Credit Default Risk Prediction with Multi-Table Aggregation and Ensemble Boosting Models

Siqi Wang HKUST

2025/11/18

Motivation

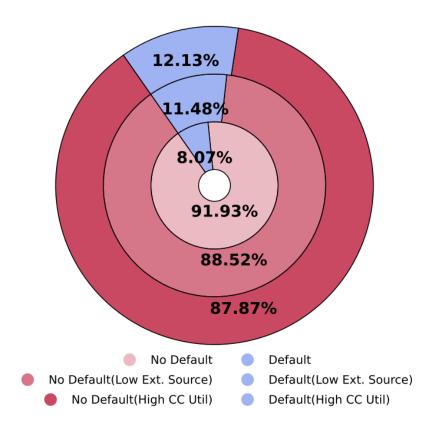
- Credit access essential for financial inclusion.
- Many applicants lack credit history → difficult risk assessment.
- Goal: interpretable and robust default prediction pipeline.

Dataset Overview

- Main application table: demographics, income, loan info.
- Six auxiliary tables: bureau, previous applications, payments, POS, credit card balance.
- Rich behavioral credit signals from historical tables.

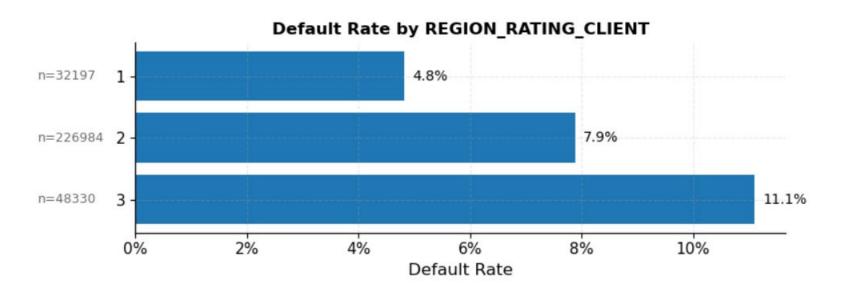
Target Distribution & Imbalance

- Only ~8% default cases
 → highly imbalanced dataset.
- Accuracy is misleading
 → use AUC, Recall, F1.
- Heavy missingness in many features.



Key Categorical Features

- Categorical: gender, living city, region, education, occupation type, organization type, refusals strongly predictive.
- Lower education-level, city mismatch, unstable occupation, etc. → higher default risk.



Key Continuous Feature

- Continues feature: age, EXT_SOURCE, delays, past refusal, etc.
- Younger age, lower EXT_SOURCE, overdue, past refusal
 higher default risk.

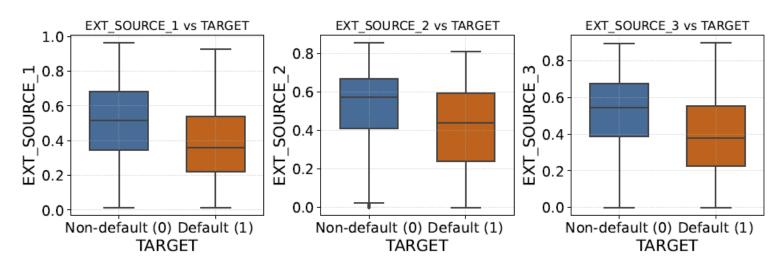
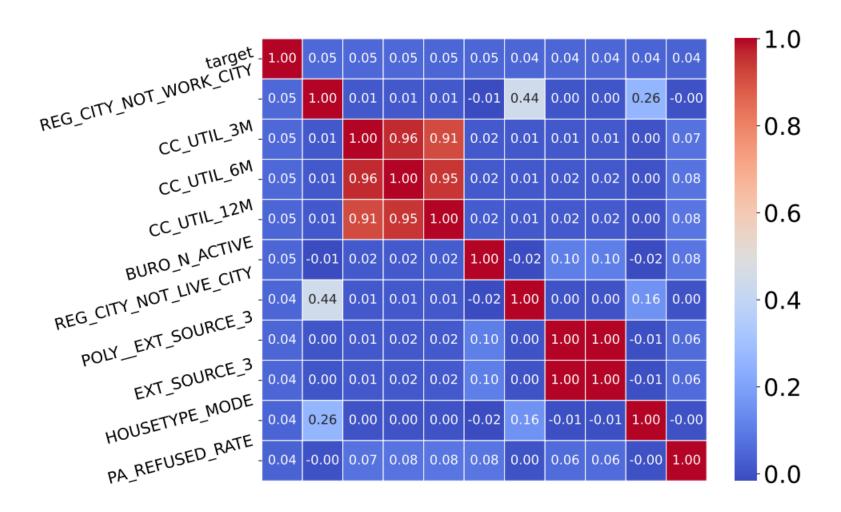


Figure 2: All three EXT_SOURCE features show clear separation across TARGET classes: borrowers with higher external source scores have lower default rates, consistent with their interpretation as creditworthiness proxies.

Continuous Feature Correlation



Summary of EDA Conclusions

- Extreme class imbalance.
- Multi-table aggregation is critical.
- EXT_SOURCE family dominates importance.
- Continuous features are weakly correlated.
- Categorical features:

```
CODE_GENDER,

REGION_RATING_CLIENT_W_CITY,

NAME_EDUCATION_TYPE,

OCCUPATION_TYPE,

REG_CITY_NOT_WORK_CITY,

ORGANIZATION_TYPE,

NAME_CONTRACT_STATUS
```

Method Overview

- Multi-table aggregation.
- Merge features and add degree-2 interactive terms.
- Split data stratified into train/validation sets.
- Train boosting models with early stopping.
- Stack model outputs using logistic regression.
- Optionally prune low-gain features and retrain.
- Average multi-seed predictions for final stability.

Multi-Table Aggregation

- Missing Value Imputation: using the median values.
- Categorical Data Encoding: obtain numeric representations using mapping.
- Feature Scaling: ensure similar ranges and magnitude.
- Polynomial Feature Generation: generate interaction terms and non-linear relationships.

Models & Training

- Models: LightGBM, CatBoost, XGBoost, AdaBoost.
- Stacked using Logistic Regression.
- Early stopping, feature pruning, etc.

Ablation Experiment

 Compared with the App-Train only baseline (AUC = 0.773), final pipeline achieves 2.4 % AUC gain and 62 % improvement in F1-score.

Table 2: Ablation study comparing different feature sets on the app_train dataset. The top-performing model in each metric is highlighted in bold.

Feature Set	AUC	Precision	Recall	F1-Score	Accuracy
App-Train Features Only	0.773	0.529	0.037	0.068	0.919
+ Polynomial Terms	0.773	0.539	0.035	0.066	0.920
+ All-Table Aggregation	0.791	0.516	0.061	0.109	0.919
+ Poly + Aggregation	0.792	0.518	0.061	0.110	0.920

Comparison Experiment

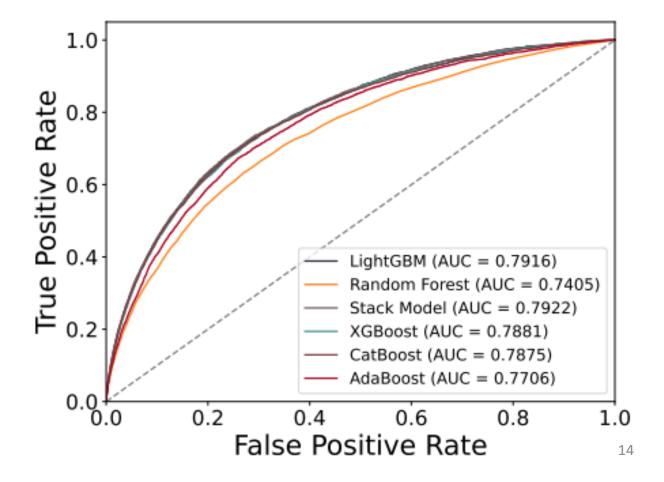
- Boosting models ~0.79 AUC.
- Stacked model achieves best AUC (0.7922).

Table 3: Model performance comparison on validation data. The top-performing model in each metric is highlighted in bold.

Model	AUC	Precision	Recall	F1-Score	Accuracy
Logistic Regression	0.5747	0.1250	0.0004	0.0008	0.9191
Random Forest	0.7405	0.7037	0.0038	0.0076	0.9195
CatBoost	0.7875	0.6204	0.0342	0.0649	0.9203
LightGBM	0.7916	0.5178	0.0614	0.1098	0.9196
AdaBoost	0.7706	0.5152	0.0274	0.0520	0.9194
XGBoost	0.7881	0.5789	0.0421	0.0785	0.9202
$LR\text{-}Stack\;(LightGBM+CatBoost+XGBoost)$	0.7922	0.5053	0.0961	0.1614	0.9194

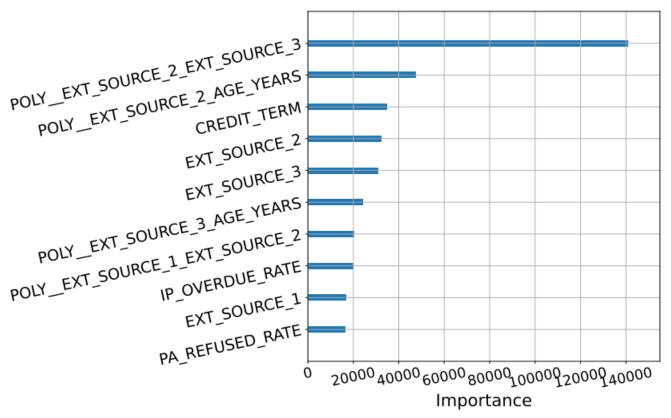
Comparison Experiment

- Boosting models ~0.79 AUC.
- Stacked model achieves best AUC (0.7922).



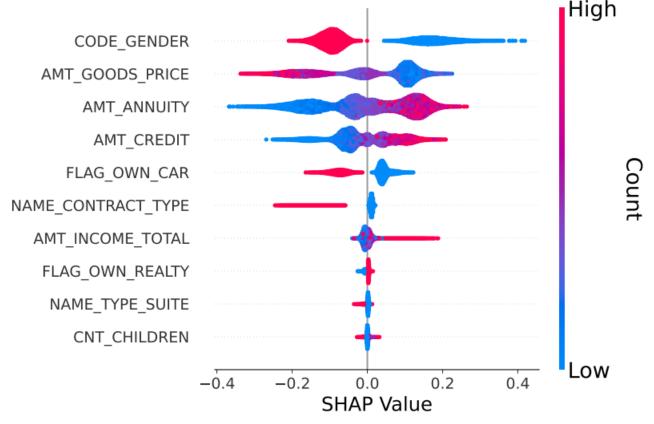
Feature Importance

- Top: EXT_SOURCE family, credit term, annuity.
- Polynomial EXT×Age improves predictions.



Feature Importance

SHAP: higher credit amount → higher risk; higher income → lower risk; smaller household size -> lower risk.



Discussion

- Feature ratios enhance interpretability.
- Table aggregation provides the largest performance gains.
- Polynomial interactions offer small but consistent improvements.
- Ensembling improves generalization and stability.

Conclusion

- Built a reproducible and interpretable pipeline.
- Performed extensive EDA to identify key feature—target relationships.
- Built a robust preprocessing pipeline: encoding, scaling, imputation, interactions.
- Developed a stacked ensemble (LightGBM + CatBoost + AdaBoost).

Thank You

- Questions?
- GitHub: github.com/siqi-wang25/Home-Credit-Default-Risk-Project

Kaggle Leaderboard:

Private Score: 0.78857

– Public Score: 0.79108

Model	AUC	Notes	
LightGBM	0.7916	Single best model	
CatBoost	0.7875	Handles categorical features well	
XGBoost	0.7881	Competitive baseline	
Stack (LGBM + CB + XGB)	0.7922	Final ensemble model	