
Transformer, GPT and
BERT
Yuan YAO

HKUST

Summary

´ We have shown:
´ CNN Architectures: LeNet5, Alexnet, VGG, GoogleNet, Resnet

´ Recurrent Neural Networks and LSTM (GRU)

´ Attention and Transformer

´ Today:
´ Applications of Transformer

´ BERT and GPT

´ Reference:
´ Feifei Li, Stanford cs231n

´ Chris Manning, Stanford cs224n

A Brief History in NLP
´ In 2013-2015, LSTMs started achieving state-of-the-art results

´ Successful tasks include: handwriting recognition, speech

´ recognition, machine translation, parsing, image captioning

´ LSTM became the dominant approach

´ Now (2019), other approaches (e.g. Transformers) have become more dominant for
Machine Translation.
´ For example in WMT (a MT conference + competition):

´ In WMT 2016, the summary report contains ”RNN” 44 times

´ In WMT 2018, the report contains “RNN” 9 times and “Transformer” 63 times

´ Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016,
http://www.statmt.org/wmt16/pdf/W16-2301.pdf

´ Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018,
http://www.statmt.org/wmt18/pdf/WMT028.pdf

Motivation of TransformerThe Motivation for Transformers

• We want parallelization but RNNs are inherently sequential

• Despite LSTMs, RNNs generally need attention mechanism to
deal with long range dependencies – path length between
states grows with distance otherwise

• But if attention gives us access to any state… maybe we can just
use attention and don’t need the RNN?

• And then NLP can have deep models … and solve our vision envy
45

The Transformer Encoder-Decoder
[Vaswani et al. 2017]
´ Looking back at the whole model

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Transformer
Encoder

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]

Transformer
Decoder

Word
Embeddings

Position
Representations

+

Transformer
Decoder

[output sequence]

[decoder attends
to encoder states]

Looking back at the whole model, zooming in on an Encoder block:
[predictions!]

18

The Transformer Encoder-Decoder
[Vaswani et al. 2017]
´ Looking back at the whole model

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]

Transformer
Decoder

Word
Embeddings

Position
Representations

+

Transformer
Decoder

[output sequence]

[decoder attends
to encoder states]

Looking back at the whole model, zooming in on an Encoder block:
[predictions!]

Multi-Head Attention

Residual + LayerNorm

Feed-Forward

Residual + LayerNorm

19

The Transformer Encoder-Decoder
[Vaswani et al. 2017]
´ Looking back at the whole model

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Transformer
Encoder

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]

Transformer
Decoder

Word
Embeddings

Position
Representations

+

Transformer
Decoder

[output sequence]

[decoder attends
to encoder states]

Looking back at the whole model, zooming in on an Encoder block:
[predictions!]

18

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Transformer
Encoder

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]
Word

Embeddings
Position

Representations
+

Transformer
Decoder

[output sequence]

Looking back at the whole model,
zooming in on a Decoder block:

[predictions!]

Residual + LayerNorm

Multi-Head Cross-Attention

MaskedMulti-Head Self-Attention

Residual + LayerNorm

Feed-Forward

Residual + LayerNorm

20

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Transformer
Encoder

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]
Word

Embeddings
Position

Representations
+

Transformer
Decoder

[output sequence]

Looking back at the whole model,
zooming in on a Decoder block:

[predictions!]

Residual + LayerNorm

Multi-Head Cross-Attention

MaskedMulti-Head Self-Attention

Residual + LayerNorm

Feed-Forward

Residual + LayerNorm

20

Empirical advantages of Transformer vs.
LSTM

´ 1. Self-attention == no locality bias
´ Long-distance context has “equal opportunity”

´ 2. Single multiplication per layer == efficiency on TPU

Model Architecture

● Empirical advantages of Transformer vs. LSTM:
1. Self-attention == no locality bias

● Long-distance context has “equal opportunity”

2. Single multiplication per layer == efficiency on TPU
● Effective batch size is number of words, not sequences

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

Transformer LSTM

What would we like to fix about the
Transformer?
´ Quadratic compute in self-attention (today):

´ Computing all pairs of interactions means our computation grows quadratically
with the sequence length!

´ For recurrent models, it only grew linearly!

Quadratic computation as a function of
sequence length
´ One of the benefits of self-attention over recurrence was that it’s highly

parallelizable.

´ However, its total number of operations grows as 𝑂(𝑛2 𝑑), where 𝑛 is the
sequence length, and 𝑑 is the dimensionality.

´ Think of 𝑑 as around 𝟏,𝟎𝟎𝟎 (though for large language models it’s much larger!).
• So, for a single (shortish) sentence, 𝑛 ≤ 30; 𝑛2 ≤ 𝟗𝟎𝟎.
• In practice, we set a bound like 𝑛 = 512.
• But what if we’d like 𝒏 ≥ 𝟓𝟎,𝟎𝟎𝟎? For example, to work on long documents?

• One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

• However, its total number of operations grows as ! "!# , where " is the
sequence length, and # is the dimensionality.

Quadratic computation as a function of sequence length

6

= !"#!	!!

∈ ℝ!×!

Need to compute all
pairs of interactions!
 # $!%#!	!!

!"

• Think of # as around $, &&& (though for large language models it’s much larger!).

• So, for a single (shortish) sentence, " ≤ 30; "! ≤ *&&.
• In practice, we set a bound like " = 512.
• But what if we’d like 0 ≥ 2&, &&&? For example, to work on long documents?

Improving quadratic self-attention cost

´ Considerable recent work has gone into the question, Can we build models
like Transformers without paying the all-pairs self-attention cost?

´ For example, Linformer [Wang et al., 2020, Linformer: Self-Attention with
Linear Complexity, arXiv:2006.04768]

• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the ! 3! all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Work on improving on quadratic self-attention cost

7

Key idea: map the
sequence length
dimension to a lower-
dimensional space for
values, keys In

fe
re

nc
e

tim
e

(s
)

Sequence length / batch size

Bi-Direction

Motivation of BidirectionBidirectional RNNs: motivation

36

terribly exciting !the movie was

positive

Sentence encoding

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

These contextual
representations only
contain information
about the left context
(e.g. “the movie
was”).

What about right
context?

In this example,
“exciting” is in the
right context and this
modifies the meaning
of “terribly” (from
negative to positive)

Task: Sentiment Classification

Bidirectional RNNs

37
terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated
hidden states

This contextual representation of “terribly”
has both left and right context!

Bidirectional RNN: simplified diagramBidirectional RNNs

38

Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean “compute
one forward step of the RNN” – it could be a
vanilla, LSTM or GRU computation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Generally, these
two RNNs have
separate weights

On timestep t:

Bidirectional RNN: simplified diagram

´ The two-way arrows indicate bidirectionality and the depicted hidden
states are assumed to be the concatenated forwards+backwards states.

Bidirectional RNNs: simplified diagram

39

terribly exciting !the movie was

The two-way arrows indicate bidirectionality and
the depicted hidden states are assumed to be
the concatenated forwards+backwards states.

Uni-Direction LSTM

´ Semi-Supervised Sequence Learning, Google, 2015

History of Contextual Representations

● Semi-Supervised Sequence Learning, Google, 2015

Train LSTM
Language Model

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

LSTM

very

LSTM

funny

LSTM

movie

POSITIVE

...

Fine-tune on
Classification Task

Bi-Direction LSTM: ELMo -- Embeddings
from Language Models
´ Peters et al. (2018) Deep Contextual Word Embeddings, NAACL 2018.

https://arxiv.org/abs/1802.05365

´ Learn a deep Bi-NLM and use all its layers in prediction

History of Contextual Representations

● ELMo: Deep Contextual Word Embeddings, AI2 &
University of Washington, 2017

Train Separate Left-to-Right and
Right-to-Left LMs

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

Apply as “Pre-trained
Embeddings”

LSTM

open

<s>

LSTM

a

open

LSTM

bank

a

open a bank

Existing Model Architecture

Bidirectional RNNs

´ Note: bidirectional RNNs are only applicable if you have access to the entire input
sequence.
´ For example, Encoder of Transformers

´ They are not applicable to Language Modeling, because in LM you only have left context
available, e.g. Decoder of Transformers

´ If you do have entire input sequence (e.g. any kind of encoding), bidirectionality is
powerful (you should use it by default).

´ For example, BERT (Bidirectional Encoder Representations from Transformers) is a
powerful pretrained contextual representation system built on bidirectionality.

Pretraining for three types of architectures
in Transformers

The trransformer architecture influences the type of pretraining:
Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

26

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• Wait, how do we pretrain them?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

´ Decoders:
´ Unidirectional Language models!

What we’ve seen so far.
´ Nice to generate from; can’t

condition on future words

´ Encoders:
´ Gets bidirectional context – can

condition on future!

´ Wait, how do we pretrain them?

´ Encoder-Decoders:
´ Good parts of decoders and

encoders?

´ What’s the best way to pretrain them?

GPT (Generative Pre-Training): uni-
directional transformer
´ Improving Language Understanding by Generative Pre-Training, OpenAI,

2018

History of Contextual Representations

● Improving Language Understanding by Generative
Pre-Training, OpenAI, 2018

Transformer

<s>

open

open

a

a

bank

Transformer Transformer

POSITIVE

Fine-tune on
Classification Task

Transformer

<s> open a

Transformer Transformer

Train Deep (12-layer)
Transformer LM

Pretraining decoders

ℎ&, … , ℎ'

Pretraining decoders

When using language model pretrained decoders, we can ignore
that they were trained to model 4 5# 5$:#&$).

48

We can finetune them by training a classifier
on the last word’s hidden state.

ℎ$, … , ℎ0 = 	Decoder 5$, … , 50
E ∼ Gℎ0 + I

Where G and I are randomly initialized and
specified by the downstream task.

Gradients backpropagate through the whole
network.

J/L

$&, … , $'

Linear %, &

[Note how the linear layer hasn’t been
pretrained and must be learned from scratch.]

Pretraining decoders
Pretraining decoders

It’s natural to pretrain decoders as language models and then
use them as generators, finetuning their 4" 5# 5$:#&$)!

49

This is helpful in tasks where the output is a
sequence with a vocabulary like that at
pretraining time!

• Dialogue (context=dialogue history)
• Summarization (context=document)

ℎ$, … , ℎ0 = 	Decoder 5$, … , 50
5# ∼ Gℎ#&$ + I

Where G, I were pretrained in the language
model!

5! 53 54 55 56

[Note how the linear layer has been pretrained.]

G, I
ℎ&, … , ℎ'

5$ 5! 53 54 55

GPT (Generative Pre-Trained Transformer):
uni-directional transformer-decoder
´ 2018’s	GPT	was	a	big	success	in	pretraining a	decoder!	

• Transformer	decoder	with	12	layers.	

• 768-dimensional	hidden	states,	3072-dimensional	feed-forward	hidden	layers.	

• Byte-pair	encoding	with	40,000	merges	

• Trained	on	BooksCorpus:	over	7000	unique	books.	

• Contains	long	spans	of	contiguous	text,	for	learning	long-distance	dependencies.	Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

27

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• Wait, how do we pretrain them?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

How about bi-directional transformers?
– BERT

BERT: Devlin, Chang, Lee, Toutanova (2018)

´ BERT (Bidirectional Encoder Representations from Transformers):

´ Pre-training of Deep Bidirectional Transformers for Language
Understanding, which is then fine-tuned for a task

´ Want: truly bidirectional information flow without leakage in a
deep model

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

26

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• Wait, how do we pretrain them?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

Masked Language Model

´ Problem: How the words see each other in bi-directions?

´ Solution: Mask out k% of the input words, and then predict the masked
words
´ We always use k = 15%

´ Too little masking: Too expensive to train

´ Too much masking: Not enough context

Masked LM

● Solution: Mask out k% of the input words, and
then predict the masked words
○ We always use k = 15%

● Too little masking: Too expensive to train
● Too much masking: Not enough context

the man went to the [MASK] to buy a [MASK] of milk

store gallon

Masked LM

´ Problem: Masked token never seen at fine-tuning

´ Solution: 15% of the words to predict, but don’t replace with [MASK] 100% of the
time. Instead:

´ 80% of the time, replace with [MASK]
´ went to the store → went to the [MASK]

´ 10% of the time, replace random word
´ went to the store → went to the running

´ 10% of the time, keep same
´ went to the store → went to the store

Next Sentence Prediction

´ To learn relationships between sentences, predict whether Sentence B is
actual sentence that proceeds Sentence A, or a random sentence

Next Sentence Prediction

● To learn relationships between sentences, predict
whether Sentence B is actual sentence that
proceeds Sentence A, or a random sentence

BERT sentence pair encoding

´ Token embeddings are word pieces (30k)

´ Learned segmented embedding represents each sentence

´ Positional embedding is as for other Transformer architectures
Input Representation

● Use 30,000 WordPiece vocabulary on input.
● Each token is sum of three embeddings
● Single sequence is much more efficient.

Training

´ 2 model released:
´ BERT-Base: 12-layer, 768-hidden, 12-head, 110 million params.

´ BERT-Large: 24-layer, 1024-hidden, 16-head, 340 million params.

´ Training Data:
´ BookCorpus (800M words)

´ English Wikipedia (2.5B words)

´ Batch Size: 131,072 words
´ (1024 sequences * 128 length or 256 sequences * 512 length)

´ Training Time: 1M steps (~40 epochs)
´ Optimizer: AdamW, 1e-4 learning rate, linear decay
´ Trained on 4x4 or 8x8 TPU slice for 4 days
´ Pretraining is expensive and impractical on a single GPU; Finetuning is practical

and common on a single GPU

BERT model fine tuning

´ Simply learn a classifier built on the top layer for each task that you fine
tune for

BERT model fine tuning

• Simply learn a classifier built on the top layer for each task that
you fine tune for

51

BERT model fine tuning BERT model fine tuning

52

Rapid Progress for Pre-training
(GLUE Benchmark)

6. How’s the weather?
Rapid Progress from Pre-Training (GLUE benchmark)

90

60

ELMo

GPT
BERT-Base

BERT-Large
XLNet RoBERTa ALBERT

GloVeGL
UE

 S
co

re

Over 3x reduction in error in 2 years, “superhuman” performance

But let’s change the x-axis to
computational cost…But let’s change the x-axis to compute …

90

60

ELMo

GPT
BERT-Base

BERT-Large

Pre-Train FLOPs

GloVeGL
UE

 S
co

re

BERT-Large uses 60x more compute than ELMo

6.4e19 FLOPs
1.9e20 FLOPs

But let’s change the x-axis to
computational cost…But let’s change the x-axis to compute …

90

60

≈
ç

ELMo

GPT
BERT-Base

BERT-Large
XLNet RoBERTa

Pre-Train FLOPs

GloVeGL
UE

 S
co

re

RoBERTa uses 16x more compute than BERT-Large

More compute, more better?
More compute, more better?

90

60

≈
ç

ELMo

GPT
BERT-Base
BERT-Large
XLNet

RoBERTa ALBERT

Pre-Train FLOPs

GloVeGL
UE

 S
co

re

≈
ç

ALBERT uses 10x more compute than RoBERTa

ELECTRA: “Efficiently Learning an Encoder to
Classify Token Replacements Accurately”

´ Clark, Luong, Le, and Manning, ICLR 2020.
https://openreview.net/pdf?id=r1xMH1BtvB

´ Bidirectional model but learn from all tokens

ELECTRA: “Efficiently Learning an Encoder to
Classify Token Replacements Accurately”

Bidirectional model but learn from all tokens

the painter sold the car

original replacedoriginaloriginalreplaced

Clark, Luong, Le, and Manning (2020)

Generating ReplacementsGenerating Replacements

Plausible alternatives come from small masked language
model (the “generator”) trained jointly with ELECTRA

t

artist

sold

the

the

car

[MASK]

 artist

artist artist artist

artist

sold

the

artist

[MASK]
v

[MASK]

artist

Generator
(typically a
small MLM)

original

original

original

original

replaced

Discriminator
(ELECTRA)

sample

sample

sample

artist

sold

the

the

painting

MLM Loss Binary classification loss

Results: GLUE Score vs Compute
Results: GLUE Score vs Compute

≈
ç

ELMo

GPT
BERT-Base

XLNet RoBERTa

Pre-Train FLOPs

GloVe

BERT-Large

EL-Small

EL-Base

EL-LargeEL-Large
100k steps

Limitations of Pretrained Encoders

´ Those results looked great! Why not used pretrained encoders for
everything?

´ If your task involves generating sequences, consider using a pretrained
decoder; BERT and other pretrained encoders don’t naturally lead to nice
autoregressive (1-word-at-a-time) generation methods.

Limitations of pretrained encoders

Those results looked great! Why not used pretrained encoders for everything?

40

If your task involves generating sequences, consider using a pretrained decoder; BERT and other
pretrained encoders don’t naturally lead to nice autoregressive (1-word-at-a-time) generation
methods.

Pretrained Encoder

Iroh goes to [MASK] tasty tea

make/brew/craft

Pretrained Decoder

Iroh goes to make tasty tea

goes to make tasty tea END

Pretraining encoders-decoders: T5
´ Pretraining encoder-decoders: what pretraining objective to use?

´ What Raffel et al., 2018 found to work best was span corruption: T5.

´ Replace different-length spans from the input with unique placeholders;
decode out the spans that were removed!

´ A fascinating property of T5: it can be finetuned to answer a wide range of
questions, retrieving knowledge from its parameters.

Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

45

Replace different-length spans from the input
with unique placeholders; decode out the
spans that were removed!

This is implemented in text
preprocessing: it’s still an objective
that looks like language modeling at
the decoder side.

Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

45

Replace different-length spans from the input
with unique placeholders; decode out the
spans that were removed!

This is implemented in text
preprocessing: it’s still an objective
that looks like language modeling at
the decoder side.

Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

45

Replace different-length spans from the input
with unique placeholders; decode out the
spans that were removed!

This is implemented in text
preprocessing: it’s still an objective
that looks like language modeling at
the decoder side.

Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

45

Replace different-length spans from the input
with unique placeholders; decode out the
spans that were removed!

This is implemented in text
preprocessing: it’s still an objective
that looks like language modeling at
the decoder side.

GPT-3, In-context learning, and very large
models

´ So far, we’ve interacted with pretrained models in two ways:
´ Sample from the distributions they define (maybe providing a prompt)

´ Fine-tune them on a task we care about, and take their predictions.

´ Very large language models seem to perform some kind of learning without
gradient steps simply from examples you provide within their contexts.

´ GPT-3 is the canonical example of this. The largest T5 model had 11 billion
parameters.

´ GPT-3 has 175 billion parameters.

Pretraining revolutionThe pretraining revolution

Gains from pretrained language models

Pretraining has had a major, tangible impact on how well NLP systems work

Larger and larger models

2 https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress

More and more data
Trained on more and more data

3

tokens seen during training

https://babylm.github.io/

Scaling up finetuningScaling up finetuning

Pretraining can improve NLP applications by serving as parameter initialization.

16

Decoder
(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)
Lots of text; learn general things!

Decoder
(Transformer, LSTM, ++)

J/L

Step 2: Finetune (on many tasks)
Not many labels; adapt to the tasks!

… the movie was …

Instruction FinetuningInstruction finetuning

17

• Collect examples of (instruction, output) pairs across many tasks and finetune an LM

[FLAN-T5; Chung et al., 2022]

• Evaluate on unseen tasks

[FLAN-T5;	Chung	et	al.,	2022]	

Limitations of instruction finetuning

´ One limitation of instruction finetuning is obvious: it’s expensive to collect
ground-truth data for tasks.

´ But there are other, subtler limitations too. Can you think of any?
´ Problem 1: tasks like open-ended creative generation have no right

answer.
´ E.g. Write me a story about a dog and her pet grasshopper.

´ Problem 2: language modeling penalizes all token-level mistakes equally,
but some errors are worse than others.

´ Even with instruction finetuning, there a mismatch between the LM
objective and the objective of “satisfy human preferences”!

´ Can we explicitly attempt to satisfy human preferences? (alignment)

Reinforcement Learning from
Human Feedback (RLHF)

Reward maximization from human

´ Let’s say we were training a language model on some task (e.g.
summarization).

´ For each LM sample 𝑠, imagine we had a way to obtain a human reward
of that summary: 𝑅(𝑠)∈ R, higher is better.

´ Now we want to maximize the expected reward of samples from our LM:

Optimizing for human preferences

32

• Let’s say we were training a language model on some task (e.g. summarization).
• For each LM sample !, imagine we had a way to obtain a human reward of that

summary: " ! ∈ ℝ, higher is better.

• Now we want to maximize the expected reward of samples from our LM:
%"̂~$!(") "(!̂)

SAN FRANCISCO,
California (CNN) --
A magnitude 4.2
earthquake shook the
San Francisco
...
overturn unstable
objects.

An earthquake hit
San Francisco.
There was minor
property damage,
but no injuries.

The Bay Area has
good weather but is
prone to
earthquakes and
wildfires.

!!
" !! = 8.0

!"
" !" = 1.2

Note: for mathematical simplicity
we’re assuming only one “prompt”

Optimizing for human preferences

32

• Let’s say we were training a language model on some task (e.g. summarization).
• For each LM sample !, imagine we had a way to obtain a human reward of that

summary: " ! ∈ ℝ, higher is better.

• Now we want to maximize the expected reward of samples from our LM:
%"̂~$!(") "(!̂)

SAN FRANCISCO,
California (CNN) --
A magnitude 4.2
earthquake shook the
San Francisco
...
overturn unstable
objects.

An earthquake hit
San Francisco.
There was minor
property damage,
but no injuries.

The Bay Area has
good weather but is
prone to
earthquakes and
wildfires.

!!
" !! = 8.0

!"
" !" = 1.2

Note: for mathematical simplicity
we’re assuming only one “prompt”

High-level instantiation: ‘RLHF’ pipeline

´ First step:
instruction
tuning!

´ Second + third
steps: maximize
reward (but
how??)

High-level instantiation: ‘RLHF’ pipeline

• First step: instruction tuning!
• Second + third steps: maximize reward (but how??)

Reinforcement learning to the rescue

´ The field of reinforcement learning (RL) has studied
these (and related) problems for many years now
[Williams, 1992; Sutton and Barto, 1998]

´ Circa 2013: resurgence of interest in RL applied to
deep learning, game-playing [Mnih et al., 2013]

´ But the interest in applying RL to modern LMs is an
even newer phenomenon [Ziegler et al., 2019;
Stiennon et al., 2020; Ouyang et al., 2022]. Why?
´ RL w/ LMs has commonly been viewed as very

hard to get right (still is!)

´ Newer advances in RL algorithms that work for
large neural models, including language models
(e.g. PPO; [Schulman et al., 2017])

Reinforcement learning to the rescue

34

• The field of reinforcement learning (RL) has studied these
(and related) problems for many years now
[Williams, 1992; Sutton and Barto, 1998]

• Circa 2013: resurgence of interest in RL applied to
deep learning, game-playing [Mnih et al., 2013]

• But the interest in applying RL to modern LMs is an
even newer phenomenon [Ziegler et al., 2019;
Stiennon et al., 2020; Ouyang et al., 2022]. Why?
• RL w/ LMs has commonly been viewed as very hard

to get right (still is!)
• Newer advances in RL algorithms that work for

large neural models, including language models
(e.g. PPO; [Schulman et al., 2017])

Optimizing for human preferences

´ How do we actually change our LM parameters 𝜃 to maximize this?

´ Let’s try doing gradient ascent!

´ Policy gradient methods in RL (e.g., [Williams, 1992]) give us tools for estimating
and optimizing this objective.

Optimizing for human preferences

32

• Let’s say we were training a language model on some task (e.g. summarization).
• For each LM sample !, imagine we had a way to obtain a human reward of that

summary: " ! ∈ ℝ, higher is better.

• Now we want to maximize the expected reward of samples from our LM:
%"̂~$!(") "(!̂)

SAN FRANCISCO,
California (CNN) --
A magnitude 4.2
earthquake shook the
San Francisco
...
overturn unstable
objects.

An earthquake hit
San Francisco.
There was minor
property damage,
but no injuries.

The Bay Area has
good weather but is
prone to
earthquakes and
wildfires.

!!
" !! = 8.0

!"
" !" = 1.2

Note: for mathematical simplicity
we’re assuming only one “prompt”

Optimizing for human preferences

35

• How do we actually change our LM parameters) to maximize this?
%"̂~$!(") "(!̂)

• Let’s try doing gradient ascent!
)'() ≔)' + ,	∇*"%"̂~$!"(") "(!̂)

• Policy gradient methods in RL (e.g., REINFORCE; [Williams, 1992]) give us tools for
estimating and optimizing this objective.

• We’ll describe a very high-level mathematical overview of the simplest policy gradient
estimator, but a full treatment of RL is outside the scope of this course. (Try CS234!)

What if our reward
function is non-
differentiable??

How do we estimate
this expectation??

A very brief introdution to Policy GradientA (very!) brief introduction to policy gradient/REINFORCE [Williams, 1992]

36

(chain rule) This is an
expectation of this

⟹	 ∇* 0* ! = 	0* ! 	 ∇*	log	0* !

(defn. of expectation) (linearity of gradient)• We want to obtain

∇*%"̂~$!(") "(!̂) = ∇*5
"
"(!)0* ! =5

"
"(!)	∇*0* !

• Here we’ll use a very handy trick known as the log-derivative trick. Let’s try taking the
gradient of log	0* !

	∇*	log	0* ! = 1
0* !

	∇*0* ! 	

• Plug back in:

5
"
" ! 	∇*0* ! =5

"
0* ! " ! 	∇*	log	0* ! 	

= %"̂~$!(") " !̂ 	∇*	log	0* !̂

A very brief introdution to Policy Gradient

• Giving us the update rule:

• Now we have put the gradient “inside” the expectation, we can approximate this

objective with Monte Carlo samples:

∇*%"̂~$!(") "(!̂) = %"̂~$!(") " !̂ 	∇*	log	0* !̂ ≈ 1
85

+,)

-
" !+ 	∇*	log	0* !+

)'()≔)' + ,
1
85

+,)

-
" !+ 	∇*" 	log	0*" !+

≈ 1
85

+,)

-
" !+ 	∇*	log	0* !+

37

If " is +++

Take gradient steps

to maximize 0* !+

If " is --- Take steps to

minimize 0* !+

This is why it’s called “reinforcement
learning”: we reinforce good actions,

increasing the chance they happen again.

This is heavily simplified! There is a lot
more needed to do RL w/ LMs. Can you
see any problems with this objective?

A (very!) brief introduction to policy gradient/REINFORCE [Williams, 1992]

= %"̂~$!(") " !̂ 	∇*	log	0* !̂

How do we model human preferences?

´ Awesome: now for any arbitrary, non-differentiable reward function 𝑅(𝑠),
we can train our language model to maximize expected reward.

´ Not so fast! (Why not?)

´ Problem 1: human-in-the-loop is expensive!
´ Solution: instead of directly asking humans for preferences, model their

preferences as a separate (NLP) problem! [Knox and Stone, 2009]

How do we model human preferences?

38

• Awesome: now for any arbitrary, non-differentiable reward function " ! , we can
train our language model to maximize expected reward.

• Not so fast! (Why not?)
• Problem 1: human-in-the-loop is expensive!

• Solution: instead of directly asking humans for preferences, model their
preferences as a separate (NLP) problem! [Knox and Stone, 2009]

An earthquake hit
San Francisco.
There was minor
property damage,
but no injuries.

The Bay Area has
good weather but is
prone to
earthquakes and
wildfires.

!!
" !! = 8.0

!"
" !" = 1.2

Train an LM	"9. ! to
predict human
preferences from an
annotated dataset, then
optimize for "9. instead.

! !

How do we model human preferences?
´ Problem 2: human judgments are noisy and miscalibrated!

´ Solution: instead of asking for direct ratings, ask for pairwise comparisons, which
can be more reliable [Phelps et al., 2015; Clark et al., 2018]

How do we model human preferences?

39

• Problem 2: human judgments are noisy and miscalibrated!
• Solution: instead of asking for direct ratings, ask for pairwise comparisons, which can

be more reliable [Phelps et al., 2015; Clark et al., 2018]

A 4.2 magnitude
earthquake hit
San Francisco,
resulting in
massive damage.

!#
" !# =	 ?" !# = 	 4.1? 	 6.6? 	 3.2?

How do we model human preferences?
´ Problem 2: human judgments are noisy and miscalibrated!

´ Solution: instead of asking for direct ratings, ask for pairwise comparisons, which
can be more reliable [Phelps et al., 2015; Clark et al., 2018]

How do we model human preferences?

40

• Problem 2: human judgments are noisy and miscalibrated!
• Solution: instead of asking for direct ratings, ask for pairwise comparisons, which can

be more reliable [Phelps et al., 2015; Clark et al., 2018]

An earthquake hit
San Francisco.
There was minor
property damage,
but no injuries.

The Bay Area has
good weather but is
prone to
earthquakes and
wildfires.

!! !"

A 4.2 magnitude
earthquake hit
San Francisco,
resulting in
massive damage.

!#

> >

Reward Model ("9.)

The Bay Area … ... wildfires

1.2

:/0 ; = −% "#,"$ ~2 log	=("9. !3 − "9.(!4))
“winning”
sample

“losing”
sample

!3 should score
higher than !4

Bradley-Terry [1952] paired comparison model

Training a reward model first
Make sure your reward model works first!

Data

Evaluate RM on predicting outcome of held-out human judgments

[Stiennon et al., 2020]

Large enough RM
trained on enough
data approaching
single human perf

RLHF: Putting it all together
[Christiano et al., 2017; Stiennon et al., 2020]

´ Finally, we have everything we need:
´ A pretrained (possibly instruction-finetuned) LM 𝑝PT(𝑠)

´ A reward model 𝑅𝑀(𝑠) that produces scalar rewards for LM outputs, trained on a
dataset of human comparisons

´ A method for optimizing LM parameters towards an arbitrary reward function.

´ Now to do RLHF:
´ Initialize a copy of the model 𝑝𝜃RL(𝑠) , with parameters 𝜃 we would like to optimize

´ Optimize the following reward with RL:

42

This is a penalty which prevents us from diverging too far from
the pretrained model. In expectation, it is known as the
Kullback-Leibler (KL) divergence between !!"#(#) and !$% # .

RLHF: Putting it all together [Christiano et al., 2017; Stiennon et al., 2020]

Pay a price when
0*/5 ! > 067 !

• Finally, we have everything we need:
• A pretrained (possibly instruction-finetuned) LM 067(!)
• A reward model	"9.(!) that produces scalar rewards for LM outputs, trained on a

dataset of human comparisons
• A method for optimizing LM parameters towards an arbitrary reward function.

• Now to do RLHF:
• Initialize a copy of the model 0*/5(!) , with parameters) we would like to optimize
• Optimize the following reward with RL:

" ! = "9.(!) − ?	log
0*/5(!)
067(!)

RLHF improves over pretraining and finetuning
RLHF provides gains over pretraining + finetuning

[Stiennon et al., 2020]

/$%(!)
/&'%(!)

/()(!)

43

InstructGPT: scaling up RLHF to tens of thousands
(30k) of tasks InstructGPT: scaling up RLHF to tens of thousands of tasks

[Ouyang et al., 2022]

30k
tasks!

44

ChatGPT: Instruction Finetuning + RLHF for dialog
agents [https://openai.com/blog/chatgpt/]ChatGPT: Instruction Finetuning + RLHF for dialog agents

48

Note: OpenAI (and similar
companies) are keeping
more details secret about
ChatGPT training
(including data, training
parameters, model size)—
perhaps to keep a
competitive edge…

https://openai.com/blog/chatgpt/

(Instruction finetuning!)

ChatGPT: Instruction Finetuning + RLHF for
dialog agents
[https://openai.com/blog/chatgpt/]ChatGPT: Instruction Finetuning + RLHF for dialog agents

49

Note: OpenAI (and similar
companies) are keeping
more details secret about
ChatGPT training
(including data, training
parameters, model size)—
perhaps to keep a
competitive edge…

https://openai.com/blog/chatgpt/

(RLHF!)

Yet, Limitations of RL + Reward Modeling

´ Human preferences are unreliable!
´ ”Reward hacking” is a common problem in RL

´ Chatbots are rewarded to produce responses that seem authoritative and
helpful, regardless of truth

´ This can result in making up facts + hallucinations

´ Models of human preferences are even more unreliable!
´ RLHF labels are often obtained from overseas, low-wage workers

´ We also need to be quite careful about how annotator biases might creep into
LMs

What’s next?

´ RLHF is still a very underexplored and
fastmoving area!

´ RLHF gets you further than instruction
finetuning, but is (still!) data expensive.

´ Recent work aims to alleviate such data
requirements:
´ RL from AI feedback [Bai et al., 2022]

´ Finetuning LMs on their own outputs [Huang
et al., 2022; Zelikman et al., 2022]

´ However, there are still many limitations of
large LMs (size, hallucination) that may not
be solvable with RLHF!

What’s next?

• RLHF is still a very underexplored and fast-
moving area!

• RLHF gets you further than instruction
finetuning, but is (still!) data expensive.

• Recent work aims to alleviate such data
requirements:
• RL from AI feedback [Bai et al., 2022]
• Finetuning LMs on their own outputs

[Huang et al., 2022; Zelikman et al.,
2022]

• However, there are still many limitations of
large LMs (size, hallucination) that may not
be solvable with RLHF!

64

[Huang et al., 2022]

LM chain of thought

Self-Taught Reasoner (STaR)
[Zelikman et al., 2022]

Thank you!

