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Summary

´ We had covered so far
´ Linear models (linear and logistic regression) – always a good start, simple yet powerful

´ Model Assessment and Selection – basics for all methods

´ Trees, Random Forests, and Boosting – good for high dim mixed-type heterogeneous 
features 

´ Support Vector Machines – good for small amount of data but high dim geometric 
features

´ Next, neural networks for unstructured data (image, language etc.):
´ Convolutional Neural Networks – image data

´ Recurrent Neural Networks, LSTM – sequence data

´ Transformer, BERT – machine translation etc.

´ Generative models and GANs – new unsupervised learning for image, etc.

´ Reinforcement Learning – Markov decision process, playing games, etc.



Locality or Sparsity of Computation

Why are compositional 
functions important?

Which one of these reasons: 
Physics? 

Neuroscience? <=== 
Evolution?

What is special about 
locality of computation?


Locality in “space”? 

Locality in “time”?

Locality of Computation

Locality or Sparsity is important:
Locality in time?
Locality in space? 

Minsky and Papert, 1969
Perceptron can’t do XOR classification
Perceptron needs infinite global 

information to compute connectivity

ᐟᕪᗑᕶጱᒫӞེ੆٧

Marvin Minsky
(1927-2016)

Seymour Papert
(1928-)

1969ଙڊᇇ̽Perceptrons̾Ӟԡ҅ᦊԅՐᶌ
ੴ᮱ᬳളጱᐟᕪᗑᕶ෫ဩํප୏઀ᦒᕞ
զ݊உग़ᤩݸ๶ጱ᧛ᘏժզᦝփᦝጱᥡᅩ



Convolutional Neural Networks: shift 
invariances and locality for images

Background Info

Convolutional Neural Network (CNN)

Can be traced to Neocognitron of Kunihiko Fukushima
(1979)
Yann LeCun combined convolutional neural networks with
back propagation (1989)
Imposes shift invariance and locality on the weights
Forward pass remains similar
Backpropagation slightly changes – need to sum over the
gradients from all spatial positions

Source: [LeCun et al., 1998]
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Neocognitron: A Self-organizing Neural Network Model 
for a Mechanism of Pattern Recognition 
Unaffected by Shift in Position 

Kunihiko Fukushima 
NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan 

Abstract. A neural network model for a mechanism of 
visual pattern recognition is proposed in this paper. 
The network is self-organized by "learning without a 
teacher", and acquires an ability to recognize stimulus 
patterns based on the geometrical similarity (Gestalt) 
of their shapes without affected by their positions. This 
network is given a nickname "neocognitron". After 
completion of self-organization, the network has a 
structure similar to the hierarchy model of the visual 
nervous system proposed by Hubel and Wiesel. The 
network consists of an input layer (photoreceptor 
array) followed by a cascade connection of a number of 
modular structures, each of which is composed of two 
layers of cells connected in a cascade. The first layer of 
each module consists of "S-cells', which show charac- 
teristics similar to simple cells or lower order hyper- 
complex cells, and the second layer consists of 
"C-cells" similar to complex cells or higher order 
hypercomplex cells. The afferent synapses to each 
S-cell have plasticity and are modifiable. The network 
has an ability of unsupervised learning: We do not 
need any "teacher" during the process of self- 
organization, and it is only needed to present a set of 
stimulus patterns repeatedly to the input layer of the 
network. The network has been simulated on a digital 
computer. After repetitive presentation of a set of 
stimulus patterns, each stimulus pattern has become to 
elicit an output only from one of the C-cells of the last 
layer, and conversely, this C-cell has become selectively 
responsive only to that stimulus pattern. That is, none 
of the C-cells of the last layer responds to more than 
one stimulus pattern. The response of the C-cells of the 
last layer is not affected by the pattern's position at all. 
Neither is it affected by a small change in shape nor in 
size of the stimulus pattern. 

1. Introduction 

The mechanism of pattern recognition in the brain is 
little known, and it seems to be almost impossible to 

reveal it only by conventional physiological experi- 
ments. So, we take a slightly different approach to this 
problem. If we could make a neural network model 
which has the same capability for pattern recognition 
as a human being, it would give us a powerful clue to 
the understanding of the neural mechanism in the 
brain. In this paper, we discuss how to synthesize a 
neural network model in order to endow it an ability of 
pattern recognition like a human being. 

Several models were proposed with this intention 
(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971; 
Fukushima, 1975). The response of most of these 
models, however, was severely affected by the shift in 
position and/or by the distortion in shape of the input 
patterns. Hence, their ability for pattern recognition 
was not so high. 

In this paper, we propose an improved neural 
network model. The structure of this network has been 
suggested by that of the visual nervous system of the 
vertebrate. This network is self-organized by "learning 
without a teacher", and acquires an ability to recognize 
stimulus patterns based on the geometrical similarity 
(Gestalt) of their shapes without affected by their 
position nor by small distortion of their shapes. 

This network is given a nickname "neocognitron"l, 
because it is a further extention of the "cognitron", 
which also is a self-organizing multilayered neural 
network model proposed by the author before 
(Fukushima, 1975). Incidentally, the conventional 
cognitron also had an ability to recognize patterns, but 
its response was dependent upon the position of the 
stimulus patterns. That is, the same patterns which 
were presented at different positions were taken as 
different patterns by the conventional cognitron. In the 
neocognitron proposed here, however, the response of 
the network is little affected by the position of the 
stimulus patterns. 

1 Preliminary report of the neocognitron already appeared else- 
where (Fukushima, 1979a, b) 
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron 

shifted in parallel from cell to cell. Hence, all the cells in 
a single cell-plane have receptive fields of the same 
function, but at different positions. 

We will use notations Us~(k~,n ) to represent the 
output of an S-cell in the kr th  S-plane in the l-th 
module, and Ucl(k~, n) to represent the output of a C-cell 
in the kr th  C-plane in that module, where n is the two- 
dimensional co-ordinates representing the position of 
these cell's receptive fields in the input layer. 

Figure 2 is a schematic diagram illustrating the 
interconnections between layers. Each tetragon drawn 
with heavy lines represents an S-plane or a C-plane, 
and each vertical tetragon drawn with thin lines, in 
which S-planes or C-planes are enclosed, represents an 
S-layer or a C-layer. 

In Fig. 2, a cell of each layer receives afferent 
connections from the cells within the area enclosed by 
the elipse in its preceding layer. To be exact, as for the 
S-cells, the elipses in Fig. 2 does not show the connect- 
ing area but the connectable area to the S-cells. That is, 
all the interconnections coming from the elipses are 
not always formed, because the synaptic connections 
incoming to the S-cells have plasticity. 

In Fig. 2, for the sake of simplicity of the figure, 
only one cell is shown in each cell-plane. In fact, all the 
cells in a cell-plane have input synapses of the same 
spatial distribution as shown in Fig. 3, and only the 
positions of the presynaptic cells are shifted in parallel 
from cell to cell. 

R3 ~I 

modifioble synapses 

) unmodifiable synopses 

Since the cells in the network are interconnected in 
a cascade as shown in Fig. 2, the deeper the layer is, the 
larger becomes the receptive field of each cell of that 
layer. The density of the cells in each cell-plane is so 
determined as to decrease in accordance with the 
increase of the size of the receptive fields. Hence, the 
total number of the cells in each cell-plane decreases 
with the depth of the cell-plane in the network. In the 
last module, the receptive field of each C-cell becomes 
so large as to cover the whole area of input layer U0, 
and each C-plane is so determined as to have only one 
C-cell. 

The S-cells and C-cells are excitatory cells. That is, 
all the efferent synapses from these cells are excitatory. 
Although it is not shown in Fig. 2, we also have 

Fig. 3. Illustration showing the input interconnections to the cells 
within a single cell-plane 

Fig. 2. Schematic diagram illustrating the 
interconnections between layers in the 
neocognitron 



Multilayer Perceptrons (MLP) and 
Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)
Learning representations by back-propagating 

errors, Nature, 323(9): 533-536

BP algorithms as stochastic gradient descent 
algorithms (Robbins–Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

MLP classifies XOR, but the global hurdle on 
topology (connectivity) computation still exists

Background Info

Multi-layer perceptron
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BP Algorithm: Forward Pass
Background Info

Forward pass

Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]’s
Nonlinearities: sigmoid, hyperbolic tangent, (recently)
ReLU.

Algorithm 1 Forward pass
Input: x0
Output: xL

1: for ℓ = 1 to L do
2: xℓ = fℓ(Wℓxℓ−1 + bℓ)
3: end for

18 / 50

Background Info

Multi-layer perceptron
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BP algorithm = Gradient Descent Method
Background Info

Training neural networks

Training examples {xi
0}n

i=1 and labels {yi}n
i=1

Output of the network {xi
L}m

i=1
Objective

J({Wl}, {bl}) = 1
n

n∑

i=1

1
2∥y

i − xi
L∥22 (1)

Gradient descent

Wl = Wl − η
∂J

∂Wl

bl = bl − η
∂J

∂bl

: In practice: use Stochastic Gradient Descent (SGD)

19 / 50

Other losses include cross-entropy, logistic loss, exponential loss, etc.
Background Info

Multi-layer perceptron

17 / 50



Derivation of BP: Lagrangian Multiplier
LeCun et al. 1988

Background Info

back-propagation – derivation
derivation from LeCun et al. 1988

Given n training examples (Ii, yi) ≡ (input,target) and L layers
Constrained optimization

min
W,x

∑n
i=1 ∥xi(L)− yi∥2

subject to xi(ℓ) = fℓ

[
Wℓxi (ℓ− 1)

]
,

i = 1, . . . , n, ℓ = 1, . . . , L, xi(0) = Ii

Lagrangian formulation (Unconstrained)

min
W,x,B

L(W, x, B)

L(W, x, B) = ∑n
i=1

{

∥xi(L)− yi∥22 +

∑L
ℓ=1 Bi(ℓ)T

(
xi(ℓ)− fℓ

[
Wℓxi (ℓ− 1)

])}

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf 20 / 50http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf



Background Info

back-propagation – derivation
∂L
∂B

Forward pass

xi(ℓ) = fℓ

[
Wℓxi (ℓ− 1)
︸ ︷︷ ︸

Ai(ℓ)

]
ℓ = 1, . . . , L, i = 1, . . . , n

∂L
∂x , zℓ = [∇fℓ]B(ℓ)

Backward (adjoint) pass

z(L) = 2∇fL

[
Ai(L)

]
(yi − xi(L))

zi(ℓ) = ∇fℓ

[
Ai(ℓ)

]
W T

ℓ+1zi(ℓ + 1) ℓ = 0, . . . , L− 1

W ←W + λ ∂L
∂W

Weight update

Wℓ ←Wℓ + λ
∑n

i=1 zi(ℓ)xT
i (ℓ− 1) 21 / 50



Long-Short-Term-Memory (LSTM, 1997)

´ Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long short-term 
memory". Neural Computation. 9 (8): 1735–1780. 
(https://www.bioinf.jku.at/publications/older/2604.pdf)

´ BP can not train deep networks due to gradient vanishing problem etc.

´ Introduction of short path to train deep networks without vanishing 
gradient problem.

´ This idea will come back to Convolutional Networks as ResNet in 2015.
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Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

You can think of the LSTM equations visually like this:

Compute the 
forget gate

Forget some 
cell content

Compute the 
input gate

Compute the 
new cell content

Compute the 
output gate

Write some new cell content

Output some cell content 
to the hidden state

25
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SGD vs. ADMM/BCD

´ Stochastic Gradient Descent (SGD) suffers from the well-known gradient 
vanishing issue in deep learning

´ ADMM/BCD may alleviate gradient vanishing

On ADMM in Deep Learning: Convergence and Saturation-Avoidance

Algorithm 1 ADMM for Deep Sigmoid Nets Training

Samples: X := [x1, . . . , xn] 2 Rd0⇥n, Y := [y1, . . . , yn] 2 RdN⇥n.
Initialization: ({W 0

i }
N
i=1, {V

0
i }

N
i=1, {⇤

0
i }

N
i=1) is set according to (7). V k

0 ⌘ X, 8k 2 N.
Parameters: � > 0, �i > 0, i = 1, . . . , N .

for k = 1, . . . do
I (Backward Estimation)
for i = N : �1 : 1 do

Update W
k
N via (8) and the other W k

i via (19).
end for

I(Forward Prediction)
for j = 1 : N do

Update V
k
j (j = 1, . . . , N � 2) via (20), V k

N�1 via (11), and V
k
N via (12).

end for

I(Updating Multipliers)
⇤k
i = ⇤k�1

i + �i(�(W k
i V

k
i�1)� V

k
i ), i = 1, . . . , N � 1,

⇤k
N = ⇤k�1

N + �N (W k
NV

k
N�1 � V

k
N ).

k  k + 1
end for
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(a) Gradient vanishing of SGD
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(b) Saturation-avoidance of ADMM

Figure 4: Gradient vanishing of SGD and saturation-avoidance of ADMM in the training
of deep sigmoid nets. The numerical setting is the same as that of Figure 2.

Theorem 4 Let {Q̧k := ({W k
i }

N
i=1, {V

k
i }

N
i=1, {⇤

k
i }

N
i=1)} be a sequence generated by Algo-

rithm 1. If 2  N 
p
n, � � c̃N

N�3
2 (nd)

N
2 � 1

4 and {�i}
N
i=1 satisfy

�N � 3.5, �N�1 � 16�N , �i � c̃1�N�1(Nnd)
N�1�i

2 , i = 1, . . . , N � 2 (23)

for some constants c̃, c̃1 > 0 independent of n,N , then we have:

(a) the augmented Lagrangian sequence {L(Qk)} is convergent.

(b) {Q
k
} converges to a stationary point Q⇤ := ({W ⇤

i }
N
i=1, {V

⇤
i }

N
i=1, {⇤

⇤
i }

N
i=1) of the aug-

mented Lagrangian L, which is also a KKT point (defined in(24) below) of problem
(5), implying that {W ⇤

i }
N
i=1 is a stationary point of problem (4) with �

0 = 2�/n.
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(c) SGD vs. ADMM

Figure 2: The cons of SGD and pros of ADMM in solving deep sigmoid nets. The setting
of numerical simulation in (c) can be found in the Table 2 below.

free optimization algorithm, alternating direction method of multipliers (ADMM) can be
regarded as a primal-dual method based on an augmented Lagrangian by introducing non-
linear constraints and enables a convergent sequence satisfying the nonlinear constraints.
Therefore, ADMM attracted rising attention in deep learning with various implementations
(Carreira-Perpinan and Wang, 2014; Taylor et al., 2016; Kiaee et al., 2016; Yang et al.,
2016; Gotmare et al., 2018; Murdock et al., 2018). Under this circumstance, we propose
an e�cient ADMM algorithm based on a novel update order and an e�cient sub-problem
solver. Surprisingly, as shown in Figure 2 (c), the proposed sigmoid-ADMM pair performs
better than ReLU-SGD pair in approximating the simple but extremely important square
function (Yarotsky, 2017; Petersen and Voigtlaender, 2018; Han et al., 2020). This implies
that ADMM may be an e�cient algorithm to su�ciently realize theoretical advantages of
deep sigmoid nets. Our contributions of this paper can be summarized as the following
three folds.

• Methodology Novelty: We develop a novel sigmoid-ADMM pair for deep learning.
Compared with the widely used ReLU-SGD pair, the proposed sigmoid-ADMM pair is sta-
ble with respect to algorithmic hyperparameters including learning rates, initial schemes
and the pro-processing of input data. Furthermore, we find that to approximate and learn
simple but important functions including the square function, radial functions and product
gate, deep sigmoid nets theoretically beat deep ReLU nets and the proposed sigmoid-ADMM
pair outperforms the ReLU-SGD pair. In terms of algorithm designs, di↵erent from existing
ADMM methods in deep learning, our proposed ADMM adopts a backward-forward update
order that is similar as BackProp (Rumelhart et al., 1986) and a local linear approxima-
tion for sub-problems, and more importantly keeps all the nonlinear constraints such that
the solution found by the proposed algorithm can converge to a solution satisfying these
nonlinear constraints.

• Theoretical Novelty: To demonstrate the theoretical advantages of deep sigmoid
nets, we rigorously prove that the approximation capability of deep sigmoid nets is not worse
than deep ReLU nets by showing that ReLU can be well approximated by deep sigmoid
nets with two hidden layers and finitely many free parameters but not vice-verse. We also
establish the global convergence of the proposed ADMM for the nonlinearly constrained

4

DNN Training: BCD - empirical evidence

• BCD vs. SGD (vanishing gradient avoidance by BCD)

• BCD: fast training at the early stage
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Numerical Experiments: MNIST and CIFAR 10

• High epoch e�ciency of BCD at early stage
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Table 3: Experimental results of di↵erent algorithms in approximating f(x) = x
2. The

standard derivation of the approximation error is presented in the parentheses.
The running time is recorded in seconds. The depth and width of the optimal
network structure in terms of approximation error is presented in the last row.

Algorithm SGD (ReLU) SGDM (ReLU) Adam (ReLU) SGD (sigmoid) ADMM (sigmoid)
Approx. Error 5.34e-8(2.34e-8) 3.95e-8(1.25e-8) 3.33e-8(1.46e-8) 2.46e-4(1.69e-4) 2.53e-9(1.18e-9)
Run Time (s) 26.99 41.35 38.26 3.45 9.47
(depth, width) (18,100) (15,100) (15,80) (2,60) (2,100)

2 4 6 8 10 12 14 16 18 20
Depth

10-10

10-8

10-6

10-4

10-2

Ap
pr

ox
im

at
io

n 
er

ro
r

Approximation of f(x)=x2

SGD (ReLU)
SGDM (ReLU)
Adam (ReLU)

(a) Deep ReLU nets

1 2 3 4 5
Depth

10-10

10-8

10-6

10-4

10-2

Ap
pr

ox
im

at
io

n 
er

ro
r

Approximation of f(x) = x2

ADMM (sigmoid)
SGD (sigmoid)

(b) Deep sigmoid nets

Figure 6: E↵ect of the depth of neural networks in approximating the square function.

A. Approximation performance of ADMM. Experiment results over the best neu-
ral network structures are presented in Table 3, and trends of approximation errors with
respect to the depth are shown in Figure 6. From Table 3, the ADMM-SGD pair can ap-
proximate the square function within very high precision, i.e., in the order of 10�9, which
is slightly better than that of competitors for deeper ReLU nets, and is much better than
the SGD-sigmoid pair with the same depth. Specifically, optimal depths for SGD (ReLU),
SGDM (ReLU) and Adam (ReLU) are 18, 15, 15, respectively, while the optimal depth for
ADMM (sigmoid) is only 2, which matches the theoretical results in approximation theory,
as shown in (Chui et al., 2019, Proposition 2). In terms of running time, ADMM (sigmoid)
with optimal network structures is generally faster than the SGDM (ReLU) and Adam
(ReLU) with optimal network structures as presented in the third row of Table 3, mainly
due to the depth required for ADMM (sigmoid) is much less than those for deep ReLU
nets SGD (ReLU), SGDM (ReLU) and Adam (ReLU). Moreover, according to Figure 6,
ADMM (sigmoid) can yield high approximation precision with less layers than the com-
petitors. These experimental results demonstrate that the proposed ADMM can embody
the advantage of deep sigmoid nets on approximating the square function, as pointed out
in the existing theoretical literature (Chui et al., 2019).
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Notes on Algorithms
´ Gradient descent (back propagation) can be derived via Lagrangian

multiplier method [LeCun 1988, http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf]
´ ADMM is alternative primal-dual method via Augmented Lagrangian multipliers 

[Zeng-Lin-Y.-Zhou, JMLR 2021]
´ BCD (Block-Coordinate-Descent) drops the dual update in Augmented 

Lagrangian multipliers [Zeng-Lau-Lin-Y., ICML 2019]
´ Global convergence to KKT points from arbitrary initialization can be 

established with the aid of Kurdyka-Łojasiewicz framework. 

Zeng, Lin, Yao, Zhou

3. ADMM for Deep Sigmoid Nets

Let Z := {(xj , yj)}nj=1 ⇢ Rd0 ⇥ RdN be n samples. Denote X := (x1, x2, . . . , xn) 2 Rd0⇥n

and Y := (y1, y2, . . . , yn) 2 RdN⇥n. It is natural to consider the following regularized DNN
training problem

min
W

(
1

n

nX

i=1

k�(xi,W)� yik
2
2 + �

0
kWik

2
F

)
, (4)

where �(xi,W) denotes a deep sigmoid net with N layers, W = {Wi}
N
i=1 and �

0
> 0 is the

regularization parameter. Here, we consider the square loss as analyzed in the literature
(Allen-Zhu et al., 2019; Du et al., 2019; Zou and Gu, 2019). We also absorb thresholds into
the weight matrices for the sake of simplicity. Based on the advantage of deep sigmoid nets
in approximation, (Chui et al., 2019; Lin, 2019) proved that the model defined by (4) with
N = 2 are optimal in embodying data features such as the spatial sparseness, smoothness
and rotation-invariance in the sense that it can achieve almost optimal generalization error
bounds in the framework of learning theory. The aim of this section is to introduce an
e�cient algorithm to solve the optimization problem (4).

Due to the saturation problem of the sigmoid function (see Figure 2 (b)), the issue of
gradient vanishing or explosion frequently happens for running SGD on deep sigmoid nets
(see Figure 4 (a) for example), implying that the classical SGD is not a good candidate to
solve (4). We then turn to designing a gradient-free optimization algorithm, like ADMM,
to e�ciently solve (4). For DNN training, there are generally two important ingredients
in designing ADMM: update order and solution to each sub-problem. The novelty of our
proposed algorithm is the use of backward-forward update order similar to BackProp in
(Rumelhart et al., 1986) and local linear approximation to sub-problems.

3.1 Update order in ADMM for deep learning training

The optimization problem (4) can be equivalently reformulated as the following constrained
optimization problem

minimize
W,V

1

2
kVN � Y k

2
F +

�

2

NX

i=1

kWik
2
F (5)

subject to Vi = �(WiVi�1), i = 1, . . . , N � 1, VN = WNVN�1,

where V := {Vi}
N
i=1 represents the set of responses of all layers and � = �0n

2 . We define the
augmented Lagrangian of (5) as follows:

L(W,V, {⇤i}
N
i=1) :=

1

2
kVN � Y k

2
F +

�

2

NX

i=1

kWik
2
F (6)

+
N�1X

i=1

✓
�i

2
k�(WiVi�1)� Vik

2
F + h⇤i,�(WiVi�1)� Vii

◆

+
�N

2
kWNVN�1 � VNk

2
F + h⇤N ,WNVN�1 � VN i,
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Augmented Lagrangian function:
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Lagrangian multiplier

On ADMM in Deep Learning: Convergence and Saturation-Avoidance

where ⇤i 2 Rdi⇥n is the multiplier matrix associated with the i-th constraint, and �i is the
associated penalty parameter for i = 1, . . . , N .

ADMM is an augmented-Lagrangian based primal-dual method, which updates the pri-
mal variables ({Wi}

N
i=1 and {Vi}

N
i=1 in (6)) via a Gauss-Seidel scheme and then multipliers

({⇤i}
N
i=1 in (6)) via a gradient ascent scheme in a parallel way (Boyd et al., 2011). As

suggested in (Wang et al., 2019), the update order of the primal variables is tricky for
ADMM in terms of the convergence analysis in the nonconvex setting. In light of (Wang
et al., 2019), the key idea to yield a desired update order with convergence guarantee is
to arrange the updates of some special primal variables followed by the updates of mul-
tipliers such that the updates of multipliers can be explicitly expressed by the updates of
these special primal variables, and thus the dual ascent quantities arisen by the updates of
multipliers shall be controlled by the descent quantities brought by the updates of these
special primal variables. Hence, the arrangement of these special primal variables is crucial.

It can be noted that there are 2N blocks of primal variables, i.e., {Wi}
N
i=1 and {Vi}

N
i=1

and N blocks of multipliers {⇤i}
N
i=1 involved in (6). For better elaboration of our idea, we

take N = 3 for an example. Notice that the multipliers {⇤i}
3
i=1 are only involved in these

inner product terms h⇤1,�(W1X)�V1i, h⇤2,�(W2V1)�V2i and h⇤3,W3V2�V3i. By these
terms, the gradient of the i-th inner product with respect to Vi is �⇤i, while the associated
gradient with respect to Wi is a more complex term (namely, (⇤1 � �

0(W1X))XT for W1,
(⇤2 � �

0(W2V1))V T
1 for W2, and ⇤3V

T
2 for W3, where � represents Hadamard product). If

the update of Wi is used to express ⇤i, then according to the Wi subproblem, an inverse
operation of a nonlinear or linear mapping is required, while such an inverse does not
necessarily exist. Specifically, following the analysis of Lemma 8 shown later and taking
the expression of W3 for example, the term ⇤3V

T
2 will be involved in the expression of W3.

In this case, if we wish to express ⇤3 by W3, then the inverse of V2 is generally required,
while it does not necessarily exist. Due to this, it should be more convenient to express
⇤i (i = 1, 2, 3) via exploiting the Vi subproblem instead of the Wi subproblem. Therefore,
we suggest firstly update the blocks of Wi’s and then Vi’s such that ⇤i’s can be explicitly
expressed via the latest updates of Vi’s. To be detailed, for each loop, we update {Wi}

N
i=1

in the backward order, i.e., WN ! WN�1 ! · · · ! W1, then update {Vj}
N
j=1 in the forward

order, i.e., V1 ! V2 ! · · · ! VN , motivated by BackProp in (Rumelhart et al., 1986), and
finally update the multipliers {⇤i}

N
i=1 in a parallel way, as shown by the following Figure 3.

Figure 3: Update order of ADMM

Specifically, given an initialization {W
0
i }

N
i=1, we set

V
0
j = �(W 0

j V
0
j�1), j = 1, . . . , N � 1, V

0
N = W

0
NV

0
N�1, and ⇤0

i = 0, i = 1, . . . , N, (7)

where V
0
0 = X. Given the (k-1)-th iterate

⇣
{W

k�1
i }

N
i=1, {V

k�1
i }

N
i=1, {⇤

k�1
i }

N
i=1

⌘
, we define

the Wi- and Vi-subproblems at the k-th iteration via minimizing the augmented Lagrangian

9

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf


Support Vector Machine (Max-Margin 
Classifier)
418 12. Flexible Discriminants
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FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/∥β∥. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗j are on the wrong side of their margin by
an amount ξ∗j = Mξj; points on the correct side have ξ∗j = 0. The margin is
maximized subject to a total budget

∑

ξi ≤ constant. Hence
∑

ξ∗j is the total
distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN ), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xTβ + β0 = 0}, (12.1)

where β is a unit vector: ∥β∥ = 1. A classification rule induced by f(x) is

G(x) = sign[xTβ + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xTβ+β0 = 0. Since the classes are separable, we can find a function
f(x) = xTβ + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,∥β∥=1

M

subject to yi(x
T
i β + β0) ≥M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

∥β∥

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

Appendix: Primal-Dual support vector classifiers

Appendix: Equivalent reformulation of
Hard Margin

maximize�0,�1,...,�pM

subject to
pX

j=1

�2
j = 1,

and yi(�0 + �1xi1 + ... + �pxip) � M for all i

,

minimize�0,�1,...,�pk�k2 :=
X

j

�2
j

subject to yi(�0 + �1xi1 + ... + �pxip) � 1 for all i ,

using M = 1/k�k.
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Vladmir Vapnik, 1994

Convex optimization + Reproducing Kernel Hilbert Spaces (Grace Wahba etc.)



MNIST Challenge Test Error: SVM vs. CNN
LeCun et al. 1998
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Simple SVM performs 
as well as Multilayer 
Convolutional Neural 
Networks which need 
careful tuning (LeNets)

Second dark era for NN: 
2000s



LeNet

´ Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied 
to document recognition. Proceedings of the IEEE, november 1998.



Fully Connected Layer
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3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10



Convolution 
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)



Convolution Layer: a first (blue) filter
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28



Convolution Layer: a second (green) 
filter
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter



Convolution Layer
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32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!



A Closer Look at Convolution: stride=1
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:



A Closer Look at Convolution: stride=2
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:
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N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\



A Closer Look at Convolution: Padding
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
       F = 5 => zero pad with 2
       F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0



ConvNet:
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Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

Stride = 1
Padding = 0



Formula: NewImageSize = 
floor((ImageSize – Filter + 2*Padding)/Stride + 1)
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ReLU

Background Info

AlexNet (2012)
ReLU

Non-saturating function and therefore faster convergence
when compared to other nonlinearities
Problem of dying neurons

Source: https://ml4a.github.io/ml4a/neural_networks/
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Max Pooling
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING



2000-2010: The Era of SVM, Boosting, … 
as nights of Neural Networks



Around the year of 2012…

Speech Recognition: TIMIT

Deep Learning revolution: success and challenges

Deep Learning for Speech Recognition

Performance improvements in spoken word error rate over the years on the
TIMIT acoustic-phonetic continuous speech corpus dataset.

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 9 / 85

Computer Vision: ImageNetBackground Info

Instance of Common Task Framework, 1

ImageNet (subset):
1.2 million training images
100,000 test images
1000 classes

ImageNet large-scale visual recognition Challenge

source: https://www.linkedin.com/pulse/must-read-path-breaking-papers-image-classification-muktabh-mayank

13 / 50

Deep Learning



Depth as function of yearBackground Info

Depth as function of year

[He et al., 2016]
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AlexNet (2012): ArchitectureBackground Info

AlexNet (2012)
Architecture

8 layers: first 5 convolutional, rest fully connected
ReLU nonlinearity
Local response normalization
Max-pooling
Dropout

Source: [Krizhevsky et al., 2012]

23 / 50https://github.com/computerhistory/AlexNet-Source-Code



AlexNet (2012): Dropout

Background Info

AlexNet (2012)
Dropout

Source: [Srivastava et al., 2014]

Zero every neuron with probability 1− p

At test time, multiply every neuron by p

26 / 50



VGG (2014) [Simonyan-Zisserman’14]Background Info

VGG (2014) [Simonyan and Zisserman, 2014]

Deeper than AlexNet: 11-19 layers versus 8
No local response normalization
Number of filters multiplied by two every few layers
Spatial extent of filters 3× 3 in all layers
Instead of 7× 7 filters, use three layers of 3× 3 filters

Gain intermediate nonlinearity
Impose a regularization on the 7× 7 filters

Source: https://blog.heuritech.com/2016/02/29/ 33 / 50



GoogLeNet [Szegedy et al., 2014] 

´ 22 layers 

´ Efficient “Inception” module 

´ No FC layers 

´ Only 5 million parameters! 

´ 12x less than AlexNet

´ ILSVRC’14 classification winner 
(6.7% top 5 error) 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201737

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational 
efficiency
 

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!          

12x less than AlexNet
- ILSVRC’14 classification winner 

(6.7% top 5 error)
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

“Inception module”: design a 
good local network topology 
(network within a network) and 
then stack these modules on 
top of each other



ResNet (2015) [HGRS-15]Background Info

ResNet (2015)

Solves problem by adding
skip connections
Very deep: 152 layers
No dropout
Stride
Batch normalization

Source: Deep Residual Learning for Image Recognition
35 / 50

ILSVRC’15 classification winner 
(3.57% top 5 error) 



Batch Normalization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201762

Step 1: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)



Batch Normalization
Background Info

Batch normalization

Algorithm 2 Batch normalization [Ioffe and Szegedy, 2015]
Input: Values of x over minibatch x1 . . . xB, where x is a certain
channel in a certain feature vector
Output: Normalized, scaled and shifted values y1 . . . yB

1: µ = 1
B

∑B
b=1 xb

2: σ2 = 1
B

∑B
b=1(xb − µ)2

3: x̂b = xb−µ√
σ2+ϵ

4: yb = γx̂b + β

Accelerates training and makes initialization less sensitive
Zero mean and unit variance feature vectors

37 / 50



BatchNorm at Test

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201760

Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer 
functions differently:

The mean/std are not computed 
based on the batch. Instead, a single 
fixed empirical mean of activations 
during training is used.

(e.g. can be estimated during training 
with running averages)



Complexity vs. Accuracy of Different 
Networks

Background Info

Characteristics of different networks

Source: Eugenio Culurciello

28 / 50



Inception-v4 = ResNet + Inception

´ “Inception” module:
´ Introduced by Szegedy et al., 2014 in
GoogLeNet

´ ILSVRC’14 classification winner (6.7% 
top 5 error) 

´ Apply parallel filter operations on the 
input from previous layer: 
´ Dimensionality reduction (1x1 conv)
´ Multiple receptive field sizes for 

convolution (1x1, 3x3, 5x5) 
´ Pooling operation (3x3) 

´ Concatenate all filter outputs 
together depth-wise 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201737

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational 
efficiency
 

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!          

12x less than AlexNet
- ILSVRC’14 classification winner 

(6.7% top 5 error)



Deep Learning Softwares

´ Pytorch (developed by Yann LeCun and Facebook):
´ http://pytorch.org/tutorials/

´ Tensorflow (developed by Google based on Caffe)
´ https://www.tensorflow.org/tutorials/

´ Theano (developed by Yoshua Bengio)
´ http://deeplearning.net/software/theano/tutorial/

´ Keras (based on Tensorflow or Pytorch)
´ https://www.manning.com/books/deep-learning-with-

python?a_aid=keras&a_bid=76564dff

Show some examples by jupyter notebooks…

http://pytorch.org/tutorials/
https://www.tensorflow.org/tutorials/
http://deeplearning.net/software/theano/tutorial/
https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff
https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff


Transfer Learning: 
Feature Extraction and Fine Tuning



Transfer Learning?
Background Info

Transfer learning

Filters learned in first layers of a network are transferable
from one task to another
When solving another problem, no need to retrain the
lower layers, just fine tune upper ones
Is this simply due to the large amount of images in
ImageNet?
Does solving many classification problems simultaneously
result in features that are more easily transferable?
Does this imply filters can be learned in unsupervised
manner?
Can we characterize filters mathematically?

42 / 50

Deep Learning revolution: success and challenges

Training Deep Convolutional Networks

Training Deep Convolutional Networks

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 18 / 85
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer

You’re in 
trouble… Try 
linear classifier 
from different 
stages

quite a lot of 
data

Finetune a 
few layers

Finetune a 
larger number 
of layers



Summary

´ Feature Extraction vs. Fine-Tuning:
´ Feature extraction usually refers to freeze the bottom (early layers) and retrain 

the top (last) layer

´ Fine-Tuning usually refers to retrain the last few layers or the whole network 
ninialized from pretrained parameters 

´ They are both called transfer learning

´ Jupyter notebook examples with pytorch:
´ https://github.com/aifin-hkust/aifin-

hkust.github.io/blob/master/2020/notebook/finetuning_resnet.ipynb

https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/finetuning_resnet.ipynb
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/finetuning_resnet.ipynb


Prevalence of Neural Collapse during 
the terminal phase of deep learning 
training 
Papyan, Han, and Donoho (2020), PNAS. arXiv:2008.08186



Neural Collapse phenomena, in post-
zero-training-error phase
´ (NC1) Variability collapse: As training progresses, the within-class variation of

the activations becomes negligible as these activations collapse to their
class-means.

´ (NC2) Convergence to Simplex ETF: The vectors of the class-means (after
centering by their global-mean) converge to having equal length, forming
equal-sized angles between any given pair, and being the maximally
pairwise-distanced configuration constrained to the previous two properties.
This configuration is identical to a previously studied configuration in the
mathematical sciences known as Simplex Equiangular Tight Frame (ETF).

´ Papyan, Han, and Donoho (2020), PNAS. arXiv:2008.08186
´ Visualization: https://purl.stanford.edu/br193mh4244

https://purl.stanford.edu/br193mh4244


converge to having equal length, forming equal-sized an-
gles between any given pair, and being the maximally
pairwise-distanced configuration constrained to the pre-
vious two properties. This configuration is identical to
a previously studied configuration in the mathematical
sciences known as Simplex Equiangular Tight Frame
(ETF) (6). See Definition 1.

(NC3) Convergence to self-duality: The class-means
and linear classifiers – although mathematically quite
di�erent objects, living in dual vector spaces – converge
to each other, up to rescaling. Combined with (NC2), this
implies a complete symmetry in the network classifiers’
decisions: each iso-classifier-decision region is isometric
to any other such region by rigid Euclidean motion;
moreover the class-means are each centrally located
within their own specific regions, so there is no tendency
towards higher confusion between any two classes than
any other two.

(NC4) Simplification to Nearest Class-Center (NCC):
For a given deepnet activation, the network classifier
converges to choosing whichever class has the nearest
train class-mean (in standard Euclidean distance).

We give a visualization of the phenomena (NC1)-(NC3) in
Figure 1�, and define Simplex ETFs (NC2) more formally as
follows:
Definition 1 (Simplex ETF). A standard Simplex ETF is a
collection of points in RC specified by the columns of

M
ı =

Ú
C

C ≠ 1

1
I ≠

1
C

€
2
, [1]

where I œ RC◊C is the identity matrix, and C œ RC is the
ones vector. In this paper, we allow other poses, as well as
rescaling, so the general Simplex ETF consists of the points
specified by the columns of M = –UMı

œ Rp◊C , where
– œ R+ is a scale factor, and U œ Rp◊C (p Ø C) is a partial
orthogonal matrix (U€U = I).

Properties (NC1)-(NC4) show that a highly symmetric and
rigid mathematical structure with clear interpretability arises
spontaneously during deep learning feature engineering, iden-
tically across many di�erent datasets and model architectures.

(NC2) implies that the di�erent feature means are ‘equally
spaced’ around the sphere in their constructed feature space;
(NC3) says the same for the linear classifiers in their own dual
space; and moreover, that the linear classifiers are ‘the same
as’ the class means, up to possible rescaling. These mathe-
matical symmetries and rigidities vastly simplify the behavior
and analysis of trained classifiers, as we show in Section 5
below, which contrasts the kind of qualitative understanding
previously available from theory, against the precise and highly
constrained predictions possible with (NC4).

(NC1)-(NC4) o�er theoretically-established performance
benefits: stability against random noise and against adversarial
noise. And indeed, this theory bears fruit. We show that

�Figure 1 is, in fact, generated using real measurements, collected while training the VGG13 deep-
net on CIFAR10: For three randomly selected classes, we extract the linear classifiers, class-
means, and a subsample of twenty last-layer features at epochs 2, 16, 65, and 350. These entities
are then rotated, rescaled, and represented in three-dimensions by leveraging the singular-value
decomposition of the class-means. We omit further details as Figure 1 serves only to illustrate
Neural Collapse on an abstract level.
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decomposition of the class-means. We omit further details as Figure 1 serves only to illustrate
Neural Collapse on an abstract level.

Fig. 1. Visualization of Neural Collapse: The figures depict, in three dimensions,
Neural Collapse as training proceeds, from top to bottom. Green spheres represent
the vertices of the standard Simplex ETF (Definition 1), red ball-and-sticks represent
linear classifiers, blue ball-and-sticks represent class-means, and small blue spheres
represent last-layer features. For all objects, we distinguish different classes via
the shade of the color. As training proceeds, last-layer features collapse onto their
class-means (NC1), class-means converge to the vertices of the Simplex ETF (NC2),
the linear classifiers approach their corresponding class-means (NC3). An animation
can be found here.

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Donoho et al.
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Visualizing Convolutional Networks



Understanding intermediate neurons?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20174

This image is CC0 public domain

Class Scores: 
1000 numbers

What’s going on inside ConvNets?

Input Image:
3 x 224 x 224

What are the intermediate features looking for?
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.



Visualizing CNN Features: Gradient Ascent

´ Gradient ascent: Generate a synthetic image that maximally activates a 
neuron 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201721

Visualizing CNN features: Gradient Ascent

(Guided) backprop:
Find the part of an 
image that a neuron 
responds to

Gradient ascent:
Generate a synthetic 
image that maximally 
activates a neuron

I* = arg maxI f(I) + R(I)

Neuron value Natural image regularizer



Visualizing CNN Features: Gradient 
Ascent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201722

Visualizing CNN features: Gradient Ascent

score for class c (before Softmax)

zero image

1. Initialize image to zeros

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels
4. Make a small update to the image



Visualizing CNN Features: Gradient Ascent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201728

Visualizing CNN features: Gradient Ascent

Better regularizer: Penalize L2 norm of 
image; also during optimization 
periodically

(1) Gaussian blur image
(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.



Visualizing CNN Features: Gradient Ascent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201729

Visualizing CNN features: Gradient Ascent
Use the same approach to visualize intermediate features

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.



It’s easy to visualize early layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20175

First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

ResNet-18:
64 x 3 x 7 x 7

ResNet-101:
64 x 3 x 7 x 7

DenseNet-121:
64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017



Last layers are hard to visualize

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20179

Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Visualize the “space” of FC7 
feature vectors by reducing 
dimensionality of vectors from 
4096 to 2 dimensions

Simple algorithm: Principle 
Component Analysis (PCA)

More complex: t-SNE
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Saliency Maps

Dog

How to tell which pixels matter for classification?

Compute gradient of (unnormalized) class 
score with respect to image pixels, take 
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.



Guided BP
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Intermediate features via (guided) backprop

Pick a single intermediate neuron, e.g. one 
value in 128 x 13 x 13 conv5 feature map

Compute gradient of neuron value with respect 
to image pixels

Images come out nicer if you only 
backprop positive gradients through 
each ReLU (guided backprop)

ReLU

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas 
Brox, Martin Riedmiller, 2015; reproduced with permission.



Intermediate features via Guided BP
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Intermediate features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.



DeepDream: amplifying features
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DeepDream: Amplify existing features
Rather than synthesizing an image to maximize a specific neuron, instead 
try to amplify the neuron activations at some layer in the network

Equivalent to:
I* = arg maxI ∑i fi(I)

2

Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural 
Networks”, Google Research Blog. Images are licensed under CC-BY 
4.0

Choose an image and a layer in a CNN; repeat:
1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation
3. Backward: Compute gradient on image
4. Update image



Example: DeepDream of Sky

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201743
Sky image is licensed under CC-BY SA 3.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201744
Image is licensed under CC-BY 4.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201745
Image is licensed under CC-BY 4.0



More Examples
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Image is licensed under CC-BY 4.0



Python Notebooks

´ An interesting Pytorch Implementation of these visualizatoin methods
´ https://github.com/utkuozbulak/pytorch-cnn-visualizations

´ Some examples demo:
´ https://github.com/aifin-hkust/aifin-

hkust.github.io/blob/master/2020/notebook/vgg16-visualization.ipynb

´ https://github.com/aifin-hkust/aifin-
hkust.github.io/blob/master/2020/notebook/vgg16-heatmap.ipynb

https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/vgg16-visualization.ipynb
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/vgg16-visualization.ipynb
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/vgg16-heatmap.ipynb
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/vgg16-heatmap.ipynb


Neural Style



Example: The Noname Lake in PKU



Left: Vincent Van Gogh, Starry Night
Right: Claude Monet, Twilight Venice
Bottom: William Turner, Ship Wreck



Application of Deep Learning: 
Content-Style synthetic 
pictures 
By “neural-style”





Neural Style

´ J C Johnson’s Website: https://github.com/jcjohnson/neural-style

´ A torch implementation of the paper 
´ A Neural Algorithm of Artistic Style, 

´ by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

´ http://arxiv.org/abs/1508.06576

https://github.com/jcjohnson/neural-style


Style-Content Feature Extraction



Style Features as Second Order Statistics

Figure 4: Best performance of different classic model
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Figure 5: Process to extract style features

Experiments Then we apply K-Nearest Neighours (KNN), Support Vector Machine (SVM) and114

Decision Tree classifiers with leave-one-out validation. Due to memory constraint, we resize the115

picture to 256/512/1024 pixels. We divide the picture into 16 patches in KNN classifier to augment116

training data. The result is shown in Table 2. We find that since the dimension is too high (above117

100,000), SVM is not applicable. KNN performs better on features got from low-definition pictures118

with 16 seperated patches and Decision Tree performs better on features got from low-definition119

pictures.120

Table 2: Leave-one-out result with style features
Feature Extraction Model TPR TNR Classification Accuracy

Style Features-256
KNN 0.833 0.889 0.857

SVM 1.000 0.000 0.571
Decision Tree 0.667 0.556 0.619

Style Features-512
KNN 1 0.333 0.714
SVM 1.000 0.000 0.571

Decision Tree 0.833 0.889 0.857

Style Features-1024
KNN 0.667 0.444 0.571
SVM 1.000 0.000 0.571

Decision Tree 0.833 0.889 0.857

Predictions Upon our style-features models, we give our prediction to the 7 pictures remain121

disputed (Pic1/7/10/20/23/25/26). We pick three Models performed best in validation. We predict122

5



Gram Matrix as Style Features
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Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of 
features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors 
gives C x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving 
Gram matrix of shape C x C

This image is in the public domain.

w

H

C
C

C

Efficient to compute; reshape features from
 
C x H x W to  =C x HW

then compute G = FFT
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Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Neural Texture Synthesis
1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN, 

record activations on every layer; layer i 
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix 
giving outer product of features:

                    (shape Ci × Ci)

4. Initialize generated image from random 
noise

5. Pass generated image through CNN, 
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5
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Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Reconstructing texture from 
higher layers recovers 
larger features from the 
input texture



Neural Texture Synthesis: Gram
Reconstruction

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201763

Neural Texture Synthesis: Texture = Artwork

Texture synthesis 
(Gram 
reconstruction)

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual 
Losses for Real-Time Style Transfer and 
Super-Resolution”, ECCV 2016. Copyright Springer, 2016. 
Reproduced for educational purposes.



Feature Inversion
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Feature Inversion
Given a CNN feature vector for an image, find a new image that:

- Matches the given feature vector
- “looks natural” (image prior regularization) 

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Given feature vector

Features of new image

Total Variation regularizer 
(encourages spatial smoothness)



Feature Inversion
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Feature Inversion
Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016. 
Reproduced for educational purposes.
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Neural Style Transfer: Feature + Gram 
Reconstruction

Feature 
reconstruction

Texture synthesis 
(Gram 
reconstruction)

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual 
Losses for Real-Time Style Transfer and 
Super-Resolution”, ECCV 2016. Copyright Springer, 2016. 
Reproduced for educational purposes.



Combined Loss for both Content (1st order 
statistics) and Style (2nd order statistics: Gram)

Generally each layer in the network defines a non-linear filter bank whose complexity in-

creases with the position of the layer in the network. Hence a given input image ~x is encoded

in each layer of the CNN by the filter responses to that image. A layer with Nl distinct filters

has Nl feature maps each of size Ml, where Ml is the height times the width of the feature map.

So the responses in a layer l can be stored in a matrix F l 2 RNl⇥Ml where F l
ij is the activation

of the ith filter at position j in layer l. To visualise the image information that is encoded at

different layers of the hierarchy (Fig 1, content reconstructions) we perform gradient descent

on a white noise image to find another image that matches the feature responses of the original

image. So let ~p and ~x be the original image and the image that is generated and P l and F l their

respective feature representation in layer l. We then define the squared-error loss between the

two feature representations

Lcontent(~p, ~x, l) =
1

2

X

i,j

�
F l
ij � P l

ij

�2 . (1)

The derivative of this loss with respect to the activations in layer l equals

@Lcontent

@F l
ij

=

(�
F l � P l

�
ij

if F l
ij > 0

0 if F l
ij < 0 .

(2)

from which the gradient with respect to the image ~x can be computed using standard error

back-propagation. Thus we can change the initially random image ~x until it generates the same

response in a certain layer of the CNN as the original image ~p. The five content reconstructions

in Fig 1 are from layers ‘conv1 1’ (a), ‘conv2 1’ (b), ‘conv3 1’ (c), ‘conv4 1’ (d) and ‘conv5 1’

(e) of the original VGG-Network.

On top of the CNN responses in each layer of the network we built a style representation

that computes the correlations between the different filter responses, where the expectation is

taken over the spatial extend of the input image. These feature correlations are given by the

Gram matrix Gl 2 RNl⇥Nl , where Gl
ij is the inner product between the vectorised feature map

10

i and j in layer l:

Gl
ij =

X

k

F l
ikF

l
jk. (3)

To generate a texture that matches the style of a given image (Fig 1, style reconstructions),

we use gradient descent from a white noise image to find another image that matches the style

representation of the original image. This is done by minimising the mean-squared distance

between the entries of the Gram matrix from the original image and the Gram matrix of the

image to be generated. So let ~a and ~x be the original image and the image that is generated and

Al and Gl their respective style representations in layer l. The contribution of that layer to the

total loss is then

El =
1

4N2
l M

2
l

X

i,j

�
Gl

ij � Al
ij

�2 (4)

and the total loss is

Lstyle(~a, ~x) =
LX

l=0

wlEl (5)

where wl are weighting factors of the contribution of each layer to the total loss (see below for

specific values of wl in our results). The derivative of El with respect to the activations in layer

l can be computed analytically:

@El

@F l
ij

=

(
1

N2
l M

2
l

�
(F l)T

�
Gl � Al

��
ji

if F l
ij > 0

0 if F l
ij < 0 .

(6)

The gradients of El with respect to the activations in lower layers of the network can be readily

computed using standard error back-propagation. The five style reconstructions in Fig 1 were

generated by matching the style representations on layer ‘conv1 1’ (a), ‘conv1 1’ and ‘conv2 1’

(b), ‘conv1 1’, ‘conv2 1’ and ‘conv3 1’ (c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d),

‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ (e).

To generate the images that mix the content of a photograph with the style of a painting

(Fig 2) we jointly minimise the distance of a white noise image from the content representation
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The gradients of El with respect to the activations in lower layers of the network can be readily
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Neural Style Transfer
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Neural Style Transfer

Content Image Style Image Style Transfer!

+ =

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with 
permission.

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016



CNN learns texture features, not 
shapes!

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HvLBMhCJQ?tocitem=46

Published as a conference paper at ICLR 2019

IMAGENET-TRAINED CNNS ARE BIASED TOWARDS
TEXTURE; INCREASING SHAPE BIAS IMPROVES
ACCURACY AND ROBUSTNESS

Robert Geirhos

University of Tübingen & IMPRS-IS
robert.geirhos@bethgelab.org

Patricia Rubisch

University of Tübingen & U. of Edinburgh
p.rubisch@sms.ed.ac.uk

Claudio Michaelis

University of Tübingen & IMPRS-IS
claudio.michaelis@bethgelab.org

Matthias Bethge
⇤

University of Tübingen
matthias.bethge@bethgelab.org
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University of Tübingen
felix.wichmann@uni-tuebingen.de

Wieland Brendel
⇤

University of Tübingen
wieland.brendel@bethgelab.org

ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

⇤Joint senior authors
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Lottery Ticket Hypothesis for Efficient 
Subnets in Deep Learning

Outline Libra (R) and DessiLBI (Python) LASSO vs. Inverse Scale Space Variable Splitting: Split LBI Summary

DessiLBI: Deep structurally splitting Linearized Bregman Iteration

Lottery Ticket Hypothesis: Sparse SubnetworksLottery Hypothesis

Compressive  
Networks ��

Over-parameterized 
Networks  �

Lottery Ticket Hypothesis 
• Dense, randomly-initialized, feed-forward 

networks contain subnetworks (winning tickets) 
that – when trained in isolation – reach test 
accuracy comparable to the original network in 
a similar number of iterations. (Frankle & 
Carbin, 2019) 

Rewinding the network from the initialization,  and 
find “winning ticket” subnet

Yuan Yao Inverse Scale Space Method



Split LBI finds efficient sparse architecture

Outline Libra (R) and DessiLBI (Python) LASSO vs. Inverse Scale Space Variable Splitting: Split LBI Summary

DessiLBI: Deep structurally splitting Linearized Bregman Iteration

DessiLBI: Sparse Filters Learned on MNIST

Figure: [Fu et al. ICML 2020/TPAMI 2023]Visualization of solution path and filter patterns in the third

convolutional layer (i.e., conv.c5) of LetNet-5, trained on MNIST, showing a sparse selection of filters without sacrificing accuracy.

Yuan Yao Inverse Scale Space Method

Yanwei Fu et al. TPAMI 45(2):1749-1765, 2023.
Yanwei Fu et al. DessiLBI, ICML 2020.



Texture bias in ImageNet training

Outline Libra (R) and DessiLBI (Python) LASSO vs. Inverse Scale Space Variable Splitting: Split LBI Summary

DessiLBI: Deep structurally splitting Linearized Bregman Iteration

DessiLBI: Non-semantic Features Learned on ImageNet

Figure: Visualization of the first convolutional layer filters of ResNet-18 trained on ImageNet-2012, where texture features are more

important than colour/shapes. Given the input image and initial weights visualized in the middle, filter response gradients at 20 (purple),

40 (green), and 60 (black) epochs are visualized. SGD with Momentum (Mom) and Weight Decay (WD), is compared with SLBI.

Yuan Yao Inverse Scale Space Method

Yanwei Fu et al. TPAMI 45(2):1749-1765, 2023.
Yanwei Fu et al. DessiLBI, ICML 2020.



Adversarial Examples and 
Robustness



Deep Learning may be fragile: 
adversarial examples

Background Info

Adversarial examples

[Goodfellow et al., 2014]

Small but malicious perturbations can result in severe
misclassification
Malicious examples generalize across different
architectures
What is source of instability?
Can we robustify network?

43 / 50



Adversarial Examples: Fooling Images

´ Start from an arbitrary image 

´ Pick an arbitrary class 

´ Modify the image to maximize the class 

´ Repeat until network is fooled 



Fooling Images/Adversarial Examples

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201735

Fooling Images / Adversarial Examples

Boat image is CC0 public domain
Elephant image is CC0 public domain



Convolutional Networks lack Robustness
Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

Courtesy of Dr. Hongyang ZHANG.



Adversarial Robust Training
Robust Optimization

Figure 7: The choice of attack method - FGSM (red) vs. PGD (blue) matters.

Figure 8: Values of the local maxima given by the cross-entropy loss for five examples from the MNIST
and CIFAR10 evaluation datasets. For each example, PGD is started uniformly at random around the
example and iterated until the loss plateaus.The blue histogram corresponds to the loss on a naturally
trained network, while the red histogram corresponds to the adversarially trained counterpart. The
loss is significantly smaller for the adversarially trained networks, and the final loss values are very
concentrated without any outliers.

Figure 9: Natural classification (left) vs. adversarial boundaries (right) corresponding to `1 ball around
training points.

alone increases accuracy. When adversaries like PGD are added, for small capacity networks PGD fails
to learn a meaningful decision boundary and performance is sacrificed for robustness. On the other
hand, for large capacity networks a robust and accurate solution can be achieved with PGD adversary.

The PGD adversary was trained for both MNIST and CIFAR10 and it has been shown that there
is a steady decrease in the training loss of adversarial examples (Figure 11) showing an indication that
the original adversarial training optimization problem is indeed being solved during training.

7

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model

Adversarial and Huber’s Agnostic Contamination Model

Robust Optimization

• Traditional training:

min
✓

Jn(✓, z = (xi , yi )
n
i=1)

• e.g. square or cross-entropy loss as negative log-likelihood of logit

models

• Robust optimization (Madry et al. ICLR’2018):

min
✓

max
k✏ik�

Jn(✓, z = (xi + ✏i , yi )
n
i=1)

• robust to any distributions, yet computationally hard

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

Yuan Yao Breiman-Huber

Extended by Hongyang ZHANG et al. by TRADES, 2019.



Thank you!


