
An Introduction to
Convolutional Neural

Networks
Yuan YAO

HKUST

1

Summary

´ We had covered so far
´ Linear models (linear and logistic regression) – always a good start, simple yet powerful

´ Model Assessment and Selection – basics for all methods

´ Trees, Random Forests, and Boosting – good for high dim mixed-type heterogeneous
features

´ Support Vector Machines – good for small amount of data but high dim geometric
features

´ Next, neural networks for unstructured data (image, language etc.):
´ Convolutional Neural Networks – image data

´ Recurrent Neural Networks, LSTM – sequence data

´ Transformer, BERT – machine translation etc.

´ Generative models and GANs – new unsupervised learning for image, etc.

´ Reinforcement Learning – Markov decision process, playing games, etc.

Convolutional Neural Networks: shift
invariances and locality for images

Background Info

Convolutional Neural Network (CNN)

Can be traced to Neocognitron of Kunihiko Fukushima
(1979)
Yann LeCun combined convolutional neural networks with
back propagation (1989)
Imposes shift invariance and locality on the weights
Forward pass remains similar
Backpropagation slightly changes – need to sum over the
gradients from all spatial positions

Source: [LeCun et al., 1998]

22 / 50

Biol. Cybernetics 36, 193 202 (1980) Biological
Cybernetics
 9 by Springer-Verlag 1980

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima
NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan

Abstract. A neural network model for a mechanism of
visual pattern recognition is proposed in this paper.
The network is self-organized by "learning without a
teacher", and acquires an ability to recognize stimulus
patterns based on the geometrical similarity (Gestalt)
of their shapes without affected by their positions. This
network is given a nickname "neocognitron". After
completion of self-organization, the network has a
structure similar to the hierarchy model of the visual
nervous system proposed by Hubel and Wiesel. The
network consists of an input layer (photoreceptor
array) followed by a cascade connection of a number of
modular structures, each of which is composed of two
layers of cells connected in a cascade. The first layer of
each module consists of "S-cells', which show charac-
teristics similar to simple cells or lower order hyper-
complex cells, and the second layer consists of
"C-cells" similar to complex cells or higher order
hypercomplex cells. The afferent synapses to each
S-cell have plasticity and are modifiable. The network
has an ability of unsupervised learning: We do not
need any "teacher" during the process of self-
organization, and it is only needed to present a set of
stimulus patterns repeatedly to the input layer of the
network. The network has been simulated on a digital
computer. After repetitive presentation of a set of
stimulus patterns, each stimulus pattern has become to
elicit an output only from one of the C-cells of the last
layer, and conversely, this C-cell has become selectively
responsive only to that stimulus pattern. That is, none
of the C-cells of the last layer responds to more than
one stimulus pattern. The response of the C-cells of the
last layer is not affected by the pattern's position at all.
Neither is it affected by a small change in shape nor in
size of the stimulus pattern.

1. Introduction

The mechanism of pattern recognition in the brain is
little known, and it seems to be almost impossible to

reveal it only by conventional physiological experi-
ments. So, we take a slightly different approach to this
problem. If we could make a neural network model
which has the same capability for pattern recognition
as a human being, it would give us a powerful clue to
the understanding of the neural mechanism in the
brain. In this paper, we discuss how to synthesize a
neural network model in order to endow it an ability of
pattern recognition like a human being.

Several models were proposed with this intention
(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971;
Fukushima, 1975). The response of most of these
models, however, was severely affected by the shift in
position and/or by the distortion in shape of the input
patterns. Hence, their ability for pattern recognition
was not so high.

In this paper, we propose an improved neural
network model. The structure of this network has been
suggested by that of the visual nervous system of the
vertebrate. This network is self-organized by "learning
without a teacher", and acquires an ability to recognize
stimulus patterns based on the geometrical similarity
(Gestalt) of their shapes without affected by their
position nor by small distortion of their shapes.

This network is given a nickname "neocognitron"l,
because it is a further extention of the "cognitron",
which also is a self-organizing multilayered neural
network model proposed by the author before
(Fukushima, 1975). Incidentally, the conventional
cognitron also had an ability to recognize patterns, but
its response was dependent upon the position of the
stimulus patterns. That is, the same patterns which
were presented at different positions were taken as
different patterns by the conventional cognitron. In the
neocognitron proposed here, however, the response of
the network is little affected by the position of the
stimulus patterns.

1 Preliminary report of the neocognitron already appeared else-
where (Fukushima, 1979a, b)

0340-1200/80/0036/0193/$02.00

Biol. Cybernetics 36, 193 202 (1980) Biological
Cybernetics
 9 by Springer-Verlag 1980

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima
NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan

Abstract. A neural network model for a mechanism of
visual pattern recognition is proposed in this paper.
The network is self-organized by "learning without a
teacher", and acquires an ability to recognize stimulus
patterns based on the geometrical similarity (Gestalt)
of their shapes without affected by their positions. This
network is given a nickname "neocognitron". After
completion of self-organization, the network has a
structure similar to the hierarchy model of the visual
nervous system proposed by Hubel and Wiesel. The
network consists of an input layer (photoreceptor
array) followed by a cascade connection of a number of
modular structures, each of which is composed of two
layers of cells connected in a cascade. The first layer of
each module consists of "S-cells', which show charac-
teristics similar to simple cells or lower order hyper-
complex cells, and the second layer consists of
"C-cells" similar to complex cells or higher order
hypercomplex cells. The afferent synapses to each
S-cell have plasticity and are modifiable. The network
has an ability of unsupervised learning: We do not
need any "teacher" during the process of self-
organization, and it is only needed to present a set of
stimulus patterns repeatedly to the input layer of the
network. The network has been simulated on a digital
computer. After repetitive presentation of a set of
stimulus patterns, each stimulus pattern has become to
elicit an output only from one of the C-cells of the last
layer, and conversely, this C-cell has become selectively
responsive only to that stimulus pattern. That is, none
of the C-cells of the last layer responds to more than
one stimulus pattern. The response of the C-cells of the
last layer is not affected by the pattern's position at all.
Neither is it affected by a small change in shape nor in
size of the stimulus pattern.

1. Introduction

The mechanism of pattern recognition in the brain is
little known, and it seems to be almost impossible to

reveal it only by conventional physiological experi-
ments. So, we take a slightly different approach to this
problem. If we could make a neural network model
which has the same capability for pattern recognition
as a human being, it would give us a powerful clue to
the understanding of the neural mechanism in the
brain. In this paper, we discuss how to synthesize a
neural network model in order to endow it an ability of
pattern recognition like a human being.

Several models were proposed with this intention
(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971;
Fukushima, 1975). The response of most of these
models, however, was severely affected by the shift in
position and/or by the distortion in shape of the input
patterns. Hence, their ability for pattern recognition
was not so high.

In this paper, we propose an improved neural
network model. The structure of this network has been
suggested by that of the visual nervous system of the
vertebrate. This network is self-organized by "learning
without a teacher", and acquires an ability to recognize
stimulus patterns based on the geometrical similarity
(Gestalt) of their shapes without affected by their
position nor by small distortion of their shapes.

This network is given a nickname "neocognitron"l,
because it is a further extention of the "cognitron",
which also is a self-organizing multilayered neural
network model proposed by the author before
(Fukushima, 1975). Incidentally, the conventional
cognitron also had an ability to recognize patterns, but
its response was dependent upon the position of the
stimulus patterns. That is, the same patterns which
were presented at different positions were taken as
different patterns by the conventional cognitron. In the
neocognitron proposed here, however, the response of
the network is little affected by the position of the
stimulus patterns.

1 Preliminary report of the neocognitron already appeared else-
where (Fukushima, 1979a, b)

0340-1200/80/0036/0193/$02.00

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron

Multilayer Perceptrons (MLP) and
Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)
Learning representations by back-propagating

errors, Nature, 323(9): 533-536

BP algorithms as stochastic gradient descent
algorithms (Robbins–Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

MLP classifies XOR, but the global hurdle on
topology (connectivity) computation still exists

Background Info

Multi-layer perceptron

17 / 50

BP Algorithm: Forward Pass
Background Info

Forward pass

Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]’s
Nonlinearities: sigmoid, hyperbolic tangent, (recently)
ReLU.

Algorithm 1 Forward pass
Input: x0
Output: xL

1: for ℓ = 1 to L do
2: xℓ = fℓ(Wℓxℓ−1 + bℓ)
3: end for

18 / 50

Background Info

Multi-layer perceptron

17 / 50

BP algorithm = Gradient Descent Method
Background Info

Training neural networks

Training examples {xi
0}n

i=1 and labels {yi}n
i=1

Output of the network {xi
L}m

i=1
Objective

J({Wl}, {bl}) = 1
n

n∑

i=1

1
2∥y

i − xi
L∥22 (1)

Gradient descent

Wl = Wl − η
∂J

∂Wl

bl = bl − η
∂J

∂bl

: In practice: use Stochastic Gradient Descent (SGD)

19 / 50

Other losses include cross-entropy, logistic loss, exponential loss, etc.
Background Info

Multi-layer perceptron

17 / 50

Derivation of BP: Lagrangian Multiplier
LeCun et al. 1988

Background Info

back-propagation – derivation
derivation from LeCun et al. 1988

Given n training examples (Ii, yi) ≡ (input,target) and L layers
Constrained optimization

min
W,x

∑n
i=1 ∥xi(L)− yi∥2

subject to xi(ℓ) = fℓ

[
Wℓxi (ℓ− 1)

]
,

i = 1, . . . , n, ℓ = 1, . . . , L, xi(0) = Ii

Lagrangian formulation (Unconstrained)

min
W,x,B

L(W, x, B)

L(W, x, B) = ∑n
i=1

{

∥xi(L)− yi∥22 +

∑L
ℓ=1 Bi(ℓ)T

(
xi(ℓ)− fℓ

[
Wℓxi (ℓ− 1)

])}

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf 20 / 50http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf

Background Info

back-propagation – derivation
∂L
∂B

Forward pass

xi(ℓ) = fℓ

[
Wℓxi (ℓ− 1)
︸ ︷︷ ︸

Ai(ℓ)

]
ℓ = 1, . . . , L, i = 1, . . . , n

∂L
∂x , zℓ = [∇fℓ]B(ℓ)

Backward (adjoint) pass

z(L) = 2∇fL

[
Ai(L)

]
(yi − xi(L))

zi(ℓ) = ∇fℓ

[
Ai(ℓ)

]
W T

ℓ+1zi(ℓ + 1) ℓ = 0, . . . , L− 1

W ←W + λ ∂L
∂W

Weight update

Wℓ ←Wℓ + λ
∑n

i=1 zi(ℓ)xT
i (ℓ− 1) 21 / 50

Support Vector Machine (Max-Margin
Classifier)
418 12. Flexible Discriminants

•

•

•

•

•

• •

•
•

•

•

•

•
•

•
•

•

•

•

•

margin

M = 1
∥β∥

M = 1
∥β∥

xTβ + β0 = 0

•

•

•

•

•

• •

•
•

•

•

•

•

•

•
•

•
•

•

•

•

••

margin

ξ∗1ξ
∗
1ξ
∗
1

ξ∗2ξ
∗
2ξ
∗
2

ξ∗3ξ
∗
3

ξ∗4ξ
∗
4ξ
∗
4 ξ∗5

M = 1
∥β∥

M = 1
∥β∥

xTβ + β0 = 0

FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/∥β∥. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗j are on the wrong side of their margin by
an amount ξ∗j = Mξj; points on the correct side have ξ∗j = 0. The margin is
maximized subject to a total budget

∑

ξi ≤ constant. Hence
∑

ξ∗j is the total
distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xTβ + β0 = 0}, (12.1)

where β is a unit vector: ∥β∥ = 1. A classification rule induced by f(x) is

G(x) = sign[xTβ + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xTβ+β0 = 0. Since the classes are separable, we can find a function
f(x) = xTβ + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,∥β∥=1

M

subject to yi(x
T
i β + β0) ≥M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

∥β∥

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

Appendix: Primal-Dual support vector classifiers

Appendix: Equivalent reformulation of
Hard Margin

maximize�0,�1,...,�pM

subject to
pX

j=1

�2
j = 1,

and yi(�0 + �1xi1 + ... + �pxip) � M for all i

,

minimize�0,�1,...,�pk�k2 :=
X

j

�2
j

subject to yi(�0 + �1xi1 + ... + �pxip) � 1 for all i ,

using M = 1/k�k.

Chapter 9 April 12, 2018 42 / 65

Vladmir Vapnik, 1994

Convex optimization + Reproducing Kernel Hilbert Spaces (Grace Wahba etc.)

MNIST Challenge Test Error: SVM vs. CNN
LeCun et al. 1998

K−NN Euclidean
[deslant] K−NN Euclidean

40 PCA + quadratic
1000 RBF + linear

SVM poly 4
RS−SVM poly 5

28x28−300−10

28x28−1000−10

28x28−300−100−10

28x28−500−150−10

LeNet−4 / Local
LeNet−4 / K−NN

LeNet−5

 −−−− 12.0 −−−−>
 −−−− 8.4 −−−−>
 −−−− 7.6 −−−−>

5
2.4

3.3
3.6

1.1
1.1

1
0.8

4.7

3.6
1.6

4.5
3.8

3.05
2.5

2.95
2.45

1.7

1.1
1.1
1.1

0.95
0.8

0.7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

[dist] V−SVM poly 9

[dist] 28x28−300−10

[dist] 28x28−1000−10

[dist] 28x28−300−100−10

[dist] 28x28−500−150−10

[16x16] LeNet−1

[dist] LeNet−5
[dist] Boosted LeNet−4

LeNet−4

[16x16] Tangent Distance

[deslant] 20x20−300−10

Linear
[deslant] Linear

Pairwise

Simple SVM performs
as well as Multilayer
Convolutional Neural
Networks which need
careful tuning (LeNets)

Second dark era for NN:
2000s

LeNet

´ Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, november 1998.

Fully Connected Layer

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201727

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

Convolution

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201731

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolution Layer: a first (blue) filter

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201732

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Convolution Layer: a second (green)
filter

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201733

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

Convolution Layer

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201734

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

A Closer Look at Convolution: stride=1

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201742

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201743

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201744

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201745

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201746

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:

A Closer Look at Convolution: stride=2

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201747

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201748

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201749

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201752

N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

A Closer Look at Convolution: Padding

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201755

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
 F = 5 => zero pad with 2
 F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

ConvNet:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201736

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Stride = 1
Padding = 0

Formula: NewImageSize =
floor((ImageSize – Filter + 2*Padding)/Stride + 1)

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201761

ReLU

Background Info

AlexNet (2012)
ReLU

Non-saturating function and therefore faster convergence
when compared to other nonlinearities
Problem of dying neurons

Source: https://ml4a.github.io/ml4a/neural_networks/

24 / 50

Max Pooling

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201773

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLING

2000-2010: The Era of SVM, Boosting, …
as nights of Neural Networks

Around the year of 2012…

Speech Recognition: TIMIT

Deep Learning revolution: success and challenges

Deep Learning for Speech Recognition

Performance improvements in spoken word error rate over the years on the
TIMIT acoustic-phonetic continuous speech corpus dataset.

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 9 / 85

Computer Vision: ImageNetBackground Info

Instance of Common Task Framework, 1

ImageNet (subset):
1.2 million training images
100,000 test images
1000 classes

ImageNet large-scale visual recognition Challenge

source: https://www.linkedin.com/pulse/must-read-path-breaking-papers-image-classification-muktabh-mayank

13 / 50

Deep Learning

Depth as function of yearBackground Info

Depth as function of year

[He et al., 2016]

39 / 50

AlexNet (2012): ArchitectureBackground Info

AlexNet (2012)
Architecture

8 layers: first 5 convolutional, rest fully connected
ReLU nonlinearity
Local response normalization
Max-pooling
Dropout

Source: [Krizhevsky et al., 2012]

23 / 50

AlexNet (2012): Dropout

Background Info

AlexNet (2012)
Dropout

Source: [Srivastava et al., 2014]

Zero every neuron with probability 1− p

At test time, multiply every neuron by p

26 / 50

VGG (2014) [Simonyan-Zisserman’14]Background Info

VGG (2014) [Simonyan and Zisserman, 2014]

Deeper than AlexNet: 11-19 layers versus 8
No local response normalization
Number of filters multiplied by two every few layers
Spatial extent of filters 3× 3 in all layers
Instead of 7× 7 filters, use three layers of 3× 3 filters

Gain intermediate nonlinearity
Impose a regularization on the 7× 7 filters

Source: https://blog.heuritech.com/2016/02/29/ 33 / 50

GoogLeNet [Szegedy et al., 2014]

´ 22 layers

´ Efficient “Inception” module

´ No FC layers

´ Only 5 million parameters!

´ 12x less than AlexNet

´ ILSVRC’14 classification winner
(6.7% top 5 error)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201737

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational
efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!

12x less than AlexNet
- ILSVRC’14 classification winner

(6.7% top 5 error)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201738

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

“Inception module”: design a
good local network topology
(network within a network) and
then stack these modules on
top of each other

ResNet (2015) [HGRS-15]Background Info

ResNet (2015)

Solves problem by adding
skip connections
Very deep: 152 layers
No dropout
Stride
Batch normalization

Source: Deep Residual Learning for Image Recognition
35 / 50

ILSVRC’15 classification winner
(3.57% top 5 error)

Batch Normalization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201762

Step 1: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

Batch Normalization
Background Info

Batch normalization

Algorithm 2 Batch normalization [Ioffe and Szegedy, 2015]
Input: Values of x over minibatch x1 . . . xB, where x is a certain
channel in a certain feature vector
Output: Normalized, scaled and shifted values y1 . . . yB

1: µ = 1
B

∑B
b=1 xb

2: σ2 = 1
B

∑B
b=1(xb − µ)2

3: x̂b = xb−µ√
σ2+ϵ

4: yb = γx̂b + β

Accelerates training and makes initialization less sensitive
Zero mean and unit variance feature vectors

37 / 50

BatchNorm at Test

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201760

Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g. can be estimated during training
with running averages)

Complexity vs. Accuracy of Different
Networks

Background Info

Characteristics of different networks

Source: Eugenio Culurciello

28 / 50

Inception-v4 = ResNet + Inception

´ “Inception” module:
´ Introduced by Szegedy et al., 2014 in
GoogLeNet

´ ILSVRC’14 classification winner (6.7%
top 5 error)

´ Apply parallel filter operations on the
input from previous layer:
´ Dimensionality reduction (1x1 conv)
´ Multiple receptive field sizes for

convolution (1x1, 3x3, 5x5)
´ Pooling operation (3x3)

´ Concatenate all filter outputs
together depth-wise

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201737

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational
efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!

12x less than AlexNet
- ILSVRC’14 classification winner

(6.7% top 5 error)

Reaching Human Performance Level in
Games

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning

What’s Driving the Tsunami?

Intellectual Significance

Human Impact

Reaching Human Level Performance

1997 2004

2017
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning

What’s Driving the Tsunami?

Intellectual Significance

Human Impact

Reaching Human Level Performance

1997 2004

2017
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?AlphaGo “LEE” 2016: Monte-Carlo Tree Pruning Search+CNN

AlphaGo ”ZERO” D Silver et al. Nature 550, 354–359 (2017) doi:10.1038/nature24270

Deep Blue in 1997

Deep Learning Softwares

´ Pytorch (developed by Yann LeCun and Facebook):
´ http://pytorch.org/tutorials/

´ Tensorflow (developed by Google based on Caffe)
´ https://www.tensorflow.org/tutorials/

´ Theano (developed by Yoshua Bengio)
´ http://deeplearning.net/software/theano/tutorial/

´ Keras (based on Tensorflow or Pytorch)
´ https://www.manning.com/books/deep-learning-with-

python?a_aid=keras&a_bid=76564dff

http://pytorch.org/tutorials/
https://www.tensorflow.org/tutorials/
http://deeplearning.net/software/theano/tutorial/
https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff
https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff

Show some examples by jupyter
notebooks

Transfer Learning:
Feature Extraction and Fine Tuning

Transfer Learning?
Background Info

Transfer learning

Filters learned in first layers of a network are transferable
from one task to another
When solving another problem, no need to retrain the
lower layers, just fine tune upper ones
Is this simply due to the large amount of images in
ImageNet?
Does solving many classification problems simultaneously
result in features that are more easily transferable?
Does this imply filters can be learned in unsupervised
manner?
Can we characterize filters mathematically?

42 / 50

Deep Learning revolution: success and challenges

Training Deep Convolutional Networks

Training Deep Convolutional Networks

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 18 / 85

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201790

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger
dataset, train
more layers

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201793

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

You’re in
trouble… Try
linear classifier
from different
stages

quite a lot of
data

Finetune a
few layers

Finetune a
larger number
of layers

Summary

´ Feature Extraction vs. Fine-Tuning:
´ Feature extraction usually refers to freeze the bottom (early layers) and retrain

the top (last) layer

´ Fine-Tuning usually refers to retrain the last few layers or the whole network
ninialized from pretrained parameters

´ They are both called transfer learning

´ Jupyter notebook examples with pytorch:
´ https://github.com/aifin-hkust/aifin-

hkust.github.io/blob/master/2020/notebook/finetuning_resnet.ipynb

https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/finetuning_resnet.ipynb
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/finetuning_resnet.ipynb

Visualizing Convolutional Networks

Understanding intermediate neurons?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20174

This image is CC0 public domain

Class Scores:
1000 numbers

What’s going on inside ConvNets?

Input Image:
3 x 224 x 224

What are the intermediate features looking for?
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.

Visualizing CNN Features: Gradient Ascent

´ Gradient ascent: Generate a synthetic image that maximally activates a
neuron

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201721

Visualizing CNN features: Gradient Ascent

(Guided) backprop:
Find the part of an
image that a neuron
responds to

Gradient ascent:
Generate a synthetic
image that maximally
activates a neuron

I* = arg maxI f(I) + R(I)

Neuron value Natural image regularizer

Visualizing CNN Features: Gradient
Ascent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201722

Visualizing CNN features: Gradient Ascent

score for class c (before Softmax)

zero image

1. Initialize image to zeros

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels
4. Make a small update to the image

Visualizing CNN Features: Gradient Ascent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201728

Visualizing CNN features: Gradient Ascent

Better regularizer: Penalize L2 norm of
image; also during optimization
periodically

(1) Gaussian blur image
(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.

Visualizing CNN Features: Gradient Ascent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201729

Visualizing CNN features: Gradient Ascent
Use the same approach to visualize intermediate features

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.

It’s easy to visualize early layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20175

First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11

ResNet-18:
64 x 3 x 7 x 7

ResNet-101:
64 x 3 x 7 x 7

DenseNet-121:
64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017

Last layers are hard to visualize

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20179

Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Visualize the “space” of FC7
feature vectors by reducing
dimensionality of vectors from
4096 to 2 dimensions

Simple algorithm: Principle
Component Analysis (PCA)

More complex: t-SNE

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201715

Saliency Maps

Dog

How to tell which pixels matter for classification?

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Guided BP

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201719

Intermediate features via (guided) backprop

Pick a single intermediate neuron, e.g. one
value in 128 x 13 x 13 conv5 feature map

Compute gradient of neuron value with respect
to image pixels

Images come out nicer if you only
backprop positive gradients through
each ReLU (guided backprop)

ReLU

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Brox, Martin Riedmiller, 2015; reproduced with permission.

Intermediate features via Guided BP

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201720

Intermediate features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

DeepDream: amplifying features

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201738 38

DeepDream: Amplify existing features
Rather than synthesizing an image to maximize a specific neuron, instead
try to amplify the neuron activations at some layer in the network

Equivalent to:
I* = arg maxI ∑i fi(I)

2

Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural
Networks”, Google Research Blog. Images are licensed under CC-BY
4.0

Choose an image and a layer in a CNN; repeat:
1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation
3. Backward: Compute gradient on image
4. Update image

Example: DeepDream of Sky

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201743
Sky image is licensed under CC-BY SA 3.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201744
Image is licensed under CC-BY 4.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201745
Image is licensed under CC-BY 4.0

More Examples

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201748
Image is licensed under CC-BY 4.0

Python Notebooks

´ An interesting Pytorch Implementation of these visualizatoin methods
´ https://github.com/utkuozbulak/pytorch-cnn-visualizations

´ Some examples demo:
´ https://github.com/aifin-hkust/aifin-

hkust.github.io/blob/master/2020/notebook/vgg16-visualization.ipynb

´ https://github.com/aifin-hkust/aifin-
hkust.github.io/blob/master/2020/notebook/vgg16-heatmap.ipynb

https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/vgg16-visualization.ipynb
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/vgg16-visualization.ipynb
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/vgg16-heatmap.ipynb
https://github.com/aifin-hkust/aifin-hkust.github.io/blob/master/2020/notebook/vgg16-heatmap.ipynb

Neural Style

Example: The Noname Lake in PKU

Left: Vincent Van Gogh, Starry Night
Right: Claude Monet, Twilight Venice
Bottom: William Turner, Ship Wreck

Application of Deep Learning:
Content-Style synthetic
pictures
By “neural-style”

Neural Style

´ J C Johnson’s Website: https://github.com/jcjohnson/neural-style

´ A torch implementation of the paper
´ A Neural Algorithm of Artistic Style,

´ by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

´ http://arxiv.org/abs/1508.06576

https://github.com/jcjohnson/neural-style

Style-Content Feature Extraction

Style Features as Second Order Statistics

Figure 4: Best performance of different classic model

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

full_features full_features_std full_features_norm full_features_norm_std

KNN	- patch

KNN	- no	patch

SVM	- patch

SVM	- no	patch

DT	- patch

DT	- no	patch

Figure 5: Process to extract style features

Experiments Then we apply K-Nearest Neighours (KNN), Support Vector Machine (SVM) and114

Decision Tree classifiers with leave-one-out validation. Due to memory constraint, we resize the115

picture to 256/512/1024 pixels. We divide the picture into 16 patches in KNN classifier to augment116

training data. The result is shown in Table 2. We find that since the dimension is too high (above117

100,000), SVM is not applicable. KNN performs better on features got from low-definition pictures118

with 16 seperated patches and Decision Tree performs better on features got from low-definition119

pictures.120

Table 2: Leave-one-out result with style features
Feature Extraction Model TPR TNR Classification Accuracy

Style Features-256
KNN 0.833 0.889 0.857

SVM 1.000 0.000 0.571
Decision Tree 0.667 0.556 0.619

Style Features-512
KNN 1 0.333 0.714
SVM 1.000 0.000 0.571

Decision Tree 0.833 0.889 0.857

Style Features-1024
KNN 0.667 0.444 0.571
SVM 1.000 0.000 0.571

Decision Tree 0.833 0.889 0.857

Predictions Upon our style-features models, we give our prediction to the 7 pictures remain121

disputed (Pic1/7/10/20/23/25/26). We pick three Models performed best in validation. We predict122

5

Neural Texture Synthesis

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201757

Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of
features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors
gives C x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving
Gram matrix of shape C x C

This image is in the public domain.

w

H

C
C

C

Efficient to compute; reshape features from

C x H x W to =C x HW

then compute G = FFT

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201761

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Neural Texture Synthesis
1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN,

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

 (shape Ci × Ci)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201762

Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Reconstructing texture from
higher layers recovers
larger features from the
input texture

Neural Texture Synthesis: Gram
Reconstruction

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201763

Neural Texture Synthesis: Texture = Artwork

Texture synthesis
(Gram
reconstruction)

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual
Losses for Real-Time Style Transfer and
Super-Resolution”, ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.

Feature Inversion

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201749

Feature Inversion
Given a CNN feature vector for an image, find a new image that:

- Matches the given feature vector
- “looks natural” (image prior regularization)

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Given feature vector

Features of new image

Total Variation regularizer
(encourages spatial smoothness)

Feature Inversion

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201750

Feature Inversion
Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201764

Neural Style Transfer: Feature + Gram
Reconstruction

Feature
reconstruction

Texture synthesis
(Gram
reconstruction)

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual
Losses for Real-Time Style Transfer and
Super-Resolution”, ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.

Combined Loss for both Content (1st order
statistics) and Style (2nd order statistics: Gram)

Generally each layer in the network defines a non-linear filter bank whose complexity in-

creases with the position of the layer in the network. Hence a given input image ~x is encoded

in each layer of the CNN by the filter responses to that image. A layer with Nl distinct filters

has Nl feature maps each of size Ml, where Ml is the height times the width of the feature map.

So the responses in a layer l can be stored in a matrix F l 2 RNl⇥Ml where F l
ij is the activation

of the ith filter at position j in layer l. To visualise the image information that is encoded at

different layers of the hierarchy (Fig 1, content reconstructions) we perform gradient descent

on a white noise image to find another image that matches the feature responses of the original

image. So let ~p and ~x be the original image and the image that is generated and P l and F l their

respective feature representation in layer l. We then define the squared-error loss between the

two feature representations

Lcontent(~p, ~x, l) =
1

2

X

i,j

�
F l
ij � P l

ij

�2 . (1)

The derivative of this loss with respect to the activations in layer l equals

@Lcontent

@F l
ij

=

(�
F l � P l

�
ij

if F l
ij > 0

0 if F l
ij < 0 .

(2)

from which the gradient with respect to the image ~x can be computed using standard error

back-propagation. Thus we can change the initially random image ~x until it generates the same

response in a certain layer of the CNN as the original image ~p. The five content reconstructions

in Fig 1 are from layers ‘conv1 1’ (a), ‘conv2 1’ (b), ‘conv3 1’ (c), ‘conv4 1’ (d) and ‘conv5 1’

(e) of the original VGG-Network.

On top of the CNN responses in each layer of the network we built a style representation

that computes the correlations between the different filter responses, where the expectation is

taken over the spatial extend of the input image. These feature correlations are given by the

Gram matrix Gl 2 RNl⇥Nl , where Gl
ij is the inner product between the vectorised feature map

10

i and j in layer l:

Gl
ij =

X

k

F l
ikF

l
jk. (3)

To generate a texture that matches the style of a given image (Fig 1, style reconstructions),

we use gradient descent from a white noise image to find another image that matches the style

representation of the original image. This is done by minimising the mean-squared distance

between the entries of the Gram matrix from the original image and the Gram matrix of the

image to be generated. So let ~a and ~x be the original image and the image that is generated and

Al and Gl their respective style representations in layer l. The contribution of that layer to the

total loss is then

El =
1

4N2
l M

2
l

X

i,j

�
Gl

ij � Al
ij

�2 (4)

and the total loss is

Lstyle(~a, ~x) =
LX

l=0

wlEl (5)

where wl are weighting factors of the contribution of each layer to the total loss (see below for

specific values of wl in our results). The derivative of El with respect to the activations in layer

l can be computed analytically:

@El

@F l
ij

=

(
1

N2
l M

2
l

�
(F l)T

�
Gl � Al

��
ji

if F l
ij > 0

0 if F l
ij < 0 .

(6)

The gradients of El with respect to the activations in lower layers of the network can be readily

computed using standard error back-propagation. The five style reconstructions in Fig 1 were

generated by matching the style representations on layer ‘conv1 1’ (a), ‘conv1 1’ and ‘conv2 1’

(b), ‘conv1 1’, ‘conv2 1’ and ‘conv3 1’ (c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d),

‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ (e).

To generate the images that mix the content of a photograph with the style of a painting

(Fig 2) we jointly minimise the distance of a white noise image from the content representation

11

i and j in layer l:

Gl
ij =

X

k

F l
ikF

l
jk. (3)

To generate a texture that matches the style of a given image (Fig 1, style reconstructions),

we use gradient descent from a white noise image to find another image that matches the style

representation of the original image. This is done by minimising the mean-squared distance

between the entries of the Gram matrix from the original image and the Gram matrix of the

image to be generated. So let ~a and ~x be the original image and the image that is generated and

Al and Gl their respective style representations in layer l. The contribution of that layer to the

total loss is then

El =
1

4N2
l M

2
l

X

i,j

�
Gl

ij � Al
ij

�2 (4)

and the total loss is

Lstyle(~a, ~x) =
LX

l=0

wlEl (5)

where wl are weighting factors of the contribution of each layer to the total loss (see below for

specific values of wl in our results). The derivative of El with respect to the activations in layer

l can be computed analytically:

@El

@F l
ij

=

(
1

N2
l M

2
l

�
(F l)T

�
Gl � Al

��
ji

if F l
ij > 0

0 if F l
ij < 0 .

(6)

The gradients of El with respect to the activations in lower layers of the network can be readily

computed using standard error back-propagation. The five style reconstructions in Fig 1 were

generated by matching the style representations on layer ‘conv1 1’ (a), ‘conv1 1’ and ‘conv2 1’

(b), ‘conv1 1’, ‘conv2 1’ and ‘conv3 1’ (c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d),

‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ (e).

To generate the images that mix the content of a photograph with the style of a painting

(Fig 2) we jointly minimise the distance of a white noise image from the content representation

11

i and j in layer l:

Gl
ij =

X

k

F l
ikF

l
jk. (3)

To generate a texture that matches the style of a given image (Fig 1, style reconstructions),

we use gradient descent from a white noise image to find another image that matches the style

representation of the original image. This is done by minimising the mean-squared distance

between the entries of the Gram matrix from the original image and the Gram matrix of the

image to be generated. So let ~a and ~x be the original image and the image that is generated and

Al and Gl their respective style representations in layer l. The contribution of that layer to the

total loss is then

El =
1

4N2
l M

2
l

X

i,j

�
Gl

ij � Al
ij

�2 (4)

and the total loss is

Lstyle(~a, ~x) =
LX

l=0

wlEl (5)

where wl are weighting factors of the contribution of each layer to the total loss (see below for

specific values of wl in our results). The derivative of El with respect to the activations in layer

l can be computed analytically:

@El

@F l
ij

=

(
1

N2
l M

2
l

�
(F l)T

�
Gl � Al

��
ji

if F l
ij > 0

0 if F l
ij < 0 .

(6)

The gradients of El with respect to the activations in lower layers of the network can be readily

computed using standard error back-propagation. The five style reconstructions in Fig 1 were

generated by matching the style representations on layer ‘conv1 1’ (a), ‘conv1 1’ and ‘conv2 1’

(b), ‘conv1 1’, ‘conv2 1’ and ‘conv3 1’ (c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d),

‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ (e).

To generate the images that mix the content of a photograph with the style of a painting

(Fig 2) we jointly minimise the distance of a white noise image from the content representation

11

where

Neural Style Transfer

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201766

Neural Style Transfer

Content Image Style Image Style Transfer!

+ =

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with
permission.

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

CNN learns texture features, not
shapes!

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HvLBMhCJQ?tocitem=46

Published as a conference paper at ICLR 2019

IMAGENET-TRAINED CNNS ARE BIASED TOWARDS
TEXTURE; INCREASING SHAPE BIAS IMPROVES
ACCURACY AND ROBUSTNESS

Robert Geirhos

University of Tübingen & IMPRS-IS
robert.geirhos@bethgelab.org

Patricia Rubisch

University of Tübingen & U. of Edinburgh
p.rubisch@sms.ed.ac.uk

Claudio Michaelis

University of Tübingen & IMPRS-IS
claudio.michaelis@bethgelab.org

Matthias Bethge
⇤

University of Tübingen
matthias.bethge@bethgelab.org

Felix A. Wichmann
⇤

University of Tübingen
felix.wichmann@uni-tuebingen.de

Wieland Brendel
⇤

University of Tübingen
wieland.brendel@bethgelab.org

ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

⇤Joint senior authors

1

ar
X

iv
:1

81
1.

12
23

1v
2

 [c
s.C

V
]

14
 Ja

n
20

19

1:16:47

https://videoken.com/embed/W2HvLBMhCJQ?tocitem=46

Examples

´ Jupyter Notebook Demo

Adversarial Examples and
Robustness

Deep Learning may be fragile:
adversarial examples

Background Info

Adversarial examples

[Goodfellow et al., 2014]

Small but malicious perturbations can result in severe
misclassification
Malicious examples generalize across different
architectures
What is source of instability?
Can we robustify network?

43 / 50

Adversarial Examples: Fooling Images

´ Start from an arbitrary image

´ Pick an arbitrary class

´ Modify the image to maximize the class

´ Repeat until network is fooled

Fooling Images/Adversarial Examples

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201735

Fooling Images / Adversarial Examples

Boat image is CC0 public domain
Elephant image is CC0 public domain

Convolutional Networks lack Robustness
Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

Courtesy of Dr. Hongyang ZHANG.

Adversarial Robust Training
Robust Optimization

Figure 7: The choice of attack method - FGSM (red) vs. PGD (blue) matters.

Figure 8: Values of the local maxima given by the cross-entropy loss for five examples from the MNIST
and CIFAR10 evaluation datasets. For each example, PGD is started uniformly at random around the
example and iterated until the loss plateaus.The blue histogram corresponds to the loss on a naturally
trained network, while the red histogram corresponds to the adversarially trained counterpart. The
loss is significantly smaller for the adversarially trained networks, and the final loss values are very
concentrated without any outliers.

Figure 9: Natural classification (left) vs. adversarial boundaries (right) corresponding to `1 ball around
training points.

alone increases accuracy. When adversaries like PGD are added, for small capacity networks PGD fails
to learn a meaningful decision boundary and performance is sacrificed for robustness. On the other
hand, for large capacity networks a robust and accurate solution can be achieved with PGD adversary.

The PGD adversary was trained for both MNIST and CIFAR10 and it has been shown that there
is a steady decrease in the training loss of adversarial examples (Figure 11) showing an indication that
the original adversarial training optimization problem is indeed being solved during training.

7

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model

Adversarial and Huber’s Agnostic Contamination Model

Robust Optimization

• Traditional training:

min
✓

Jn(✓, z = (xi , yi)
n
i=1)

• e.g. square or cross-entropy loss as negative log-likelihood of logit

models

• Robust optimization (Madry et al. ICLR’2018):

min
✓

max
k✏ik�

Jn(✓, z = (xi + ✏i , yi)
n
i=1)

• robust to any distributions, yet computationally hard

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

Yuan Yao Breiman-Huber

Extended by Hongyang ZHANG et al. by TRADES, 2019.

Introduction to
“(Re-)Imag(in)ing Price

Trends”

By

Jingwen Jiang
University of Chicago

Bryan Kelly
Yale University, AQR Capital Management, and NBER

Dacheng Xiu
University of Chicago Booth School of Business

Brief Intro

In the empirical designs, they first embed 1D
time-series data into 2D images depicting price
and volumes.

Then they feed each training sample into CNN to
estimate the probability of a positive subsequent
return over short(5-day), medium(20-day), and
long (60day) horizons.

Afterward, they use CNN-based out-of-sample
predictions as signals in several asset pricing
analyses.

Finally, they attempt to interpret the predictive
patterns identified by the CNN.

Replication
task

Mainly focus on:
´ Data Preparation

´ Model Design

´ Workflow Design

´ Performance Evaluation

´ Interpretation

Data
´ The sample runs from 1993-2019 shows daily opening, high,

low prices. The original paper constructs datasets consisting
of three scales of horizons (5-day, 20-day, 60-day). Here we
just collect the 20-day version. The total size of data is 8.6G.

´ We already transferred the OHLC charts into images following
the same procedures. Current images have the same
resolution (64 * 60) and added with moving average
lines(MA) and volume bars(VB).

Data
´ Images labels take value 1 for positive returns ('up') and 0 for

non-positive returns ('down'). In addition, we use 2 to mark the
NaN value.

Data: Label Format

Retx_20d: < 0
Retx_20d_label: 0

CNN Architecture Design

´ A core building block consists of three
operations:
´ convolution
´ activation
´ pooling

´ In the paper, for 20-day images, they build a
baseline CNN architecture with 3 conv
blocks and connected with a fully
connected layer as a classifier head.

´ See the original paper for details
(including the selection of the size of the
convolution kernel, the selection of the
convolution method, the design of the
pooling layer and the selection of the
activation function, etc.)

Data Split: Training, Validation, Testing

´ Consider dividing the entire sample into training, validation and testing samples.

´ In the original paper, they use the first seven-year sample (1993-1999) to train and
validate the model, in which 70% of the sample are randomly selected for
training and the remaining 30% for validation. The remaining twenty years of
data comprise the out-of-sample test dataset.

Loss and evaluation

´ You can simply treat the prediction analysis as a classification problem. Use Cross
Entropy Loss

´ To measure the classification accuracy, a true positive (TP) or true negative (TN)
occurs when a predicted “up” probability of greater than 50% coincides with a
positive realized return and a probability less than 50% coincides with a negative
return. False positives and negatives (FP and FN) are the complementary
outcomes.

´ For more evaluation metrics or methods, like Sharpe Ratio, please refer to the original paper.

Training Process

´ The author adopts several ways to combat over-fitting issue and aid
efficient computation.

´ They applied the Xavier initialization for weights in each layer, which
guarantees faster convergence by scaling the initial weights.

´ Other techniques like applying dropout, using batch normalization and
early stopping also assists better performance.

v We recommend referring to the training details mentioned in the paper 3.3 when
training the baseline model.

Exploring Interpretability
´ Using a visualization method (Grad-CAM) to understand how different image

examples activate the regions of the CNN to trigger 'up' or 'down' return
predictions.

Extensions
´ Ablation studies and test robustness,

´ For example, you can perform the sensitivity analysis of the CNN prediction model
to alternate choices in model architecture (e.g., varying the number of filters in
each layer or varying the number of layers, like the paper shows in Table 18)

´ What's more
v We encourage you not limited to simple binary classification tasks, since the

label files we provided consist of more meaningful attributes, containing both
categorical and numerical values.
§ For example, you can use the same 20-day horizon images to train your model to

predict the return trend of different subsequent y-days even the detailed return
values. (y can be 5, 20 even larger).

v Stock prices might be of high noise, so you may consider other financial
markets, e.g. cryptocurrency market

§ For example, Kaggle Contest on G-Research Crypto Forecasting:
https://www.kaggle.com/c/g-research-crypto-forecasting

https://www.kaggle.com/c/g-research-crypto-forecasting

Thank you!

