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Introduction



Motivation

Why Sales Forecasting Matters
e Critical for retail inventory optimization and loss minimization
e Impacts supply chain efficiency and profitability

e Challenging due to complex temporal patterns, promotions, and special events

The M5 Competition Challenge
e Predict 28 days of daily sales for Walmart items
e 30,490 hierarchical time series
e Data spans 1,913 days (Jan 2011 - Jun 2016)

e Multiple product categories, stores, and states
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Our Contribution

Key Innovation: Two-Stage Framework

1. Stage 1: Train 113 hierarchical LightGBM models

e Capture temporal patterns, price effects, promotions
e Organized across state, store, category, and department levels

2. Stage 2: Conformal Prediction for uncertainty quantification

e Generate calibrated prediction intervals
e Dynamic, uncertainty-aware weights for ensemble
e Models with tighter intervals get higher weights

Novel Approach .
Integrates uncertainty quantification directly into ensemble aggregation
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Related Work



LightGBM: Efficient Gradient Boosting

Why LightGBM?
e High performance on large-scale tabular data
e Computational efficiency for 30,490 time series
e Superior predictive accuracy
Key Techniques
1. Gradient-based One-Side Sampling (GOSS):
8i if |gi| = 6

§i=9,. _
=578 otherwise

2. Exclusive Feature Bundling (EFB): Bundles mutually exclusive features:

O(|F| x n) — O(K x n)
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LightGBM Objective Function

Training Objective at Iteration t

£t — Z/ <y,-’f/l.(t_1) L ft(x,-)) + Q(f)
i=1

where:

e /(-): Tweedie loss function

N y>r y-y y2r
D(y’y)zz[(l—p)(z—p)_ 1—p 2 ]

° y,.(f‘l): Prediction from previous iteration

o f;: New tree being added
o Q(f;) =~T+ %/\HWHzi Regularization term
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Conformal Prediction

Why Conformal Prediction?
e Distribution-free: No Gaussian assumptions
e Model-agnostic: Works with any forecasting model
e Finite-sample guarantees: Valid for any sample size
e Quantifies uncertainty with calibrated prediction intervals

Coverage Guarantee
Under exchangeability assumption:

IP)(Ytest S C(Xtest)) >1—-a

where C(Xtest) = [f(Xtest) - 67 f(Xtest) + CA]]
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Conformal Prediction Procedure

1. Split data: Training set + Calibration set
2. Train model: f on training set
3. Define nonconformity score:
s(x,y) = ly = f(x)|
4. Compute calibration scores:

SE= {Sj = ‘Y] - f(XJ)‘}jnzl

5. Calculate quantile:

n

§ = Quantile <5; [(n+1)(1 ~ 04)1)

6. Form prediction interval: C(Xiest) = [f(Xtest) £ 4] 8/22



Data Processing




Data Structure
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e Sales and price data across all products
3 states: California, Texas, Wisconsin

[ ]
e 10 stores across the states
e 3 product categories: Foods, Hobbies, Household

e 7 departments within categories
e Calendar dataset identifies special events
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Exploratory Data Analysis

All aggregate sales

Date

Figure 1: Aggregate sales across time

e Clear upward trend over time
e Strong weekly patterns
e Possible shorter-period overlaying seasonality
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Data Characteristics

Density: Percentage of zero values Density: Mean sales (w/o zeros; log scale)

e Extreme sparsity: 80-90%
zero-sales days

e Heavy-tailed: Log-normal sales
distribution, concentrating around

im\lp.,.,., e« 1-2 units per day.

5
sales
Density: Mean item price Density: Normalised price variations

o% 20% 0% 0% 0% 100%

e Price concentration: Sharp peak
around $5

e Bimodal price variation: Stable vs.
promotional volatility

10 2
Price (5]
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Feature Engineering Overview

Four Feature Categories

1. Temporal Features: Cyclical encodings

. [ 2rnf 2rf
fsin = sin <P> ,  feos = cos <P>

Applied to: day of week, month, day, quarter, week

2. Price Features:

sell_price
pricemean+10—°

e price_change: percentage change compared to the previous day

e Normalized price: price norm =

e price rolling mean: mean price for the past 28 days.

e price momentum: difference between current price with rolling mean price
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Feature Engineering (Continued)

Four Feature Categories

3. Lag & Rolling Window Features:

o Weekly lags: {Vis,t—¢}eeq7,14,21,28}: Sales of item i in store s £ days ago,
e Rolling statistics: i, (t) = 2 30, yi s e« for w € {7,14,28}

4. Meta-Model Features:

e Global market predictions: max, mean, std of aggregate sales
e Inject market-wide context into local models
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Methodology




Model Architecture Overview

Three-Component Framework

1. Meta-Models: Three meta-models to predict aggregate market statistics

mean

1 N
o Y =maxiyie ¥ = 3o Vi Vi = stdi(yie)
e Inject global context into local models

2. Hierarchical Models (113 total):

e 3 state-level models

e 10 store-level models

e 30 store-category models

e 70 store-department models

3. Uncertainty-Weighted Ensemble: Conformal prediction weights
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Hierarchical Model Structure

’Store Cat‘ ’Store Cat‘ 30
e Each level captures different granularity of patterns

e Coarse (state) to fine (department) specialization

e All applicable models contribute to final prediction
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Uncertainty-Weighted Ensemble

Key Innovation: Dynamic Weighting by Uncertainty
For each model m at horizon h:

Step 1: Compute nonconformity scores on calibration set

h R
RI™ = |y, — pi™)]

Step 2: Calculate prediction interval half-width

a&m,h) — Quantile ({l[\)j(m7h)}_7:i7 [(ncal +,;I-)(]- - Oé)~|>
cal

Step 3: Assign inverse-uncertainty weight
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Ensemble Aggregation Formula

Weighted Average Prediction
For item i at store s, with applicable models H (i, s):

h) ~(m
ZmE’H(i,s) W’(") i(7s,)t+h

yens,i,s,tJrh = h
Smenis) W
meH(i,s) "'m

Typically |H(i,s)| = 4 models (one from each level)

Advantage
e Models with tighter intervals — higher weights

e Data-driven, no manual tuning required
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Recursive Multi-Step Forecasting

28-Day Horizon Strategy
For each day h € {1,2,...,28}:
1. Update temporal features: Day of week, month, cyclical encodings
2. Meta-model prediction: Global statistics for day T + h
3. Ensemble aggregation: Apply uncertainty-weighted combination
4. Update lag features:

o lag,(i,s, T+ h+1)=lagy_,(i,s, T + h)
O |ag1(l',5, T+h+ 1) - yens,i,s,T—}—h

5. Update rolling statistics:

(w — 1) -roll_meany,(i,s, T + h) + Jens,is, T+h

roll_mean,,(i,s, T+ h+1) ~
w
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Results




Evaluation Metric: RMSSE

Root Mean Squared Scaled Error

n+h A2
RMSSE = % tin+1 (vt — 9t)

1

where:

e y;: Actual sales at time ¢
e y:: Forecasted sales at time ¢
e n: Training sample length

e h: Forecasting horizon (28 days)

2
il Z?:z (vt — ye-1)
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Model Performance Comparison

Table 1: Performance on M5 validation set (30,490 time series)

Model RMSE MAE

Lightweight 40 models 1.3199 1.0531
Lightweight 110 models 1.3108  1.0455
Complete 113 models 1.3083 1.0406

Key Findings
e 110-model ensemble achieves lowest RMSSE (0.8731)
e Complete 113-model best on RMSE and MAE
e Marginal improvements: 0.88% RMSE, 1.19% MAE
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Ablation Study: Weighting Schemes

Configuration RMSSE RMSE
113 + Conformal Exponential 0.8762 1.3036
113 + Conformal Inverse 0.8772 1.3083
113 + Conformal Softmax 0.8779 1.3102
113 + Equal Weight 0.8781 1.3105
110 + Conformal Softmax 0.8790 1.3172
40 + Conformal Softmax 0.8792 1.3154

Insights

e Exponential weighting performs best

e All conformal methods outperform equal weighting (0.22% improvement)

e 40-model ensemble only 0.34% worse than full ensemble
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Key Contributions

Novel Two-Stage Framework

1. Hierarchical ensemble: 113 specialized LightGBM models

e State, store, category, and department levels
e Captures patterns at multiple granularities

2. Conformal prediction integration:

e Distribution-free uncertainty quantification
e Direct integration into ensemble aggregation
e Dynamic, data-driven weighting
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