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Motivation

• Credit access essential for financial inclusion.
• Many applicants lack credit history → difficult 

risk assessment.
• Goal: interpretable and robust default 

prediction pipeline.
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Dataset Overview

• Main application table: demographics, 
income, loan info.

• Six auxiliary tables: bureau, previous 
applications, payments, POS, credit card 
balance.

• Rich behavioral credit signals from historical 
tables.
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Target Distribution & Imbalance

• Only ~8% default cases 
→ highly imbalanced 
dataset.

• Accuracy is misleading 
→ use AUC, Recall, F1.

• Heavy missingness in 
many features.
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Key Categorical Features
• Categorical: gender, living city, region, education, occupation 

type, organization type, refusals strongly predictive.
• Lower education-level, city mismatch, unstable occupation, 

etc. → higher default risk.
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Key Continuous Feature
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• Continues feature: age, EXT_SOURCE, delays, past refusal, etc.
• Younger age, lower EXT_SOURCE, overdue, past refusal→ 

higher default risk.



Continuous Feature Correlation
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Summary of EDA Conclusions
• Extreme class imbalance.
• Multi-table aggregation is critical.
• EXT_SOURCE family dominates importance.
• Continuous features are weakly correlated. 
• Categorical features: 

CODE_GENDER, 
REGION_RATING_CLIENT_W_CITY, 
NAME_EDUCATION_TYPE, 
OCCUPATION_TYPE, 
REG_CITY_NOT_WORK_CITY, 
ORGANIZATION_TYPE, 
NAME_CONTRACT_STATUS
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Method Overview
• Multi-table aggregation.
• Merge features and add degree-2 interactive terms.
• Split data stratified into train/validation sets. 
• Train boosting models with early stopping.
• Stack model outputs using logistic regression. 
• Optionally prune low-gain features and retrain. 
• Average multi-seed predictions for final stability.
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Multi-Table Aggregation

• Missing Value Imputation: using the median 
values.

• Categorical Data Encoding: obtain numeric 
representations using mapping.

• Feature Scaling: ensure similar ranges and 
magnitude.

• Polynomial Feature Generation: generate 
interaction terms and non-linear relationships.
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Models & Training

• Models: LightGBM, CatBoost, XGBoost, AdaBoost.
• Stacked using Logistic Regression.
• Early stopping, feature pruning, etc.
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Ablation Experiment
• Compared with the App-Train only baseline 

(AUC = 0.773), final pipeline achieves 2.4 % AUC 
gain and 62 % improvement in F1-score.
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Comparison Experiment

• Boosting models ~0.79 AUC.
• Stacked model achieves best AUC (0.7922).
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Comparison Experiment
• Boosting models ~0.79 AUC.
• Stacked model achieves best AUC (0.7922).
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Feature Importance
• Top: EXT_SOURCE family, credit term, annuity.
• Polynomial EXT×Age improves predictions.
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Feature Importance
• SHAP: higher credit amount → higher risk; higher

income → lower risk; smaller household size -> lower 
risk.
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Discussion
• Feature ratios enhance interpretability.
• Table aggregation provides the largest 

performance gains.
• Polynomial interactions offer small but 

consistent improvements.
• Ensembling improves generalization and 

stability.
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Conclusion

• Built a reproducible and interpretable 
pipeline.

• Performed extensive EDA to identify key 
feature–target relationships.

• Built a robust preprocessing pipeline: 
encoding, scaling, imputation, interactions.

• Developed a stacked ensemble (LightGBM + 
CatBoost + AdaBoost).
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Thank You
• Questions?
• GitHub: github.com/siqi-wang25/Home-Credit-

Default-Risk-Project
• Kaggle Leaderboard:

– Private Score: 0.78857
– Public Score: 0.79108
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Model AUC Notes

LightGBM 0.7916 Single best model

CatBoost 0.7875 Handles categorical features 
well

XGBoost 0.7881 Competitive baseline

Stack (LGBM + CB + XGB) 0.7922 Final ensemble model
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