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Summary

´ We have shown: 
´ CNN Architectures: LeNet5, Alexnet, VGG, GoogleNet, Resnet

´ Recurrent Neural Networks and LSTM (GRU)

´ Attention and Transformer

´ Today:
´ Applications of Transformer

´ BERT, GPT, and ViT

´ Reference: 
´ Feifei Li, Stanford cs231n

´ Chris Manning, Stanford cs224n



The Transformer Encoder-Decoder
[Vaswani et al. 2017]
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The Transformer Encoder-Decoder [Vaswani et al., 2017]

Transformer
Encoder

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]

Transformer
Decoder

Word
Embeddings

Position
Representations

+

Transformer
Decoder

[output sequence]

[decoder attends 
to encoder states]

Looking back at the whole model, zooming in on an Encoder block:
[predictions!]

18



The Transformer Encoder-Decoder
[Vaswani et al. 2017]
´ Looking back at the whole model

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]

Transformer
Decoder

Word
Embeddings

Position
Representations

+

Transformer
Decoder

[output sequence]

[decoder attends 
to encoder states]

Looking back at the whole model, zooming in on an Encoder block:
[predictions!]

Multi-Head Attention

Residual + LayerNorm

Feed-Forward

Residual + LayerNorm

19



The Transformer Encoder-Decoder
[Vaswani et al. 2017]
´ Looking back at the whole model

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Transformer
Encoder

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]

Transformer
Decoder

Word
Embeddings

Position
Representations

+

Transformer
Decoder

[output sequence]

[decoder attends 
to encoder states]

Looking back at the whole model, zooming in on an Encoder block:
[predictions!]

18

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Transformer
Encoder

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]
Word

Embeddings
Position

Representations
+

Transformer
Decoder

[output sequence]

Looking back at the whole model,
zooming in on a Decoder block:

[predictions!]

Residual + LayerNorm

Multi-Head Cross-Attention

MaskedMulti-Head Self-Attention

Residual + LayerNorm

Feed-Forward

Residual + LayerNorm

20

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Transformer
Encoder

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]
Word

Embeddings
Position

Representations
+

Transformer
Decoder

[output sequence]

Looking back at the whole model,
zooming in on a Decoder block:

[predictions!]

Residual + LayerNorm

Multi-Head Cross-Attention

MaskedMulti-Head Self-Attention

Residual + LayerNorm

Feed-Forward

Residual + LayerNorm

20



�� � -BOHVBHF .PEFMT 1SF�USBJOJOH

5BCMF ���� *O PVS OFUXPSL DPOѐHVSBUJPOT
 4VCMBZFS SFGFST UP FJUIFS B GFFE�GPSXBSE
OFVSBM OFUXPSL 	''/
 PS B TFMG�BUUFOUJPO NPEVMF XJUIJO B 5SBOTGPSNFS MBZFS� 5IF
TZNCPM d SFQSFTFOUT UIF TJ[F PG UIF IJEEFO TUBUFT JO UIF OFUXPSL� 5IF QPTJUJPO FN�
CFEEJOH BU B TQFDJѐD QPTJUJPO i JT EFOPUFE CZ pi � *O UIF BUUFOUJPO NFDIBOJTN
 Aij
TJHOJѐFT UIF BUUFOUJPO TDPSF DPNQVUFE CFUXFFO B HJWFO RVFSZ BOE JUT DPSSFTQPOEJOH
LFZ� 5IF EJяFSFODF JO QPTJUJPOT CFUXFFO UIF RVFSZ BOE UIF LFZ JT SFQSFTFOUFE CZ ri−j 

B MFBSOBCMF TDBMBS WBMVF� 'JOBMMZ
 UIF UFSN R!,t SFGFST UP B SPUBSZ NBUSJY
 XIJDI SPUBUFT
CZ BO BOHMF EFUFSNJOFE CZ NVMUJQMZJOH t CZ !�

$POИHVSBUJPO .FUIPE &RVBUJPO
/PSNBMJ[BUJPO 1PTU /PSN <�> /PSN(x + 4VCMBZFS(x))
QPTJUJPO 1SF /PSN <�> x + 4VCMBZFS(/PSN(x))

4BOEXJDI /PSN <�> x + /PSN(4VCMBZFS(/PSN(x)))
/PSNBMJ[BUJPO -BZFS/PSN <�> x−"√

#
· " + #
 $ = 1

d
∑d

i=1 xi 
 % =
√

1
d
∑d

i=1 (xi − $)2

NFUIPE 3.4/PSN <�> x
3.4(x) · "
 3.4(x) =

√
1
d
∑d

i=1 x2i
%FFQ/PSN <�> -BZFS/PSN(& · x + 4VCMBZFS(x))

"DUJWBUJPO 3F-6 <�> 3F-6(x) = max(0, x)
GVODUJPO (F-6 <�> (F-6(x) = 0.5x

⊗ (
1 + tanh

(√
2
$

(x + 0.044715x3)
))

4XJTI <�> f (x ) = x · 1
1+e−x

4XJ(-6 <��> f (x ) = x ⊙ %(Wx + b)
(F(-6 <��> 4JNJMBS UP 4XJ(-6 XJUI (F-6

1PTJUJPOBM "CTPMVUF <�> xi = xi + pi
FNCFEEJOHT 3FMBUJWF <��> Aij = WqxixTj Wk + ri−j

3P1& <��> Aij = WqxiR!,i−jxTj Wk
"MJCJ <��> Aij = WqxixTj Wk −m(i − j)

,FZ� <�> 	7BTXBOJ FU BM�
 ����

 <�> 	3BEGPSE FU BM�
 ����

 <�> 	%JOH FU BM�
 ����

 <�> 	#B FU BM�
 ����


<�> 	;IBOH BOE 4FOOSJDI
 ����

 <�> 	8BOH FU BM�
 ����

 <�> 	/BJS BOE )JOUPO
 ����

 <�> 	8BOH FU BM�
 ����


<�> 	3BNBDIBOESBO FU BM�
 ����

 <��> 	4IB[FFS
 ����

 <��> 	3BяFM FU BM�
 ����

 <��> 	4V FU BM�
 ����


<��> 	1SFTT FU BM�
 ����


�������� 4USVDUVSBM .PEJИDBUJPOT

5P BEESFTT UIF DPNQVUBUJPOBM EFNBOET PG UIF 5SBOTGPSNFS
 WBSJPVT IJHI�MFWFM NPE�
JѐDBUJPOT IBWF CFFO QSPQPTFE� 5IF -JUF 5SBOTGPSNFS JOUSPEVDFT B UXP�CSBODI TUSVD�
UVSF
 DPNCJOJOH BUUFOUJPO GPS MPOH�SBOHF DPOUFYUT BOE DPOWPMVUJPO GPS MPDBM EFQFO�
EFODJFT
 NBLJOH JU TVJUBCMF GPS NPCJMF EFWJDFT� .FBOXIJMF
 'VOOFM 5SBOTGPSNFS BOE
%F-JHI5 JOUSPEVDF GVOOFM�MJLF FODPEFS BSDIJUFDUVSFT BOE SFQMBDF TUBOEBSE 5SBOT�
GPSNFS CMPDLT XJUI TQFDJBMJ[FE NPEVMFT
 SFTQFDUJWFMZ
 BJNJOH UP BDIJFWF FђDJFODZ
JO UFSNT PG '-01T
 NFNPSZ
 BOE NPEFM TJ[F� 5SBOTGPSNFST GBDF DIBMMFOHFT JO IBO�
EMJOH MPOH TFRVFODFT EVF UP UIFJS RVBESBUJD DPNQMFYJUZ� %JWJEF�BOE�DPORVFS TUSBUF�
HJFT
 TVDI BT SFDVSSFOU BOE IJFSBSDIJDBM 5SBOTGPSNFST
 IBWF FNFSHFE UP BEESFTT UIJT
JTTVF� 3FDVSSFOU 5SBOTGPSNFST VUJMJ[F DBDIF NFNPSZ UP TUPSF IJTUPSJDBM JOGPSNBUJPO

XJUI UFDIOJRVFT TVDI BT 5SBOTGPSNFS�9- FYUFOEJOH DPOUFYU MFOHUIT� "U UIF TBNF UJNF




Empirical advantages of Transformer vs. 
LSTM

´ 1. Self-attention == no locality bias 
´ Long-distance context has “equal opportunity”

´ 2. Single multiplication per layer == efficiency on TPU 

Model Architecture

● Empirical advantages of Transformer vs. LSTM:
1. Self-attention == no locality bias

● Long-distance context has “equal opportunity”

2. Single multiplication per layer == efficiency on TPU
● Effective batch size is number of words, not sequences

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

Transformer LSTM



Major disadvantage of Transformer

´ Quadratic compute in self-attention (today): 
´ Computing all pairs of interactions means our computation grows quadratically

with the sequence length! 

´ For recurrent models, it only grew linearly! Efficient Transformers: A Survey
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Figure 1: Architecture of the standard Transformer (Vaswani et al., 2017)

2. Background on Transformers

This section provides an overview of the well-established Transformer architecture (Vaswani
et al., 2017). Transformers are multi-layered architectures formed by stacking Transformer
blocks on top of one another.

Transformer blocks are characterized by a multi-head self-attention mechanism, a position-
wise feed-forward network, layer normalization (Ba et al., 2016) modules and residual con-
nectors. The input to the Transformer model is often a tensor of shape RB

⇥RN , where B

is the batch size, N the sequence length.
The input first passes through an embedding layer that converts each one-hot token

representation into a dmodel dimensional embedding, i.e., RB
⇥ RN

⇥ Rdmodel . The new
tensor is then additively composed with positional encodings and passed through a multi-
headed self-attention module. Positional encodings can take the form of a sinusoidal input
(as per (Vaswani et al., 2017)) or be trainable embeddings.

The inputs and output of the multi-headed self-attention module are connected by
residual connectors and a layer normalization layer. The output of the multi-headed self-
attention module is then passed to a two-layered feed-forward network which has its in-
puts/outputs similarly connected in a residual fashion with layer normalization. The sub-
layer residual connectors with layer norm is expressed as:

X = LayerNorm(FS(X)) +X

where FS is the sub-layer module which is either the multi-headed self-attention or the
position-wise feed-forward layers.
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Quadratic computation as a function of 
sequence length
´ One of the benefits of self-attention over recurrence was that it’s highly 

parallelizable. 

´ However, its total number of operations grows as 𝑂( 𝑛2 𝑑 ), where 𝑛 is the 
sequence length, and 𝑑 is the dimensionality. 

´ Think of 𝑑 as around 𝟏,𝟎𝟎𝟎 (though for large language models it’s much larger!). 
• So, for a single (shortish) sentence, 𝑛 ≤ 30; 𝑛2 ≤ 𝟗𝟎𝟎.
• In practice, we set a bound like 𝑛 = 512.
• But what if we’d like 𝒏 ≥ 𝟓𝟎,𝟎𝟎𝟎? For example, to work on long documents? 

• One of the benefits of self-attention over recurrence was that it’s highly 
parallelizable.

• However, its total number of operations grows as ! "!# , where " is the 
sequence length, and # is the dimensionality.

Quadratic computation as a function of sequence length
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• Think of # as around $, &&& (though for large language models it’s much larger!).

• So, for a single (shortish) sentence,  " ≤ 30; "! ≤ *&&.
• In practice, we set a bound like " = 512.
• But what if we’d like 0 ≥ 2&, &&&? For example, to work on long documents?



Improving quadratic self-attention cost 

´ Considerable recent work has gone into the question, Can we build models 
like Transformers without paying the all-pairs self-attention cost? 

´ For example, Linformer [Wang et al., 2020, Linformer: Self-Attention with 
Linear Complexity, arXiv:2006.04768] 

• Considerable recent work has gone into the question, Can we build models like 
Transformers without paying the ! 3!  all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Work on improving on quadratic self-attention cost
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Efficient Transformers
Efficient Transformers: A Survey
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Figure 2: Taxonomy of E�cient Transformer Architectures.

future. We refer interested readers to (Ra↵el et al., 2019) for more detailed descriptions of
the various Transformer modes.

2.6 Applications

Transformers have a wide range of applications ranging from language to vision, speech
and reinforcement learning. It was initially introduced within the context of sequence to se-
quence machine translation in NLP. Following which, most of the applications of Transform-
ers have been within the context of language - given the concurrent advance of pretrained
models such as BERT (Devlin et al., 2018). Many early improvements to this line of e�cient
transformers is therefore focused on language processing applications (Beltagy et al., 2020;
Ainslie et al., 2020). For historical reasons, this survey paper leans slightly towards lan-
guage. However, it is also worth noting that a substantial amount of papers considered in
our survey also considers multimodal applications whereby a sequence processor is required.
For example Roy et al. (2020); Choromanski et al. (2020b); Tay et al. (2020b); Child et al.
(2019) considers generative modeling task on images or other modalities such as proteins.
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Mixture of Experts (MoE)

��� 1SF�USBJOFE --. %FTJHO $IPJDFT ��

������� &ODPEFS

5IF FODPEFS JT EFTJHOFE UP FђDJFOUMZ QSPDFTT BOE VOEFSTUBOE UIF DPOUFYUVBM JOGPS�
NBUJPO FNCFEEFE XJUIJO JOQVU TFRVFODFT
 NBLJOH JU B QSFGFSSFE DIPJDF GPS DFSUBJO
/-1 UBTLT� &BDI FODPEFS MBZFS XJUIJO UIF BSDIJUFDUVSF HFOFSBUFT B SPCVTU DPOUFYUVBM
SFQSFTFOUBUJPO PG UIF JOQVU TFRVFODF� 5IF ѐOBM PVUQVU GSPN UIF MBTU FODPEFS MBZFS
JT VUJMJ[FE BT UIF DPOUFYUVBM SFQSFTFOUBUJPO
 TFSWJOH BT B WBMVBCMF JOQVU GPS EJWFSTF
EPXOTUSFBN UBTLT� 5IF FODPEFS BSDIJUFDUVSF JT QBSUJDVMBSMZ BEWBOUBHFPVT GPS UBTLT
SFRVJSJOH B EFFQ VOEFSTUBOEJOH PG UPLFO DPOUFYU XJUIPVU SFRVJSJOH TFRVFODF HFOFSB�
UJPO
 TVDI BT DMBTTJѐDBUJPO UBTLT�

������� .JYUVSF�PG�&YQFSUT

5IF .JYUVSF�PG�&YQFSUT 	.P&
 BSDIJUFDUVSF JT B WBSJBOU PG 5SBOTGPSNFS NPEFMT UIBU
JODPSQPSBUFT.P& MBZFST
 SFQMBDJOH UIF TUBOEBSE GFFE�GPSXBSE CMPDLT BT TIPXO JO 'JH�
���� 5IFTF MBZFST DPOUBJO NVMUJQMF QBSBMMFM VOJUT DBMMFE ʁFYQFSUTʂ
 FBDI XJUI VOJRVF
QBSBNFUFST� " SPVUFS EJSFDUT JOQVU UPLFOT UP TQFDJѐD FYQFSUT CBTFE PO UIFJS DBQB�
CJMJUJFT� &YQFSUT
 XIJDI BSF GFFE�GPSXBSE MBZFST GPMMPXJOH UIF BUUFOUJPO CMPDL
 QSP�
DFTT UPLFOT JOEFQFOEFOUMZ� 6OMJLF USBEJUJPOBM NPEFMT XIFSF DBQBDJUZ JODSFBTFT MFBE
UP IJHIFS DPNQVUBUJPOBM DPTUT
 UIF .P& BSDIJUFDUVSF TJNVMUBOFPVTMZ BDUJWBUFT POMZ
B GFX FYQFSUT� 5IJT TQBSTF BDUJWBUJPO BMMPXT UIF BSDIJUFDUVSF UP TVQQPSU MBSHFS NPEFM
TJ[FT XJUIPVU B QSPQPSUJPOBM JODSFBTF JO DPNQVUBUJPOBM EFNBOE
 NBJOUBJOJOH FђDJFOU
QFSGPSNBODF�

'JH� ���� .JYUVSF�PG�FYQFSUT WBSJBOU PG UIF 5SBOTGPSNFS BSDIJUFDUVSF�

´ MoE layer replaces the standard 
feed-forward blocks by multiple 
parallel `experts’ as feed-forward 
blocks weighted by probability 
gates.

´ MoE architecture simultaneously 
activates only a few experts. This 
sparse activation allows the 
architecture to support larger 
model sizes without a proportional 
increase in computational 
demand, maintaining efficient 
performance. 

Shazeer, Noam; Mirhoseini, Azalia; Maziarz, Krzysztof; Davis, Andy; Le, Quoc; Hinton, Geoffrey; Dean, Jeff (2017). 
"Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer". arXiv:1701.06538



Multi-Head Latent Attention:
Deepseek v-2 and v-3
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Figure 2 | Illustration of the basic architecture of DeepSeek-V3. Following DeepSeek-V2, we
adopt MLA and DeepSeekMoE for efficient inference and economical training.

strategy (Wang et al., 2024a) for DeepSeekMoE to mitigate the performance degradation induced
by the effort to ensure load balance. Figure 2 illustrates the basic architecture of DeepSeek-V3,
and we will briefly review the details of MLA and DeepSeekMoE in this section.

2.1.1. Multi-Head Latent Attention

For attention, DeepSeek-V3 adopts the MLA architecture. Let 3 denote the embedding dimen-
sion, <⌘ denote the number of attention heads, 3⌘ denote the dimension per head, and hB 2 R3

denote the attention input for the B-th token at a given attention layer. The core of MLA is the
low-rank joint compression for attention keys and values to reduce Key-Value (KV) cache during
inference:

c +B =,⇡ +hB, (1)

[k⇠
B,1; k⇠

B,2; ...; k⇠
B,<⌘] = k⇠

B =,* c +B , (2)

k'
B = RoPE(, 'hB), (3)

kB,7 = [k⇠
B,7; k'

B ], (4)

[v⇠B,1; v⇠B,2; ...; v⇠B,<⌘] = v⇠B =,*+c +B , (5)
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DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language Model

DeepSeek-AI

research@deepseek.com

Abstract

We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by
economical training and efficient inference. It comprises 236B total parameters, of which 21B
are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 adopts
innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE.
MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache
into a latent vector, while DeepSeekMoE enables training strong models at an economical
cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves
significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the
KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain
DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further
perform Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock its
potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2
and its chat versions still achieve top-tier performance among open-source models. The model
checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V2.

(a) (b)

Figure 1 | (a) MMLU accuracy vs. activated parameters, among different open-source models.
(b) Training costs and inference efficiency of DeepSeek 67B (Dense) and DeepSeek-V2.
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Pretraining for three types of architectures 
in Transformers

The transformer architecture influences the type of pretraining:
Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

26

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• Wait, how do we pretrain them?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

´ Decoders:
´ Unidirectional Language models! What 

we’ve seen so far. 

´ Nice to generate from; can’t condition on 
future words: GPT

´ Encoders:
´ Gets bidirectional context – can condition 

on future! 

´ Wait, how do we pretrain them? -- BERT

´ Encoder-Decoders:
´ Good parts of decoders and encoders? 

´ What’s the best way to pretrain them? --T5



GPT (Generative Pre-Training): uni-
directional transformer decoder
´ Improving Language Understanding by Generative Pre-Training, OpenAI, 

2018 

History of Contextual Representations

● Improving Language Understanding by Generative 
Pre-Training, OpenAI, 2018

Transformer

<s>

open

open

a

a

bank

Transformer Transformer

POSITIVE

Fine-tune on 
Classification Task

Transformer

<s> open a

Transformer Transformer

Train Deep (12-layer) 
Transformer LM



Pretraining decoders
Pretraining decoders

It’s natural to pretrain decoders as language models and then
use them as generators, finetuning their 4" 5# 5$:#&$)!
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This is helpful in tasks where the output is a 
sequence with a vocabulary like that at 
pretraining time! 

• Dialogue (context=dialogue history)
• Summarization (context=document)

ℎ$, … , ℎ0 = 	Decoder 5$, … , 50
5# ∼ Gℎ#&$ + I

Where G, I were pretrained in the language 
model!

5! 53 54 55 56

[Note how the linear layer has been pretrained.]

G, I
ℎ&, … , ℎ'

5$ 5! 53 54 55



Finetuning decoders

ℎ&, … , ℎ'

Pretraining decoders

When using language model pretrained decoders, we can ignore
that they were trained to model 4 5# 5$:#&$).
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We can finetune them by training a classifier 
on the last word’s hidden state.

ℎ$, … , ℎ0 = 	Decoder 5$, … , 50
E ∼ Gℎ0 + I

Where G and I are randomly initialized and 
specified by the downstream task.

Gradients backpropagate through the whole 
network.

J/L

$&, … , $'

Linear %, &

[Note how the linear layer hasn’t been 
pretrained and must be learned from scratch.]



GPT (Generative Pre-Trained Transformer): 
uni-directional transformer-decoder
´ 2018’s	GPT	was	a	big	success	in	pretraining a	decoder!	

• Transformer	decoder	with	12	layers.	

• 768-dimensional	hidden	states,	3072-dimensional	feed-forward	hidden	layers.	

• Byte-pair	encoding	with	40,000	merges	

• Trained	on	BooksCorpus:	over	7000	unique	books.	

• Contains	long	spans	of	contiguous	text,	for	learning	long-distance	dependencies.	

• GPT-3	(2020)	and	GPT-3.5	(ChatGPT 2022)	has	175	billion	parameters or	more

• Llama3.1:	>	400	billion	parameters

• Deepseek-v3:	>	600	billion	parameters	

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• Wait, how do we pretrain them?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?



Model size increases

In the era of machine learning (Pre-training)

relationship between data-centric, large model, huge compute resources

MLP:
<< 1 million
parameters

ResNet-152:
60.3 million
parameters

Transformer:
340 million
parameters

GPT-2:
1.5 billion

parameters

GPT-3, Chat-GPT:
175 billion
parameters

before 2012 2017 2019 202020152012

AlexNet

2022

GPT-4

3

Deepseek-v3
(685B/37B)
Llamma 4
(Maverick
400B/17B)



LMArena score vs. Cost



Transformers, In-context learning, and very 
large models 

´ So far, we’ve interacted with pretrained models in two ways: 
´ Sample from the distributions they define (maybe providing a prompt) 

´ Fine-tune them on a task we care about, and take their predictions. 

´ Very large language models seem to perform some kind of learning without 
gradient steps simply from examples you provide within their contexts. 

´ GPT-3 is the canonical example of this (Brown et al. NeurIPS 2020). 

´ Researchers try to interpret in-context learning of transformers as nearest
neighbor matching.

Brown et al. Language models are few-shot learners. NeurIPS 2020.
Bai et al. Transformers as Statisticians. NeurIPS 2023.
Collins et al. In-Context Learning with Transformers: Softmax Attention Adapts to Function Lipschitzness. NeurIPS 2024.



Illustration of In-Context LearningAn ICL experiment on a synthetic dataset
A Task : {(xi, yi)}i∈[N], β ∼ #(0,Id/d),

xi ∼ #(0,Id), yi = x⊤
i β + εi, εi ∼ #(0,σ2)

• A dataset of (size ) is a meta-datapoint: .  

• A meta-dataset (size ): . 

• Train the GPT2 model using  (a smaller version of ChatGPT).  

•  

• Evaluate the test performance of GPT2 on a new independent task.

N H = [x1, y1, x2, y2, …, xN, yN]
n {H( j) = [x( j)

1 , y( j)
1 , x( j)

2 , y( j)
2 , …, x( j)

N , y( j)
N ]}j∈[n ]

{H( j)}j∈[n ]

d = 5, N = 40, n = 19,200,000

• Trained GPT2 performs as good as Bayesian predictor!

Bayes optimal

Mei, Song. Transformers as Statisticians. NeurIPS 2023 and talk slides.



How about bi-directional transformers? 
– BERT



BERT: Devlin, Chang, Lee, Toutanova (2018) 

´ BERT (Bidirectional Encoder Representations from Transformers): 

´ Pre-training of Deep Bidirectional Transformers for Language 
Understanding, which is then fine-tuned for a task 

´ Want: truly bidirectional information flow without leakage in a 
deep model 

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

26

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• Wait, how do we pretrain them?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?



Masked Language Model

´ Problem: How the words see each other in bi-directions?

´ Solution: Mask out k% of the input words, and then predict the masked 
words 
´ We always use k = 15% 

´ Too little masking: Too expensive to train 

´ Too much masking: Not enough context 

Masked LM

● Solution: Mask out k% of the input words, and 
then predict the masked words
○ We always use k = 15%

● Too little masking: Too expensive to train
● Too much masking: Not enough context

the man went to the [MASK] to buy a [MASK] of milk

store gallon



Masked LM

´ Problem: Masked token never seen at fine-tuning 

´ Solution: 15% of the words to predict, but don’t replace with [MASK] 100% of the 
time. Instead: 

´ 80% of the time, replace with [MASK] 
´ went to the store → went to the [MASK] 

´ 10% of the time, replace random word
´ went to the store → went to the running 

´ 10% of the time, keep same
´ went to the store → went to the store 



Next Sentence Prediction

´ To learn relationships between sentences, predict whether Sentence B is 
actual sentence that proceeds Sentence A, or a random sentence 

Next Sentence Prediction

● To learn relationships between sentences, predict 
whether Sentence B is actual sentence that 
proceeds Sentence A, or a random sentence



BERT sentence pair encoding 

´ Token embeddings are word pieces (30k)

´ Learned segmented embedding represents each sentence 

´ Positional embedding is as for other Transformer architectures 
Input Representation

● Use 30,000 WordPiece vocabulary on input.
● Each token is sum of three embeddings
● Single sequence is much more efficient.



PreTraining

´ 2 model released: 
´ BERT-Base: 12-layer, 768-hidden, 12-head, 110 million params.

´ BERT-Large: 24-layer, 1024-hidden, 16-head, 340 million params.  

´ Training Data: 
´ BookCorpus (800M words) 

´ English Wikipedia (2.5B words)

´ Batch Size: 131,072 words 
´ (1024 sequences * 128 length or 256 sequences * 512 length) 

´ Training Time: 1M steps (~40 epochs) 
´ Optimizer: AdamW, 1e-4 learning rate, linear decay 
´ Trained on 4x4 or 8x8 TPU slice for 4 days 
´ Pretraining is expensive and impractical on a single GPU; Finetuning is practical 

and common on a single GPU 



BERT model fine tuning 

´ Simply learn a classifier built on the top layer for each task that you fine 
tune for 

BERT model fine tuning

• Simply learn a classifier built on the top layer for each task that 
you fine tune for

51



BERT model fine tuning BERT model fine tuning
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Rapid Progress for Pre-training 
(GLUE Benchmark)

6. How’s the weather?
Rapid Progress from Pre-Training  (GLUE benchmark)

90

60

ELMo

GPT
BERT-Base

BERT-Large
XLNet RoBERTa ALBERT

GloVeGL
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Over 3x reduction in error in 2 years, “superhuman” performance



But let’s change the x-axis to 
computational cost…But let’s change the x-axis to compute …

90

60

ELMo

GPT
BERT-Base

BERT-Large

Pre-Train FLOPs

GloVeGL
UE

 S
co

re

BERT-Large uses 60x more compute than ELMo

6.4e19 FLOPs
1.9e20 FLOPs



But let’s change the x-axis to 
computational cost…But let’s change the x-axis to compute …
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BERT-Large
XLNet RoBERTa

Pre-Train FLOPs

GloVeGL
UE

 S
co

re

RoBERTa uses 16x more compute than BERT-Large



More compute, more better?  
More compute, more better?
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ELMo

GPT
BERT-Base
BERT-Large
XLNet

RoBERTa ALBERT

Pre-Train FLOPs

GloVeGL
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ALBERT uses 10x more compute than RoBERTa



ELECTRA: “Efficiently Learning an Encoder to 
Classify Token Replacements Accurately” 

´ Clark, Luong, Le, and Manning, ICLR 2020.
https://openreview.net/pdf?id=r1xMH1BtvB

´ Bidirectional model but learn from all tokens 

ELECTRA: “Efficiently Learning an Encoder to 
Classify Token Replacements Accurately”

Bidirectional model but learn from all tokens

the painter sold the car

original replacedoriginaloriginalreplaced

Clark, Luong, Le, and Manning (2020)



Generating ReplacementsGenerating Replacements

Plausible alternatives come from small masked language 
model (the “generator”) trained jointly with ELECTRA 
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Results: GLUE Score vs Compute 
Results: GLUE Score vs Compute
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Limitations of Pretrained Encoders vs. 
Decoders

´ BERT and other pretrained encoders are good for classifications, but don’t 
naturally lead to nice autoregressive (1-word-at-a-time) generative methods.

´ Decoders like GPT are good at generating sequences in autoregressive way. 

Limitations of pretrained encoders

Those results looked great! Why not used pretrained encoders for everything?

40

If your task involves generating sequences, consider using a pretrained decoder; BERT and other 
pretrained encoders don’t naturally lead to nice autoregressive (1-word-at-a-time) generation 
methods.

Pretrained Encoder

Iroh goes to [MASK] tasty tea

make/brew/craft

Pretrained Decoder

Iroh goes to make tasty tea

goes to make tasty tea END



Pretraining encoders-decoders: T5
´ Pretraining encoder-decoders: what pretraining objective to use? 

´ What Raffel et al., 2018 found to work best was span corruption: T5.

´ Replace different-length spans from the input with unique placeholders; 
decode out the spans that were removed! 

´ The largest T5 model had 11 billion parameters.  

Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

45

Replace different-length spans from the input 
with unique placeholders; decode out the 
spans that were removed!

This is implemented in text 
preprocessing: it’s still an objective 
that looks like language modeling at 
the decoder side.
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Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

45

Replace different-length spans from the input 
with unique placeholders; decode out the 
spans that were removed!

This is implemented in text 
preprocessing: it’s still an objective 
that looks like language modeling at 
the decoder side.



Pretraining revolutionThe pretraining revolution

Gains from pretrained language models

Pretraining has had a major, tangible impact on how well NLP systems work



Exponential increase of computingLarger and larger models

2 https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress



Vision Transformer
Transformer for images?
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Vision Transformer (ViT)
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned D-
dim vector per position

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

Computer vision model
with no convolutions!

Justin Johnson March 23, 2022Lecture 18 -

Idea #4: Standard Transformer on Patches
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

Justin Johnson March 23, 2022Lecture 18 -

Idea #4: Standard Transformer on Patches
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license
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Vision Transformer (ViT) vs ResNets
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

BiT = ResNet152x4

Recall: ImageNet 
dataset has 1k 
categories, 1.2M 
images

When trained on 
ImageNet, ViT
models perform 
worse than ResNets

ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)
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Vision Transformer (ViT) vs ResNets
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ImageNet-21k has
14M images with 21k
categories

If you pretrain on 
ImageNet-21k and 
fine-tune on 
ImageNet, ViT does 
better: big ViTs match 
big ResNets

ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)
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Vision Transformer (ViT) vs ResNets
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ResNets

JFT-300M is an 
internal Google 
dataset with 300M 
labeled images

If you pretrain on 
JFT and finetune on 
ImageNet, large 
ViTs outperform 
large ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)
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ViT vs CNN
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including 
ResNets), decrease resolution 
and increase channels as you 
go deeper in the network
(Hierarchical architecture)

Useful since objects in images 
can occur at various scales

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Input:
3 x 224 x 224

1st block:
768 x 14 x 14

2nd block:
768 x 14 x 14

3rd block:
768 x 14 x 14

In a ViT, all blocks have 
same resolution and 
number of channels

(Isotropic architecture)

Can we build a hierarchical ViT model?



Justin Johnson March 23, 2022Lecture 18 -

Hierarchical ViT: Swin Transformer
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C × $
4 × &

4

3 × $ ×&

2) × $
8 × &

8

Divide image into 4x4 
patches and project 

to C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

H/4

W/4
C

4C
H/8

W/8

H/8

W/8
2C

Concatenate 
groups of 
2x2 features

Linear 
projection 
from 4C to 
2C channels 
(1x1 conv)

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Hierarchical ViT: Swin Transformer

98

C × $
4 × &

4

3 × $ ×&

2) × $
8 × &

8 4) × $
16 ×

&
16 8) × $

32 ×
&
32

Divide image into 4x4 
patches and project 

to C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 32x32

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Swin Transformer: Window Attention

103

With H x W grid of tokens, each attention
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend 
to all other tokens, instead divide into 
windows of M x M tokens (here M=4); only 
compute attention within each window

Total size of all attention matrices is now:
M4(H/M)(W/M) = M2HW

Linear in image size for fixed M!
Swin uses M=7 throughout the network

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Swin Transformer: Window Attention

104

Problem: tokens only interact with other tokens within 
the same window; no communication across windows

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Swin Transformer: Shifted Window Attention

108

Solution: Alternate between normal windows and 
shifted windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to 
input tokens, encodes absolute 
position of each token in the image

Swin does not use positional 
embeddings, instead encodes 
relative position between patches 
when computing attention:

Attention with relative bias:

- = /012345 67"
! + = 8

6,7, 8:;# × ! (Query, Key, Value)
=:;# ×;# (learned biases)

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Other Hierarchical Vision Transformers
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Liu et al, “Swin Transformer V2: Scaling 
up Capacity and Resolution”, CVPR 2022

Fan et al, “Multiscale Vision 
Transformers”, ICCV 2021

MViT Swin-V2

Li et al, “Improved Multiscale Vision Transformers 
for Classification and Detection”, arXiv 2021

Improved MViT



Thank you!


