 𝑛 is the 
sequence length, and 𝑑 is the dimensionality. 

´ Think of 𝑑 as around 𝟏,𝟎𝟎𝟎 (though for large language models it’s much larger!). 
• So, for a single (shortish) sentence, 𝑛 ≤ 30; 𝑛2 ≤ 𝟗𝟎𝟎.
• In practice, we set a bound like 𝑛 = 512.
• But what if we’d like 𝒏 ≥ 𝟓𝟎,𝟎𝟎𝟎? For example, to work on long documents? 

• One of the benefits of self-attention over recurrence was that it’s highly 
parallelizable.

• However, its total number of operations grows as ! "!# , where " is the 
sequence length, and # is the dimensionality.

Quadratic computation as a function of sequence length
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= !"#!	!!

∈ ℝ!×!

Need to compute all 
pairs of interactions!
  # $!%#!	!!

!"

• Think of # as around $, &&& (though for large language models it’s much larger!).

• So, for a single (shortish) sentence,  " ≤ 30; "! ≤ *&&.
• In practice, we set a bound like " = 512.
• But what if we’d like 0 ≥ 2&, &&&? For example, to work on long documents?



Improving quadratic self-attention cost 

´ Considerable recent work has gone into the question, Can we build models 
like Transformers without paying the all-pairs self-attention cost? 

´ For example, Linformer [Wang et al., 2020, Linformer: Self-Attention with 
Linear Complexity, arXiv:2006.04768] 

• Considerable recent work has gone into the question, Can we build models like 
Transformers without paying the ! 3!  all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Work on improving on quadratic self-attention cost
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Bi-Direction



Motivation of BidirectionBidirectional RNNs: motivation

36

terribly exciting !the movie was

positive

Sentence encoding

We can regard this hidden state as a 
representation of the word “terribly” in the 
context of this sentence. We call this a 
contextual representation.

These contextual 
representations only 
contain information 
about the left context 
(e.g. “the movie 
was”). 

What about right
context?

In this example, 
“exciting” is in the 
right context and this 
modifies the meaning 
of “terribly” (from 
negative to positive)

Task: Sentiment Classification



Bidirectional RNNs

37
terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated 
hidden states

This contextual representation of “terribly” 
has both left and right context!



Bidirectional RNN: simplified diagramBidirectional RNNs
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Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean “compute 
one forward step of the RNN” – it could be a 
vanilla, LSTM or GRU computation.

We regard this as “the hidden 
state” of a bidirectional RNN. 
This is what we pass on to the 
next parts of the network.

Generally, these 
two RNNs have 
separate weights

On timestep t:



Bidirectional RNN: simplified diagram

´ The two-way arrows indicate bidirectionality and the depicted hidden 
states are assumed to be the concatenated forwards+backwards states. 

Bidirectional RNNs: simplified diagram
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terribly exciting !the movie was

The two-way arrows indicate bidirectionality and 
the depicted hidden states are assumed to be 
the concatenated forwards+backwards states.



Uni-Direction LSTM

´ Semi-Supervised Sequence Learning, Google, 2015

History of Contextual Representations

● Semi-Supervised Sequence Learning, Google, 2015
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Bi-Direction LSTM: ELMo -- Embeddings
from Language Models 
´ Peters et al. (2018) Deep Contextual Word Embeddings, NAACL 2018. 

https://arxiv.org/abs/1802.05365 

´ Learn a deep Bi-NLM and use all its layers in prediction

History of Contextual Representations

● ELMo: Deep Contextual Word Embeddings, AI2 & 
University of Washington, 2017
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Bidirectional RNNs 

´ Note: bidirectional RNNs are only applicable if you have access to the entire input 
sequence. 
´ For example, Encoder of Transformers

´ They are not applicable to Language Modeling, because in LM you only have left context 
available, e.g. Decoder of Transformers

´ If you do have entire input sequence (e.g. any kind of encoding), bidirectionality is 
powerful (you should use it by default). 

´ For example, BERT (Bidirectional Encoder Representations from Transformers) is a 
powerful pretrained contextual representation system built on bidirectionality. 



Pretraining for three types of architectures 
in Transformers

The trransformer architecture influences the type of pretraining:
Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• Wait, how do we pretrain them?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

´ Decoders:
´ Unidirectional Language models! 

What we’ve seen so far. 
´ Nice to generate from; can’t 

condition on future words 

´ Encoders:
´ Gets bidirectional context – can 

condition on future! 

´ Wait, how do we pretrain them? 

´ Encoder-Decoders:
´ Good parts of decoders and 

encoders? 

´ What’s the best way to pretrain them? 



GPT (Generative Pre-Training): uni-
directional transformer
´ Improving Language Understanding by Generative Pre-Training, OpenAI, 

2018 

History of Contextual Representations

● Improving Language Understanding by Generative 
Pre-Training, OpenAI, 2018
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Fine-tune on 
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Transformer Transformer

Train Deep (12-layer) 
Transformer LM



Pretraining decoders

ℎ&, … , ℎ'

Pretraining decoders

When using language model pretrained decoders, we can ignore
that they were trained to model 4 5# 5$:#&$).

48

We can finetune them by training a classifier 
on the last word’s hidden state.

ℎ$, … , ℎ0 = 	Decoder 5$, … , 50
E ∼ Gℎ0 + I

Where G and I are randomly initialized and 
specified by the downstream task.

Gradients backpropagate through the whole 
network.

J/L

$&, … , $'

Linear %, &

[Note how the linear layer hasn’t been 
pretrained and must be learned from scratch.]



Pretraining decoders
Pretraining decoders

It’s natural to pretrain decoders as language models and then
use them as generators, finetuning their 4" 5# 5$:#&$)!
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This is helpful in tasks where the output is a 
sequence with a vocabulary like that at 
pretraining time! 

• Dialogue (context=dialogue history)
• Summarization (context=document)

ℎ$, … , ℎ0 = 	Decoder 5$, … , 50
5# ∼ Gℎ#&$ + I

Where G, I were pretrained in the language 
model!

5! 53 54 55 56

[Note how the linear layer has been pretrained.]

G, I
ℎ&, … , ℎ'

5$ 5! 53 54 55



GPT (Generative Pre-Trained Transformer): 
uni-directional transformer-decoder
´ 2018’s	GPT	was	a	big	success	in	pretraining a	decoder!	

• Transformer	decoder	with	12	layers.	

• 768-dimensional	hidden	states,	3072-dimensional	feed-forward	hidden	layers.	

• Byte-pair	encoding	with	40,000	merges	

• Trained	on	BooksCorpus:	over	7000	unique	books.	

• Contains	long	spans	of	contiguous	text,	for	learning	long-distance	dependencies.	Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

27

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• Wait, how do we pretrain them?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?



How about bi-directional transformers? 
– BERT



BERT: Devlin, Chang, Lee, Toutanova (2018) 

´ BERT (Bidirectional Encoder Representations from Transformers): 

´ Pre-training of Deep Bidirectional Transformers for Language 
Understanding, which is then fine-tuned for a task 

´ Want: truly bidirectional information flow without leakage in a 
deep model 

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Encoders
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Masked Language Model

´ Problem: How the words see each other in bi-directions?

´ Solution: Mask out k% of the input words, and then predict the masked 
words 
´ We always use k = 15% 

´ Too little masking: Too expensive to train 

´ Too much masking: Not enough context 

Masked LM

● Solution: Mask out k% of the input words, and 
then predict the masked words
○ We always use k = 15%

● Too little masking: Too expensive to train
● Too much masking: Not enough context

the man went to the [MASK] to buy a [MASK] of milk

store gallon



Masked LM

´ Problem: Masked token never seen at fine-tuning 

´ Solution: 15% of the words to predict, but don’t replace with [MASK] 100% of the 
time. Instead: 

´ 80% of the time, replace with [MASK] 
´ went to the store → went to the [MASK] 

´ 10% of the time, replace random word
´ went to the store → went to the running 

´ 10% of the time, keep same
´ went to the store → went to the store 



Next Sentence Prediction

´ To learn relationships between sentences, predict whether Sentence B is 
actual sentence that proceeds Sentence A, or a random sentence 

Next Sentence Prediction

● To learn relationships between sentences, predict 
whether Sentence B is actual sentence that 
proceeds Sentence A, or a random sentence



BERT sentence pair encoding 

´ Token embeddings are word pieces (30k)

´ Learned segmented embedding represents each sentence 

´ Positional embedding is as for other Transformer architectures 
Input Representation

● Use 30,000 WordPiece vocabulary on input.
● Each token is sum of three embeddings
● Single sequence is much more efficient.



Training

´ 2 model released: 
´ BERT-Base: 12-layer, 768-hidden, 12-head, 110 million params.

´ BERT-Large: 24-layer, 1024-hidden, 16-head, 340 million params.  

´ Training Data: 
´ BookCorpus (800M words) 

´ English Wikipedia (2.5B words)

´ Batch Size: 131,072 words 
´ (1024 sequences * 128 length or 256 sequences * 512 length) 

´ Training Time: 1M steps (~40 epochs) 
´ Optimizer: AdamW, 1e-4 learning rate, linear decay 
´ Trained on 4x4 or 8x8 TPU slice for 4 days 
´ Pretraining is expensive and impractical on a single GPU; Finetuning is practical 

and common on a single GPU 



BERT model fine tuning 

´ Simply learn a classifier built on the top layer for each task that you fine 
tune for 

BERT model fine tuning

• Simply learn a classifier built on the top layer for each task that 
you fine tune for

51



BERT model fine tuning BERT model fine tuning
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Rapid Progress for Pre-training 
(GLUE Benchmark)

6. How’s the weather?
Rapid Progress from Pre-Training  (GLUE benchmark)
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Over 3x reduction in error in 2 years, “superhuman” performance



But let’s change the x-axis to 
computational cost…But let’s change the x-axis to compute …
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BERT-Large uses 60x more compute than ELMo

6.4e19 FLOPs
1.9e20 FLOPs



But let’s change the x-axis to 
computational cost…But let’s change the x-axis to compute …
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RoBERTa uses 16x more compute than BERT-Large



More compute, more better?  
More compute, more better?
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ELECTRA: “Efficiently Learning an Encoder to 
Classify Token Replacements Accurately” 

´ Clark, Luong, Le, and Manning, ICLR 2020.
https://openreview.net/pdf?id=r1xMH1BtvB

´ Bidirectional model but learn from all tokens 

ELECTRA: “Efficiently Learning an Encoder to 
Classify Token Replacements Accurately”

Bidirectional model but learn from all tokens

the painter sold the car

original replacedoriginaloriginalreplaced

Clark, Luong, Le, and Manning (2020)



Generating ReplacementsGenerating Replacements

Plausible alternatives come from small masked language 
model (the “generator”) trained jointly with ELECTRA 
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Results: GLUE Score vs Compute 
Results: GLUE Score vs Compute
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Limitations of Pretrained Encoders

´ Those results looked great! Why not used pretrained encoders for 
everything? 

´ If your task involves generating sequences, consider using a pretrained
decoder; BERT and other pretrained encoders don’t naturally lead to nice 
autoregressive (1-word-at-a-time) generation methods. 

Limitations of pretrained encoders

Those results looked great! Why not used pretrained encoders for everything?

40

If your task involves generating sequences, consider using a pretrained decoder; BERT and other 
pretrained encoders don’t naturally lead to nice autoregressive (1-word-at-a-time) generation 
methods.

Pretrained Encoder

Iroh goes to [MASK] tasty tea

make/brew/craft

Pretrained Decoder

Iroh goes to make tasty tea

goes to make tasty tea END



Pretraining encoders-decoders: T5
´ Pretraining encoder-decoders: what pretraining objective to use? 

´ What Raffel et al., 2018 found to work best was span corruption: T5.

´ Replace different-length spans from the input with unique placeholders; 
decode out the spans that were removed! 

´ A fascinating property of T5: it can be finetuned to answer a wide range of 
questions, retrieving knowledge from its parameters. 

Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

45

Replace different-length spans from the input 
with unique placeholders; decode out the 
spans that were removed!

This is implemented in text 
preprocessing: it’s still an objective 
that looks like language modeling at 
the decoder side.
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GPT-3, In-context learning, and very large 
models 

´ So far, we’ve interacted with pretrained models in two ways: 
´ Sample from the distributions they define (maybe providing a prompt) 

´ Fine-tune them on a task we care about, and take their predictions. 

´ Very large language models seem to perform some kind of learning without 
gradient steps simply from examples you provide within their contexts. 

´ GPT-3 is the canonical example of this. The largest T5 model had 11 billion 
parameters. 

´ GPT-3 has 175 billion parameters. 



Pretraining revolutionThe pretraining revolution

Gains from pretrained language models

Pretraining has had a major, tangible impact on how well NLP systems work



Larger and larger models

2 https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress



More and more data
Trained on more and more data

3

# tokens seen during training

https://babylm.github.io/



Scaling up finetuningScaling up finetuning

Pretraining can improve NLP applications by serving as parameter initialization.
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Decoder
(Transformer, LSTM, ++ )

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)
Lots of text; learn general things!

Decoder
(Transformer, LSTM, ++ )

J/L

Step 2: Finetune (on many tasks)
Not many labels; adapt to the tasks!

… the movie was … 



Instruction FinetuningInstruction finetuning
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• Collect examples of (instruction, output) pairs across many tasks and finetune an LM

[FLAN-T5; Chung et al., 2022]

• Evaluate on unseen tasks

[FLAN-T5;	Chung	et	al.,	2022]	



Limitations of instruction finetuning

´ One limitation of instruction finetuning is obvious: it’s expensive to collect 
ground-truth data for tasks. 

´ But there are other, subtler limitations too. Can you think of any? 
´ Problem 1: tasks like open-ended creative generation have no right 

answer. 
´ E.g. Write me a story about a dog and her pet grasshopper. 

´ Problem 2: language modeling penalizes all token-level mistakes equally, 
but some errors are worse than others. 

´ Even with instruction finetuning, there a mismatch between the LM 
objective and the objective of “satisfy human preferences”! 

´ Can we explicitly attempt to satisfy human preferences? (alignment)



Reinforcement Learning from 
Human Feedback (RLHF) 



Reward maximization from human

´ Let’s say we were training a language model on some task (e.g. 
summarization). 

´ For each LM sample 𝑠, imagine we had a way to obtain a human reward 
of that summary: 𝑅(𝑠)∈ R, higher is better. 

´ Now we want to maximize the expected reward of samples from our LM: 

Optimizing for human preferences

32

• Let’s say we were training a language model on some task (e.g. summarization).
• For each LM sample !, imagine we had a way to obtain a human reward of that 

summary: " ! ∈ ℝ, higher is better.

• Now we want to maximize the expected reward of samples from our LM:
%"̂~$!(") "(!̂)

SAN FRANCISCO, 
California (CNN) -- 
A magnitude 4.2 
earthquake shook the 
San Francisco
...
overturn unstable
objects.

An earthquake hit 
San Francisco. 
There was minor 
property damage, 
but no injuries.

The Bay Area has 
good weather but is 
prone to 
earthquakes and 
wildfires.

!!
" !! = 8.0

!"
" !" = 1.2

Note: for mathematical simplicity 
we’re assuming only one “prompt”
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High-level instantiation: ‘RLHF’ pipeline 

´ First step: 
instruction 
tuning! 

´ Second + third 
steps: maximize 
reward (but 
how??) 

High-level instantiation: ‘RLHF’ pipeline

• First step: instruction tuning!
• Second + third steps: maximize reward (but how??)



Reinforcement learning to the rescue 

´ The field of reinforcement learning (RL) has studied 
these (and related) problems for many years now
[Williams, 1992; Sutton and Barto, 1998] 

´ Circa 2013: resurgence of interest in RL applied to 
deep learning, game-playing [Mnih et al., 2013] 

´ But the interest in applying RL to modern LMs is an 
even newer phenomenon [Ziegler et al., 2019; 
Stiennon et al., 2020; Ouyang et al., 2022]. Why? 
´ RL w/ LMs has commonly been viewed as very 

hard to get right (still is!) 

´ Newer advances in RL algorithms that work for 
large neural models, including language models 
(e.g. PPO; [Schulman et al., 2017]) 
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• The field of reinforcement learning (RL) has studied these
(and related) problems for many years now
[Williams, 1992; Sutton and Barto, 1998]

• Circa 2013: resurgence of interest in RL applied to
deep learning, game-playing [Mnih et al., 2013]

• But the interest in applying RL to modern LMs is an
even newer phenomenon [Ziegler et al., 2019;
Stiennon et al., 2020; Ouyang et al., 2022]. Why?
• RL w/ LMs has commonly been viewed as very hard

to get right (still is!)
• Newer advances in RL algorithms that work for

large neural models, including language models
(e.g. PPO; [Schulman et al., 2017])



Optimizing for human preferences 

´ How do we actually change our LM parameters 𝜃 to maximize this? 

´ Let’s try doing gradient ascent!

´ Policy gradient methods in RL (e.g., [Williams, 1992]) give us tools for estimating 
and optimizing this objective. 
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• Let’s say we were training a language model on some task (e.g. summarization).
• For each LM sample !, imagine we had a way to obtain a human reward of that 

summary: " ! ∈ ℝ, higher is better.

• Now we want to maximize the expected reward of samples from our LM:
%"̂~$!(") "(!̂)

SAN FRANCISCO, 
California (CNN) -- 
A magnitude 4.2 
earthquake shook the 
San Francisco
...
overturn unstable
objects.

An earthquake hit 
San Francisco. 
There was minor 
property damage, 
but no injuries.

The Bay Area has 
good weather but is 
prone to 
earthquakes and 
wildfires.

!!
" !! = 8.0

!"
" !" = 1.2

Note: for mathematical simplicity 
we’re assuming only one “prompt”
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• How do we actually change our LM parameters ) to maximize this?
%"̂~$!(") "(!̂)

• Let’s try doing gradient ascent!
)'() ≔ )' + ,	∇*"%"̂~$!"(") "(!̂)

• Policy gradient methods in RL (e.g., REINFORCE; [Williams, 1992]) give us tools for 
estimating and optimizing this objective.

• We’ll describe a very high-level mathematical overview of the simplest policy gradient 
estimator, but a full treatment of RL is outside the scope of this course. (Try CS234!)

What if our reward 
function is non-
differentiable??

How do we estimate 
this expectation??



A very brief introdution to Policy GradientA (very!) brief introduction to policy gradient/REINFORCE [Williams, 1992]
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(chain rule) This is an 
expectation of this

⟹	 ∇* 0* ! = 	0* ! 	 ∇*	log	0* !

(defn. of expectation) (linearity of gradient)• We want to obtain

∇*%"̂~$!(") "(!̂) = ∇*5
"
"(!)0* ! =5

"
"(!)	∇*0* !

• Here we’ll use a very handy trick known as the log-derivative trick. Let’s try taking the 
gradient of log	0* !

	∇*	log	0* ! = 1
0* !

	∇*0* ! 	

• Plug back in:

5
"
" ! 	∇*0* ! =5

"
0* ! " ! 	∇*	log	0* ! 	

= %"̂~$!(") " !̂ 	∇*	log	0* !̂



A very brief introdution to Policy Gradient

• Giving us the update rule:

• Now we have put the gradient “inside” the expectation, we can approximate this 

objective with Monte Carlo samples:

∇*%"̂~$!(") "(!̂) = %"̂~$!(") " !̂ 	∇*	log	0* !̂ ≈ 1
85

+,)

-
" !+ 	∇*	log	0* !+

	 )'()≔ )' + ,
1
85

+,)

-
" !+ 	∇*" 	log	0*" !+

≈ 1
85

+,)

-
" !+ 	∇*	log	0* !+
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If " is +++

Take gradient steps 

to maximize 0* !+

If " is --- Take steps to 

minimize 0* !+

This is why it’s called “reinforcement 
learning”: we reinforce good actions, 

increasing the chance they happen again.

This is heavily simplified! There is a lot 
more needed to do RL w/ LMs. Can you 
see any problems with this objective?

A (very!) brief introduction to policy gradient/REINFORCE [Williams, 1992]

= %"̂~$!(") " !̂ 	∇*	log	0* !̂



How do we model human preferences? 

´ Awesome: now for any arbitrary, non-differentiable reward function 𝑅(𝑠), 
we can train our language model to maximize expected reward. 

´ Not so fast! (Why not?) 

´ Problem 1: human-in-the-loop is expensive! 
´ Solution: instead of directly asking humans for preferences, model their 

preferences as a separate (NLP) problem! [Knox and Stone, 2009] 

How do we model human preferences?
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• Awesome: now for any arbitrary, non-differentiable reward function " ! , we can 
train our language model to maximize expected reward.

• Not so fast! (Why not?)
• Problem 1: human-in-the-loop is expensive!

• Solution: instead of directly asking humans for preferences, model their 
preferences as a separate (NLP) problem! [Knox and Stone, 2009]

An earthquake hit 
San Francisco. 
There was minor 
property damage, 
but no injuries.

The Bay Area has 
good weather but is 
prone to 
earthquakes and 
wildfires.

!!
" !! = 8.0

!"
" !" = 1.2

Train an LM	"9. !  to 
predict human 
preferences from an 
annotated dataset, then 
optimize for "9. instead.

! !



How do we model human preferences?
´ Problem 2: human judgments are noisy and miscalibrated! 

´ Solution: instead of asking for direct ratings, ask for pairwise comparisons, which 
can be more reliable [Phelps et al., 2015; Clark et al., 2018] 
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• Problem 2: human judgments are noisy and miscalibrated!
• Solution: instead of asking for direct ratings, ask for pairwise comparisons, which can 

be more reliable [Phelps et al., 2015; Clark et al., 2018] 

A 4.2 magnitude 
earthquake hit
San Francisco, 
resulting in 
massive damage.

!#
" !# =	 ?" !# = 	 4.1? 	 6.6? 	 3.2?



How do we model human preferences?
´ Problem 2: human judgments are noisy and miscalibrated! 

´ Solution: instead of asking for direct ratings, ask for pairwise comparisons, which 
can be more reliable [Phelps et al., 2015; Clark et al., 2018] 
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• Problem 2: human judgments are noisy and miscalibrated!
• Solution: instead of asking for direct ratings, ask for pairwise comparisons, which can 

be more reliable [Phelps et al., 2015; Clark et al., 2018] 

An earthquake hit 
San Francisco. 
There was minor 
property damage, 
but no injuries.

The Bay Area has 
good weather but is 
prone to 
earthquakes and 
wildfires.

!! !"

A 4.2 magnitude 
earthquake hit
San Francisco, 
resulting in 
massive damage.

!#

> >

Reward Model ("9.)

The Bay Area … ... wildfires

1.2

:/0 ; = −% "#,"$ ~2 log	=("9. !3 − "9.(!4))
“winning” 
sample

“losing” 
sample

!3 should score
higher than !4 

Bradley-Terry [1952] paired comparison model



Training a reward model first
Make sure your reward model works first!

Data

Evaluate RM on predicting outcome of held-out human judgments

[Stiennon et al., 2020]

Large enough RM 
trained on enough 
data approaching 
single human perf



RLHF: Putting it all together 
[Christiano et al., 2017; Stiennon et al., 2020] 

´ Finally, we have everything we need: 
´ A pretrained (possibly instruction-finetuned) LM 𝑝PT(𝑠) 

´ A reward model 𝑅𝑀(𝑠) that produces scalar rewards for LM outputs, trained on a 
dataset of human comparisons 

´ A method for optimizing LM parameters towards an arbitrary reward function. 

´ Now to do RLHF: 
´ Initialize a copy of the model 𝑝𝜃RL(𝑠) , with parameters 𝜃 we would like to optimize 

´ Optimize the following reward with RL:
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This is a penalty which prevents us from diverging too far from 
the pretrained model. In expectation, it is known as the 
Kullback-Leibler (KL) divergence between !!"#(#) and !$% # .

RLHF: Putting it all together [Christiano et al., 2017; Stiennon et al., 2020]

Pay a price when 
0*/5 ! > 067 !

• Finally, we have everything we need:
• A pretrained (possibly instruction-finetuned) LM 067(!) 
• A reward model	"9.(!) that produces scalar rewards for LM outputs, trained on a 

dataset of human comparisons
• A method for optimizing LM parameters towards an arbitrary reward function.

• Now to do RLHF:
• Initialize a copy of the model 0*/5(!) , with parameters ) we would like to optimize
• Optimize the following reward with RL:

" ! = "9.(!) − ?	log
0*/5(!)
067(!)



RLHF improves over pretraining and finetuning
RLHF provides gains over pretraining + finetuning

[Stiennon et al., 2020]

/$%(!) 
/&'%(!) 

/()(!) 
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InstructGPT: scaling up RLHF to tens of thousands 
(30k) of tasks InstructGPT: scaling up RLHF to tens of thousands of tasks

[Ouyang et al., 2022]

30k 
tasks!

44



ChatGPT: Instruction Finetuning + RLHF for dialog 
agents [https://openai.com/blog/chatgpt/]ChatGPT: Instruction Finetuning + RLHF for dialog agents

48

Note: OpenAI (and similar 
companies) are keeping 
more details secret about 
ChatGPT training 
(including data, training 
parameters, model size)—
perhaps to keep a 
competitive edge…

https://openai.com/blog/chatgpt/

(Instruction finetuning!)



ChatGPT: Instruction Finetuning + RLHF for 
dialog agents 
[https://openai.com/blog/chatgpt/]ChatGPT: Instruction Finetuning + RLHF for dialog agents
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Note: OpenAI (and similar 
companies) are keeping 
more details secret about 
ChatGPT training 
(including data, training 
parameters, model size)—
perhaps to keep a 
competitive edge…

https://openai.com/blog/chatgpt/

(RLHF!)



Yet, Limitations of RL + Reward Modeling

´ Human preferences are unreliable! 
´ ”Reward hacking” is a common problem in RL 

´ Chatbots are rewarded to produce responses that seem authoritative and 
helpful, regardless of truth 

´ This can result in making up facts + hallucinations 

´ Models of human preferences are even more unreliable! 
´ RLHF labels are often obtained from overseas, low-wage workers 

´ We also need to be quite careful about how annotator biases might creep into 
LMs 



What’s next? 

´ RLHF is still a very underexplored and 
fastmoving area! 

´ RLHF gets you further than instruction 
finetuning, but is (still!) data expensive. 

´ Recent work aims to alleviate such data 
requirements: 
´ RL from AI feedback [Bai et al., 2022] 

´ Finetuning LMs on their own outputs [Huang 
et al., 2022; Zelikman et al., 2022] 

´ However, there are still many limitations of 
large LMs (size, hallucination) that may not 
be solvable with RLHF! 

What’s next?

• RLHF is still a very underexplored and fast-
moving area!

• RLHF gets you further than instruction 
finetuning, but is (still!) data expensive.

• Recent work aims to alleviate such data 
requirements:
• RL from AI feedback [Bai et al., 2022]
• Finetuning LMs on their own outputs

[Huang et al., 2022; Zelikman et al., 
2022]

• However, there are still many limitations of 
large LMs (size, hallucination) that may not 
be solvable with RLHF!
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[Huang et al., 2022]

LM chain of thought

Self-Taught Reasoner (STaR)
[Zelikman et al., 2022]



Thank you!


