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Reference and Textbooks

Textbook: An introduction to Statistical Learning (ISLR)
Reference: Elements of Statistical Learning (ESL)

Will stick with ISL and may cite ESL accassionally.
Programming languages: R or Python

Acknowledge the use of the graphics in the
textbook/reference for only the purpose of presentation.



Probability vs. Statistical Machine Learning

Probability

/\

Data generating process Observed data

\_/

Inference and Data Mining

Forward problem: Probability is a language to quantify uncertainty.

Inverse Problem: Stafistics or Machine Learning



Statistics/Data Mining Dictionary

Statisticians and computer scientists often use different language for the
same thing. Here is a dictionary that the reader may want to return to

throughout the course.

Statistics Computer Science
estimation learning

fication supervised learning
clustering unsupervised learning
data training sample

covariates
classifier

features
hypothesis

hypothesis

confidence interval -
directed acyclic graph

Bayes net

Bayesian inference

ian inference

frequentist inference

large deviation bounds ~ PAC learning

Meaning

using data to estimate
an unknown quantity

predicting a discrete Y
from X

putting data into groups

(X1, 1) 0 (X Vo)

the X;'s

a map from covariates
to outcomes

subset of a parameter
space ©

interval that contains an
unknown quantity
with given frequency

multivariate distribution
with given conditional
independence relations

statistical methods for
using data to
update beliefs

statistical methods
with guaranteed
frequency behavior

uniform bounds on
probability of errors

Figure: Larry Wasserman's classification of statistical learning vs.
machine learning in Computer Science



Supervised vs. Unsupervised Learning

» Supervised Learning
— Data: (x,y), where x is data and y is label
— Goal: learn a functionto map f : x — y
Examples: classification (object detection, segmentation,
image captioning), regression, etc.
Golden standard: prediction!

» Unsupervised Learning

— Data: x, just data and no labels!

— Goal: learn some hidden structure of data x

— Examples: clustering (topology), dimensionality reduction
(geometry), density estimation (GAN), etc.
Golden standard: Non!

> “Self-supervised Learning”: cloze task in language models



Related Courses

» Supervised Learning
— Math 4432: Statistical Machine Learning
https://yuany-pku.github.io/2018_math4432/
— MAFS 6010S: Machine Learning and its Applications
— Math 63800, Deep learning
(https://deeplearning-math.github.io/)
— Best machine learning algorithms: neural networks, random
forests, and support vector machines
> Unsupervised Learning
— Math 4432: Statistical Machine Learning (PCA/clustering)
https://yuany-pku.github.io/2018_math4432/
— CSIC 5011, Topological and Geometric Data Reduction
(https://yao-lab.github.i0/2019_csic5011/)
— Math 63800, Deep learning (Generative models and GANs)
(https://deeplearning-math.github.io/)


https://yuany-pku.github.io/2018_math4432/
https://deeplearning-math.github.io/
https://yuany-pku.github.io/2018_math4432/
https://yao-lab.github.io/2019_csic5011/
https://deeplearning-math.github.io/
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Statistical (supervised) learning

» Suppose that we observe a quantitative response Y and p different
predictors, X1, Xo,...,X,. We assume that there is some mapping
f:X=(X,Xs,...,Xp) = Y, written as

Y =f(X)+e, (1)

where
— f is some fixed but unknown function to be estimated;
— € is a random error term, which is independent of X and has
mean zero;
— There are two main reasons that we may wish to estimate f:
prediction and inference.

Supervised Learning from Statistical Perspective



Prediction vs. Inference

» Prediction aims to minimize the gap between true value Y
and predicted value Y = f(X), usually measured by loss

Ex, LY, F(X))

~

— The estimation f, as a mapping from X to Y with unknown
parameters (e.g. linear coefficients, support vector machines,
neural networks), is a random variable depending on the
random data for training.

Supervised Learning from Statistical Perspective
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Prediction vs. Inference

» Inference aims to estimate f and its properties, but the goal is
not necessarily to make predictions for Y, e.g.

— Variable selection: which predictors are associated with the
response?

— Model selection: can the relationship between Y and each
predictor be adequately summarized using a linear equation,
more complicated ones?

— Uncertainty: how much is the uncertainty of your prediction
or estimation given finite information?

Supervised Learning from Statistical Perspective 11



Expected Prediction Error in Regression

> Given an estimate  and a set of predictors X, we can predict Y using
Y = f(X),
> Assume for a moment that both f and X are fixed. In regression setting,

E(Y — Y)? = E[f(X) 4+ ¢ — f(X)]?

= [F(X) = FX)P+  Var(e) (2)
Reducible Irreducible

where E(Y — \7)2 represents the expected squared error between the
predicted and actual value of Y, and Var(e) represents the variance
associated with the error term €. An optimal estimate is to minimize the
reducible error.
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Reducible vs. Irreducible Error

[F(X) = F(X)?
~—_——
Reducible

» Reducible error: f will not be a perfect estimate for f, and
this inaccuracy will introduce some error. This error is
reducible because we can potentially improve the accuracy of
f by using the most appropriate statistical learning technique
to estimate f.

» For example, one may choose different model families for f:

— linear models
— nonlinear models: splines, trees, support vector machines,
neural networks

Supervised Learning from Statistical Perspective

13



Reducible vs. Irreducible Error

Var(e)
——
Irreducible

» Irreducible error: Even if it were possible to form a perfect

estimate for f, so that our estimated response took the form
Y = f(X), our prediction would still have some error in it!
This is because Y is also a function of €, which, by definition,
cannot be predicted using X. The quantity ¢ may contain
unmeasured variables that are useful in predicting Y since we
don't measure them, f cannot use them for its prediction.
Therefore, variability associated with € also affects the
accuracy of our predictions. This is known as the irreducible
error, because no matter how well we estimate f, we cannot
reduce the error introduced by uncertainty of e.

Supervised Learning from Statistical Perspective
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How to estimate ?

Depending on whether our ultimate goal is prediction, inference, or
a combination of the two, different methods for estimating f may
be appropriate.

» Assume that we have observed a set of n different data
points. These observations are called the training data
because we will use these observations to train, or teach, our
method how to estimate f.

» Qur goal is to apply a statistical learning method to the
training data in order to estimate the unknown function f. In
other words, we want to find a function f such that
Y ~ f(X) for any observation (X, Y).

» Most statistical learning methods for this task can be
characterized as either parametric or non-parametric.

Supervised Learning from Statistical Perspective 15



Parametric Methods

Parametric methods are model-based approach, as it reduces the
problem of estimating f down to one of estimating a set of
parameters.
» First, we make an assumption about the functional form, or
shape, of f.

— For example, one very simple assumption is that f is linear in
X:
f(X) = Bo+ BiXe + B2 Xo + - + BpXp. (3)
— Once we have assumed that f is linear, the problem of
estimating f is greatly simplified. Instead of having to estimate
an entirely arbitrary p-dimensional function f(X), one only
needs to estimate the p 4 1 coefficients By, f1, ..., Bp.
» After a model has been selected, we need a procedure that
uses the training data to fit or train the model, e.g. the most
common approach as the least square method.

Supervised Learning from Statistical Perspective



» Pro: Assuming a parametric form for f simplifies the problem
of estimating f because it is generally much easier to estimate
a set of parameters, such as o, 1, ..., 8p in the linear model
(3), than it is to fit an entirely arbitrary function f.

» Con: The potential disadvantage of a parametric approach is
that the model we choose will usually not match the true
unknown form of f. If the chosen model is too far from the
true f,then our estimate will be poor.

» We can try to address this problem by choosing flexible
models that can fit many different possible functional forms
flexible for f. But in general, fitting a more flexible model
requires estimating a greater number of parameters. These
more complex models can lead to a phenomenon known as
overfitting the data, which essentially means they follow the
errors, or noise, too closely.

Supervised Learning from Statistical Perspective 17



Non-parametric Methods

» Non-parametric methods do not make explicit assumptions
about the functional form of f. Instead they seek an estimate
of f that gets as close to the data points as possible without
being too rough or wiggly.

» Such approaches can have a major advantage over parametric
approaches: by avoiding the assumption of a particular
functional form for f, they have the potential to accurately fit
a wider range of possible shapes for f.

— Any parametric approach brings with it the possibility that the
functional form used to estimate f is very different from the
true f, in which case the resulting model will not fit the data
well.

— In contrast, non-parametric approaches completely avoid this
danger, since essentially no assumption about the form of f is
made.

Supervised Learning from Statistical Perspective

18



Non-parametric Methods

» But non-parametric approaches do suffer from a major
disadvantage: since they do not reduce the problem of
estimating f to a small number of parameters, a very large
number of observations (far more than is typically needed for
a parametric approach) is required in order to obtain an
accurate estimate for f.

Supervised Learning from Statistical Perspective
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Figure: An illustrative example. Upper Left: A simulated binary
classification data with its true generative model (Bayes decision
boundary). Upper Right: A fitted Linear model (parametric). Lower Left:
Two fitted k-nn models (non-parametric). Lower Right: Test errors.

Supervised Learning from Statistical Perspective
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“No free lunch in statistics”

Why is it necessary to introduce so many different statistical
learning approaches, rather than just a single best method?
There is no free lunch in statistics: no one method
dominates all others over all possible data sets. On a
particular data set, one specific method may work best, but
some other method may work better on a similar but different
data set.

Hence it is an important task to decide for any given set of
data which method produces the best results. Selecting the
best approach can be one of the most challenging parts of
performing statistical learning in practice.

In this section, we discuss some of the most important
concepts that arise in selecting a statistical learning procedure
for a specific data set.

Supervised Learning from Statistical Perspective
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The Goodness of Fit Measure

Let f(X) be the true function which we aim at estimating
from a training data set D = {(x;,y;): i =1,...,n}.
Let f(X; D) be the estimated function from the training data
set D.
In the regression setting, the most commonly-used measure is
the mean squared error (MSE), given by
1< 2
MSE(D) = - > (v — F))? *)
i=1

where the MSE in (4) is computed using the training data and
so should more accurately be referred to as the training MSE.
But in general, we are interested in the accuracy of the
predictions that we obtain when we apply our method to
previously unseen test data.

The Bias-Variance Trade-Off of Prediction Error
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> We are really not interested in whether 7(x;) ~ y; (training
MSE given by (4) is small); instead, we want to know whether
f(xo) is approximately equal to yp, where (xp, yo) is a
previously unseen test observation not used to train the
statistical learning method.

» We want to choose the method that gives the lowest test
MSE, as opposed to the lowest training MSE. In other words,
if we had a large number of test observations, we could
compute

Ave(f(x0) = y0)?, (5)

the average squared prediction error for these test observations
(x0, ¥0). We'd like to select the model for which the average
of this quantity-the test MSE-is as small as possible.

The Bias-Variance Trade-Off of Prediction Error
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Figure: Illustration. Left: Data simulated from f, shown in black. Three
estimates of f are shown: the linear regression line (orange curve), and
two smoothing spline fits (blue and green curves). Right: Training MSE
(grey curve), test MSE (red curve), and minimum possible test MSE over
all methods (dashed line). Squares represent the training and test MSEs
for the three fits shown in the left-hand panel.

The Bias-Variance Trade-Off of Prediction Error
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Comments on Left panel of Figure 3

> The orange, blue and green curves illustrate three possible
estimates for f obtained using methods with increasing levels
of flexibility. The orange line is the linear regression fit, which
is relatively inflexible. The blue and green curves were
produced using smoothing splines with different levels of
smoothness.

n

S (0 — g0)? + A / ¢"(t)dt (6)

i=1
where )\ is a nonnegative tuning parameter. The function g
that minimizes (6) is known as a smoothing spline.

» As )\ tends to oo, the function g tends to linear because
[ g"(t)?dt has to tend to 0.

The Bias-Variance Trade-Off of Prediction Error 26



Comments on Right panel of Figure 3: Training MSE

> It is clear that as the level of flexibility increases, the curves fit
the observed data more closely. The green curve is the most
flexible and matches the data very well; however, we observe
that it fits the true f (shown in black) poorly because it is too
wiggly. By adjusting the level of flexibility of the smoothing
spline fit, we can produce many different fits to this data.

» The grey curve displays the average training MSE as a
function of flexibility, or more formally, the degrees of
freedom which is a quantity that summarizes the flexibility of
a model. The orange, blue and green squares indicate the
MSEs associated with the corresponding curves in the
left-hand panel.

» The more flexibility, or degree of freedom, the smaller is the
training MSE.

The Bias-Variance Trade-Off of Prediction Error



Comments on Right panel of Figure 3: Test MSE

> In this example, we know the true function f, and so we can
also compute the test MSE over a very large test set, as a
function of flexibility. (Of course, in general f is unknown, so
this will not be possible.)

> As with the training MSE, the test MSE initially declines as
the level of flexibility increases. However, at some point the
test MSE levels off and then starts to increase again.
Consequently, the orange and green curves both have higher
test MSE. The blue curve minimizes the test MSE, which
should not be surprising given that visually it appears to
estimate f the best.

» The horizontal dashed line indicates Var(e), the irreducible
error in (2), which corresponds to the lowest achievable test
MSE among all possible methods.

The Bias-Variance Trade-Off of Prediction Error
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The Bias-Variance Trade-Off of Prediction Error

» Fisher’s view: data set D is a random selection from the set
of all possible measurements which form the true distribution!

» Expected prediction error
2

minEp |F(X) — F(X;D)|, (7)
f

where randomness caused by random selection has been
taken into account.

The Bias-Variance Trade-Off of Prediction Error
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» Add and subtract Ep(f(X; D)) inside the braces, then expand,

[f — f(X:D) ]
[f D)) +Ep(f(X; D)) — 1?(X:D)}2
= [f(X) - En(f(X; D)) ] [En(F(X; D)) - f(x;D)]2

+2[F(X) ~ EnlF(X; D)]| [Enlf(x; D)] - F(X: D).
» Take the expectation with respect to D,
Ep [f(X) ~ (X D)}2

= 100 - B(706 D)) + £ [[B(706 ) - FX D) ]

Bias?

Variance

The Bias-Variance Trade-Off of Prediction Error



Worst | Best

@

(a) High bias, (b) Low bias, (c) High bias, (d) Low bias
Low variance High variance High variance Low variance
(high precision) (low precision) (low precision) (high precision)

» Bias refers to the error that is introduced by approximating a
real-life problem, which may be extremely complicated, by a
much simpler model.

» Variance refers to the amount by which fp would change if
we estimated it using a different training data set D.

» Bias and variance trade-off: The optimal predictive
capability is the one that leads to balance between bias and
variance.

The Bias-Variance Trade-Off of Prediction Error
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Bias-variance tradeoff

Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 2

o
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[0}

Training Saiple

Low High
Model Complexity

FIGURE 2.11. Test and training error as a function
of model complexity.
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Deep learning: Bias-variance tradeoff?

Optimum Model Gompiexity

Error

*

f
Deep
models

Model Complexity

Models where p>20n are common

The Bias-Variance Trade-Off of Prediction Error
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Why Big Models Generalize Well?

b 4@ CIFARIO 222%820

k=10
What happens when | turn off the regularizers?

Train Test
Model parameters p/n loss error
CudaConvNet 145,578 29 0 23%
CudaConvNet 145,578 29 0.34 18%
(with regularization)
Microlnception 1,649,402 33 0 1 4%
ResNet 2,401,440 48 0 13%

Figure: Why overparameterized deep neural networks do not overfit? Ben
Recht, FoCM 2017.
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MNIST experiments with Neural Networks

v

MNIST: (x;,y;) € R78*[10 j  [50,000].
Two-layers neural networks fyy :

E:aj (wj, x

Square loss without regularization.

v

Find a local minimizer, report training and test error.
Perform a sequence of experiments for different N.

vV v. v Y

Plot training and test error vs N.
The Bias-Variance Trade-Off of Prediction Error
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Increasing # parameters

T
06 4= Test 1
~Train
I
0.2 - 1
! ]
1
1
0.2
| ]
[}
1
o = |
T T T T T T 1
0.08 0.25 1 2.5 7.5 20 T

T
10° 10% 10*
# parameters / # samples # parameters / # samples

Figure: Experiments on MNIST. Left: [Belkin, Hsu, Ma, Mandal, 2018]. Right:
[Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart, 2018].

Similar phenomenon appeared in the literature [LeCun, Kanter, and Solla, 1991],
[Krogh and Hertz, 1992], [Opper and Kinzel, 1995], [Neyshabur, Tomioka, Srebro,
2014], [Advani and Saxe, 2017].

The Bias-Variance Trade-Off of Prediction Error

36



Double Descent for Overparameterized Models?

over-parameterized

under-parameterized

Test risk

“classical”
regime

under-fitting . over-fitting

. Test risk

“modern”
interpolating regime

N . :
> . Training risk > . Training risk:
sweet spot\: - _ S~ . _interpolation threshold

Complexity of 7:[- Cor;p-le;(ity of H

(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Figure: A cartoon by [Belkin, Hsu, Ma, Mandal, 2018].
Figure: Double descent: 1) Peak at the interpolation threshold; 2)

monotone decreasing in the overparameterized region; 3) Global
minimum when the number of parameters is infinity.

The Bias-Variance Trade-Off of Prediction Error
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All models are wrong, but some are useful.

Figure: George Box: “Essentially, all models are wrong, but some are
useful.”

The Bias-Variance Trade-Off of Prediction Error
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