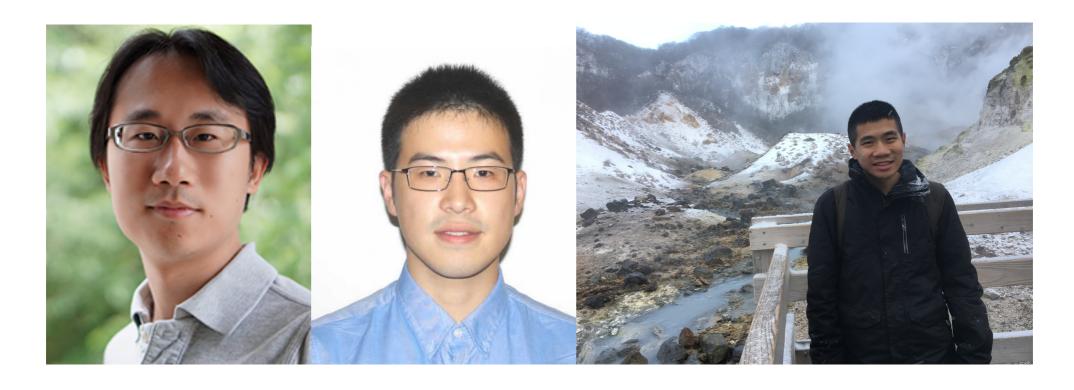
Robust Statistical Learning and and Generative Adversarial Networks

Yuan YAO HKUST

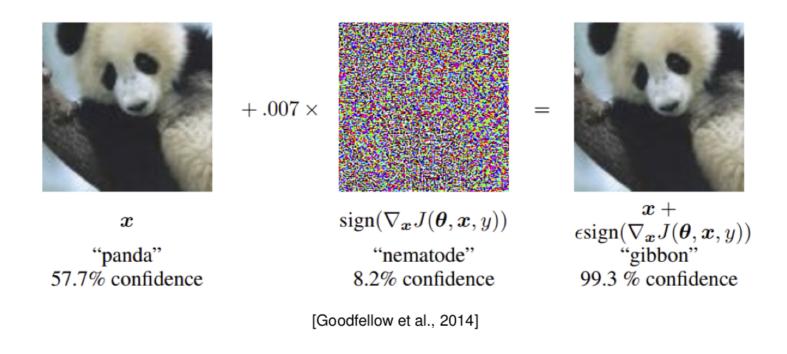


Chao GAO
U. Chicago

Jiyi LIUYale U.

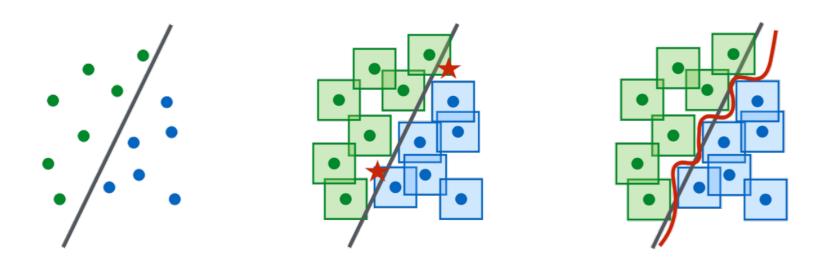
Weizhi ZHU HKUST

Deep Learning is Notoriously Not Robust!



- Imperceivable adversarial examples are ubiquitous to fail neural networks
- How can one achieve robustness?

Robust Optimization



• Traditional training:

$$\min_{\theta} J_n(\theta, \mathbf{z} = (x_i, y_i)_{i=1}^n)$$

- e.g. square or cross-entropy loss as negative log-likelihood of logit models
- Robust optimization (Madry et al. ICLR'2018):

$$\min_{\theta} \max_{\|\epsilon_i\| < \delta} J_n(\theta, \mathbf{z} = (x_i + \epsilon_i, y_i)_{i=1}^n)$$

robust to any distributions, yet computationally hard

Distributionally Robust Optimization (DRO)

• Distributional Robust Optimization:

$$\min_{\theta} \max_{\epsilon} \mathbb{E}_{\mathbf{z} \sim P_{\epsilon} \in \mathcal{D}}[J_n(\theta, \mathbf{z})]$$

ullet $\mathcal D$ is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

$$\mathcal{D} = \{P_{\epsilon} : W_2(P_{\epsilon}, \text{uniform distribution}) \leq \epsilon\}$$

where DRO may be reduced to regularized maximum likelihood estimates (Shafieezadeh-Abadeh, Esfahani, Kuhn, NIPS'2015) that are convex optimizations and tractable

Wasserstein Distributionally Robust Optimization

Wasserstein-DRO:

$$\min_{\theta} \max_{P_{\epsilon}:W_{p}(\mathbb{P}_{\epsilon},\mathbb{P}_{n})\leq \epsilon} \mathbb{E}_{z\sim\mathbb{P}_{\epsilon}\in\mathcal{D}}[\ell_{\theta}(z)]$$

where

$$\mathcal{W}_{p}(\mathbb{P}, \mathbb{Q}) = \begin{cases} \left(\min_{\gamma \in \Gamma(\mathbb{P}, \mathbb{Q})} \left\{ \int_{\mathcal{Z} \times \mathcal{Z}} d^{p}(z, z') \, \gamma(dz, dz') \right\} \right)^{1/p}, & \text{if } 1 \leq p < \infty, \\ \inf_{\gamma \in \Gamma(\mathbb{P}, \mathbb{Q})} \left\{ \gamma - \operatorname{esssup}_{\mathcal{Z} \times \mathcal{Z}} d(z, z') \right\}, & \text{if } p = \infty, \end{cases}$$

 For a broad class of loss functions, Wasserstein-DRO is asymptotically equivalent to the following regularization problem

$$\min_{\theta} \mathbb{E}_{(x,y) \sim \mathbb{P}_n} \left[\ell_{\theta}(x,y) \right] + \alpha \cdot \left\| \nabla_{(x,y)} \ell_{\theta} \right\|_{\mathbb{P}_n,p_*}$$

where $p_* = \frac{p}{p-1}$ and the penalty term $\|\nabla_{(x,y)}\ell_\beta\|_{\mathbb{P}_n,p_*}$ represents the empirical dual p_* -norm of the gradient of the loss function with respect to the data (input Lipschitz).

► Gao, Kleywegt (2016); Gao, Chen, Kleywegt (2017); Blanchet, Kang, Murphy (2016), et al.

Certified Robustness of Lasso

Theorem (Blanchet, Kang, Murphy (2016))

Consider the cost for z = (x, y):

$$c\left((x,y),(x',y')\right) = \begin{cases} \|x - x'\|_p^2 & \text{if} \quad y = y' \\ \infty & \text{if} \quad y \neq y' \end{cases}$$

For $p = \infty$ and linear regression, Wasserstein-DRO is equivalent to SQRT-Lasso:

$$\min_{\beta} \max_{P:W_c(P,P_n) \le \delta} E_P \left(\left(Y - \beta^T X \right)^2 \right)$$

$$= \min_{\beta} \left\{ E_{P_n}^{1/2} \left[\left(Y - \beta^T X \right)^2 \right] + \sqrt{\delta} \|\beta\|_{p_*} \right\}^2$$

where
$$p_* = \frac{p}{p-1} = 1$$
.

► Generalized to asymmetric cost (Bregman divergence, Asymmetric Mahalannobis) by Blanchet, Glynn, Hui, Xie (2022)

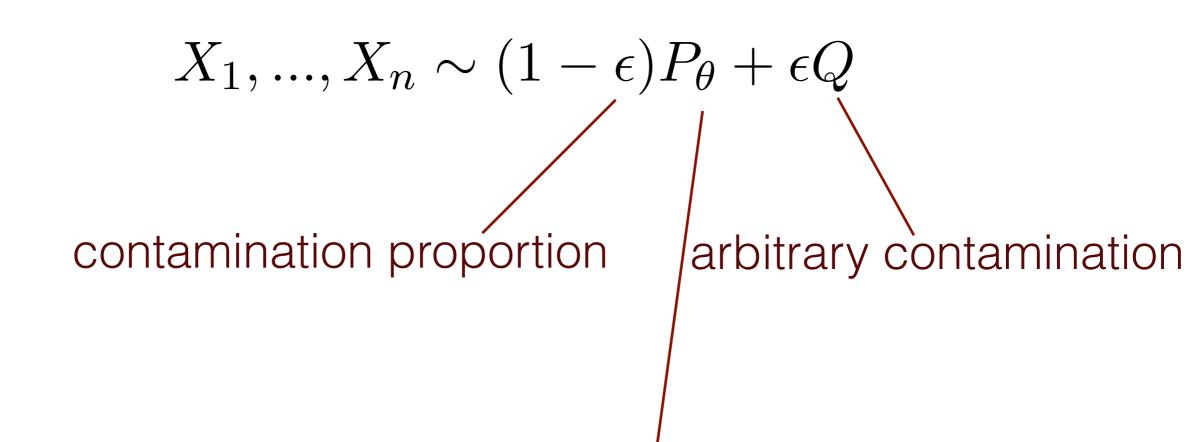
TV-neighborhood

Now how about the TV-uncertainty set?

$$\mathcal{D} = \{P_{\epsilon} : TV(P_{\epsilon}, \text{uniform distribution}) \leq \epsilon\}$$
?

• an example from *robust statistics* ...

Huber's Model

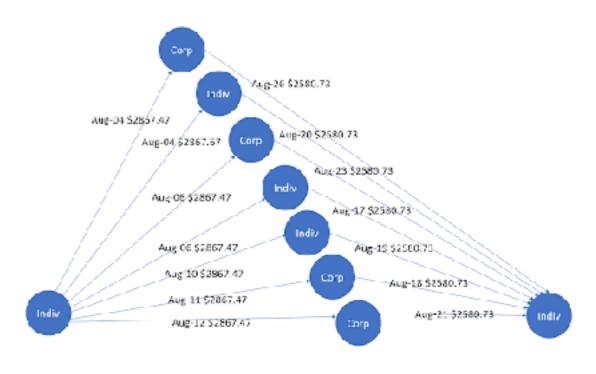


[Huber 1964]

parameter of interest

Example: Financial Fraud

- P represent normal transactions
- Q represent fraudulent transactions, e.g. money laundering, which
 is sparse and arbitrarily close to P
- Finding P and its dual problem in finding Q?



An Example

$$X_1, ..., X_n \sim (1 - \epsilon)N(\theta, I_p) + \epsilon Q.$$

how to estimate?

Medians

1. Coordinatewise median

$$\hat{\theta} = (\hat{\theta}_j)$$
, where $\hat{\theta}_j = \text{Median}(\{X_{ij}\}_{i=1}^n)$;

2. Tukey's median (1975)

$$\hat{\theta} = \arg\max_{\eta \in \mathbb{R}^p} \min_{||u||=1} \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i > u^T \eta\}.$$

Comparisons

	Coordinatewise Median	Tukey's Median	
breakdown point	1/2	1/3	
statistical precision	$\frac{p}{n}$	$\frac{p}{n}$	
(no contamination)			
statistical precision	$\frac{p}{n} + p\epsilon^2$	$\frac{p}{n} + \epsilon^2$: optimal	
(with contamination)		[Chen-Gao-Ren'15]	
computational complexity	Polynomial	NP-hard	
		[Amenta et al. '00]	

Note: R-package for Tukey median can not deal with more than 10 dimensions!

[https://github.com/ChenMengjie/DepthDescent]

Depth and Statistical Properties

Multivariate Location Depth

$$\left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i} > u^{T} \eta\} \wedge \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i} \leq u^{T} \eta\} \right\}$$

$$= \arg \max_{\eta \in \mathbb{R}^p} \min_{||u||=1} \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i > u^T \eta\}.$$

Regression Depth

model

$$y|X \sim N(X^T\beta, \sigma^2)$$

embedding

$$Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$$

projection

$$u^T X y | X \sim N(u^T X X^T \beta, \sigma^2 u^T X X^T u)$$

$$\left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i}(y_{i} - X_{i}^{T} \eta) > 0\} \wedge \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i}(y_{i} - X_{i}^{T} \eta) \leq 0\} \right\}$$

Tukey's depth is not a special case of regression depth.

Multi-task Regression Depth

$$(X,Y) \in \mathbb{R}^p \times \mathbb{R}^m \sim \mathbb{P}$$

$$B \in \mathbb{R}^{p \times m}$$

population version:

$$\mathcal{D}_{\mathcal{U}}(B, \mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P} \left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$$

empirical version:

$$\mathcal{D}_{\mathcal{U}}(B, \{(X_i, Y_i)\}_{i=1}^n) = \inf_{U \in \mathcal{U}} \frac{1}{n} \sum_{i=1}^n \mathbb{I} \left\{ \left\langle U^T X_i, Y_i - B^T X_i \right\rangle \ge 0 \right\}$$

Multi-task Regression Depth

$$\mathcal{D}_{\mathcal{U}}(B, \mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P} \left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$$

$$p = 1, X = 1 \in \mathbb{R},$$

$$\mathcal{D}_{\mathcal{U}}(b, \mathbb{P}) = \inf_{u \in \mathcal{U}} \mathbb{P} \left\{ u^{T}(Y - b) \ge 0 \right\}$$

$$m = 1,$$

$$\mathcal{D}_{\mathcal{U}}(\beta, \mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P} \left\{ u^T X (y - \beta^T X) \ge 0 \right\}$$

Statistical Errors of Multi-task Regression Depth

Estimation Error. For any $\delta > 0$,

$$\sup_{B \in \mathbb{R}^{p \times m}} |\mathcal{D}(B, \mathbb{P}_n) - \mathcal{D}(B, \mathbb{P})| \le C\sqrt{\frac{pm}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}},$$

with probability at least $1-2\delta$.

Contamination Error.

$$\sup_{B,Q} |\mathcal{D}(B, (1 - \epsilon P_{B^*}) + \epsilon Q) - \mathcal{D}(B, P_{B^*})| \le \epsilon$$

Statistical Optimality of Multi-task Regression Depth

$$(X,Y) \sim P_B$$

$$(X_1, Y_1), ..., (X_n, Y_n) \sim (1 - \epsilon)P_B + \epsilon Q$$

Theorem [G17]. For some C > 0,

$$\operatorname{Tr}((\widehat{B}-B)^T\Sigma(\widehat{B}-B)) \leq C\sigma^2\left(\frac{pm}{n}\vee\epsilon^2\right),$$

$$\|\widehat{B} - B\|_{\mathrm{F}}^2 \le C \frac{\sigma^2}{\kappa^2} \left(\frac{pm}{n} \vee \epsilon^2 \right),$$

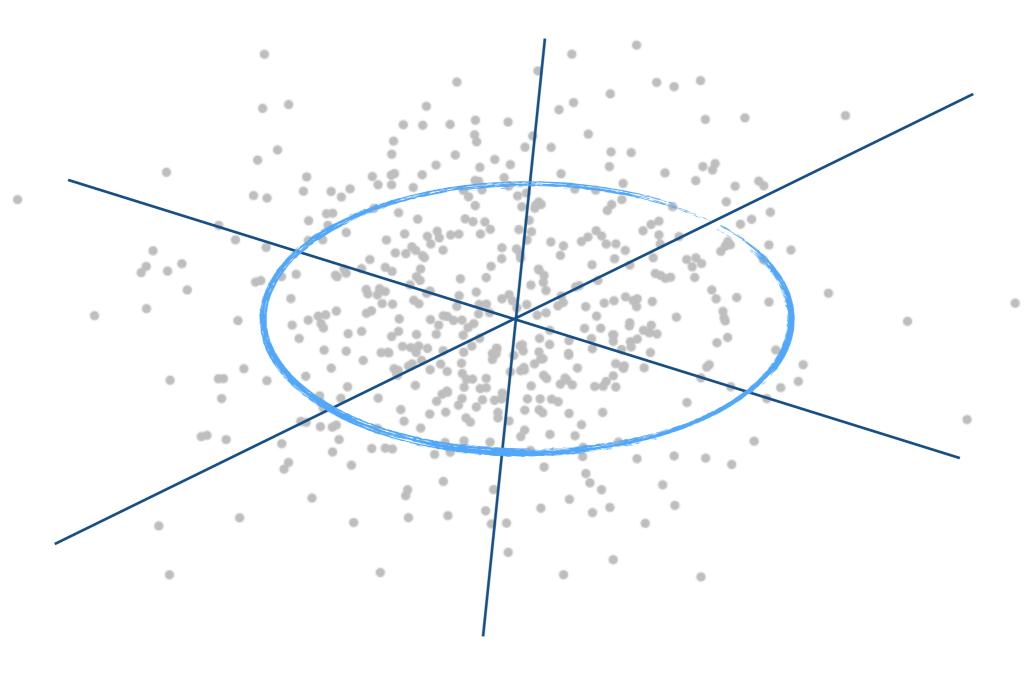
with high probability uniformly over B,Q.

Covariance Matrix

$$X_1, ..., X_n \sim (1 - \epsilon)N(0, \Sigma) + \epsilon Q.$$

how to estimate?

Covariance Matrix



Covariance Matrix

$$\mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) = \min_{\|u\|=1} \min \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 \ge u^T \Gamma u\}, \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 < u^T \Gamma u\} \right\}$$

$$\hat{\Gamma} = \arg \max_{\Gamma \succeq 0} \mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) \qquad \hat{\Sigma} = \hat{\Gamma}/\beta$$

Theorem [CGR15]. For some C > 0,

$$\|\hat{\Sigma} - \Sigma\|_{\text{op}}^2 \le C\left(\frac{p}{n} \vee \epsilon^2\right)$$

with high probability uniformly over Σ, Q .

Summary

mean	$\ \cdot\ ^2$	$\frac{p}{n}\sqrt{\epsilon^2}$
reduced rank regression	$\lVert \cdot \rVert_{ ext{F}}^2$	$\frac{\sigma^2}{\kappa^2} \frac{r(p+m)}{n} \sqrt{\frac{\sigma^2}{\kappa^2} \epsilon^2}$
Gaussian graphical model	$\ \cdot\ _{\ell_1}^2$	$\frac{s^2 \log(ep/s)}{n} \vee s\epsilon^2$
covariance matrix	$\ \cdot\ _{\mathrm{op}}^2$	$\frac{p}{n}\sqrt{\epsilon^2}$
sparse PCA	$\lVert \cdot \rVert_{ ext{F}}^2$	$\frac{s\log(ep/s)}{n\lambda^2}\sqrt{\frac{\epsilon^2}{\lambda^2}}$

Computation

Computational Challenges

$$X_1,...,X_n \sim (1-\epsilon)N(\theta,I_p) + \epsilon Q.$$

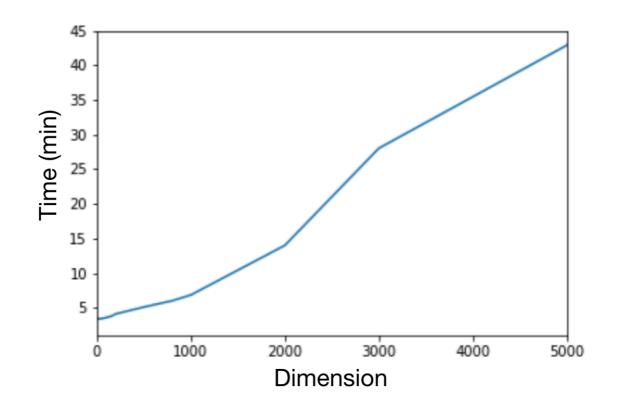
Lai, Rao, Vempala Diakonikolas, Kamath, Kane, Li, Moitra, Stewart Balakrishnan, Du, Singh

- Polynomial algorithms are proposed [Diakonikolas et al.'16, Lai et al. 16]
 of minimax optimal statistical precision
 - needs information on second or higher order of moments
 - ullet some priori knowledge about ϵ

Advantages of Tukey Median

A practically good algorithm?

Generative Adversarial Networks [Goodfellow et al. 2014]



Note: R-package for Tukey median can not deal with more than 10 dimensions [https://github.com/ChenMengjie/DepthDescent]

Robust Learning of Cauchy Distributions

Table 4: Comparison of various methods of robust location estimation under Cauchy distributions. Samples are drawn from $(1 - \epsilon)$ Cauchy $(0_p, I_p) + \epsilon Q$ with $\epsilon = 0.2, p = 50$ and various choices of Q. Sample size: 50,000. Discriminator net structure: 50-50-25-1. Generator $g_{\omega}(\xi)$ structure: 48-48-32-24-12-1 with absolute value activation function in the output layer.

Contamination Q	JS - $GAN(G_1)$	JS - $GAN(G_2)$	Dimension Halving	Iterative Filtering
Cauchy $(1.5 * 1_p, I_p)$	0.0664 (0.0065)	0.0743 (0.0103)	0.3529 (0.0543)	0.1244 (0.0114)
$Cauchy(5.0*1_p, I_p)$	0.0480 (0.0058)	0.0540 (0.0064)	0.4855 (0.0616)	0.1687 (0.0310)
Cauchy $(1.5*1_p, 5*I_p)$	0.0754 (0.0135)	0.0742 (0.0111)	0.3726 (0.0530)	0.1220 (0.0112)
Normal $(1.5 * 1_p, 5 * I_p)$	0.0702 (0.0064)	0.0713 (0.0088)	0.3915 (0.0232)	0.1048 (0.0288))

- Dimension Halving: [Lai et al.'16] https://github.com/kal2000/AgnosticMeanAndCovarianceCode.
- Iterative Filtering: [Diakonikolas et al.'17] https://github.com/hoonose/robust-filter.

f-GAN

Given a strictly convex function f that satisfies f(1) = 0, the f-divergence between two probability distributions P and Q is defined by

$$D_f(P||Q) = \int f\left(\frac{p}{q}\right) dQ. \tag{8}$$

Let f^* be the convex conjugate of f. A variational lower bound of (8) is

$$D_f(P||Q) \ge \sup_{T \in \mathcal{T}} \left[\mathbb{E}_P T(X) - \mathbb{E}_Q f^*(T(X)) \right]. \tag{9}$$

where equality holds whenever the class \mathcal{T} contains the function f'(p/q).

[Nowozin-Cseke-Tomioka'16] f-GAN minimizes the variational lower bound (9)

$$\widehat{P} = \underset{Q \in \mathcal{Q}}{\operatorname{arg \, min \, sup}} \left[\frac{1}{n} \sum_{i=1}^{n} T(X_i) - \mathbb{E}_Q f^*(T(X)) \right]. \tag{10}$$

with i.i.d. observations $X_1, ..., X_n \sim P$.

From f-GAN to Tukey's Median: f-learning (GLYZ'18)

Consider the special case

$$\mathcal{T} = \left\{ f'\left(\frac{\widetilde{q}}{q}\right) : \widetilde{q} \in \widetilde{\mathcal{Q}} \right\}. \tag{11}$$

which is tight if $P \in \widetilde{\mathcal{Q}}$. The sample version leads to the following f-learning

$$\widehat{P} = \underset{Q \in \mathcal{Q}}{\operatorname{arg \, min \, sup}} \left[\frac{1}{n} \sum_{i=1}^{n} f' \left(\frac{\widetilde{q}(X_i)}{q(X_i)} \right) - \mathbb{E}_Q f^* \left(f' \left(\frac{\widetilde{q}(X)}{q(X)} \right) \right) \right]. \tag{12}$$

- If $f(x) = x \log x$, $Q = \widetilde{Q}$, (12) \Rightarrow Maximum Likelihood Estimate
- If f(x) = (x-1)+, then $D_f(P||Q) = \frac{1}{2} \int |p-q|$ is the TV-distance, $f^*(t) = t\mathbb{I}\{0 \le t \le 1\}$, $f\text{-GAN} \Rightarrow \text{TV-GAN}$
 - $Q = \{N(\eta, I_p) : \eta \in \mathbb{R}^p\}$ and $\widetilde{Q} = \{N(\widetilde{\eta}, I_p) : \|\widetilde{\eta} \eta\| \le r\}$, (12) $\stackrel{r \Rightarrow 0}{\Rightarrow}$

Tukey's Median

TV-GAN

$$\widehat{\theta} = \underset{\eta}{\operatorname{argmin}} \sup_{w,b} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + e^{-w^{T}X_{i} - b}} - E_{\eta} \frac{1}{1 + e^{-w^{T}X - b}} \right]$$

$$N(\eta, I_{p})$$

logistic regression classifier

Theorem [GLYZ18]. For some C > 0,

$$\|\widehat{\theta} - \theta\|^2 \le C\left(\frac{p}{n} \vee \epsilon^2\right)$$

with high probability uniformly over $\theta \in \mathbb{R}^p, Q$.

TV-GAN rugged landscape!

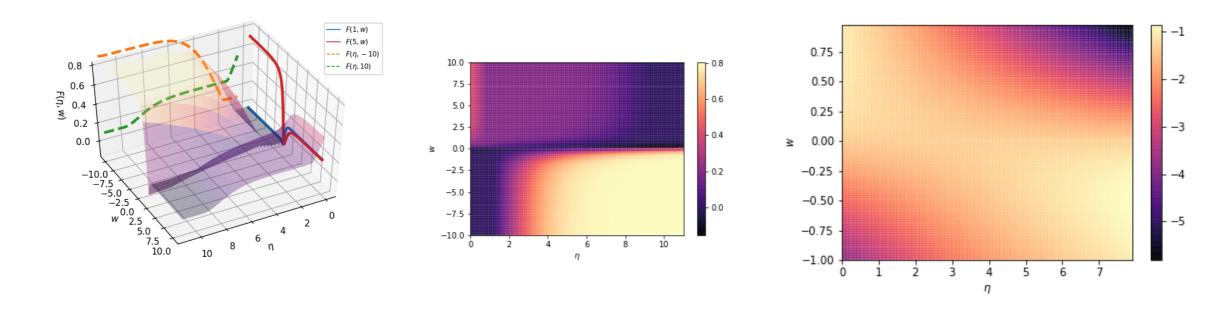


Figure 1: Landscape of TV-GAN objective function $F(\eta,w)=\sup_b[E_P\mathrm{sigmoid}(wX+b)-E_{N(\eta,1)}\mathrm{sigmoid}(wX+b)],$ where b is maximized out for visualization. Samples are drawn from $P=(1-\epsilon)N(1,1)+\epsilon N(10,1)$ with $\epsilon=0.2$. Left: a surface plot of $F(\eta,w)$. The solid curves are marginal functions for fixed η 's: F(1,w) (red) and F(5,w) (blue), and the dash curves are marginal functions for fixed w's: $F(\eta,-10)$ (orange) and $F(\eta,10)$ (green). Right: a heatmap of $F(\eta,w)$. It is clear that $\tilde{F}(w)=F(\eta,w)$ has two local maxima for a given η , achieved at $w=+\infty$ and $w=-\infty$. In fact, the global maximum for $\tilde{F}(w)$ has a phase transition from $w=+\infty$ to $w=-\infty$ as η grows. For example, the maximum is achieved at $w=+\infty$ when $\eta=1$ (blue solid) and is achieved at $w=-\infty$ when $\eta=5$ (red solid). Unfortunately, even if we initialize with $\eta_0=1$ and $w_0>0$, gradient ascents on η will only increase the value of η (green dash), and thus as long as the discriminator cannot reach the global maximizer, w will be stuck in the positive half space $\{w:w>0\}$ and further increase the value of η .

JS-GAN

[Goodfellow et al. 2014] For $f(x) = x \log x - (x+1) \log \frac{x+1}{2}$,

$$\widehat{\theta} = \arg\min_{\eta \in \mathbb{R}^p} \max_{D \in \mathcal{D}} \left[\frac{1}{n} \sum_{i=1}^n \log D(X_i) + \mathbb{E}_{\mathcal{N}(\eta, I_p)} \log(1 - D(X)) \right] + \log 4. \quad (15)$$

What are \mathcal{D} , the class of discriminators?

Single layer (no hidden layer):

$$\mathcal{D} = \left\{ D(x) = \operatorname{sigmoid}(w^T x + b) : w \in \mathbb{R}^p, b \in \mathbb{R} \right\}$$

One-hidden or Multiple layer:

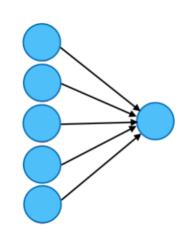
$$\mathcal{D} = \left\{ D(x) = \operatorname{sigmoid}(w^T g(X)) \right\}$$

Deep JS-GAN

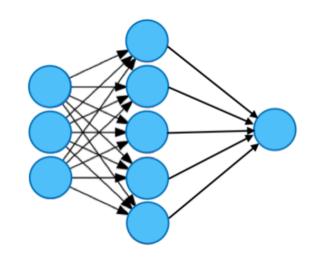
$$\widehat{\theta} = \underset{\eta \in \mathbb{R}^p}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_{\eta} \log(1 - T(X)) \right] + \log 4$$

numerical experiment

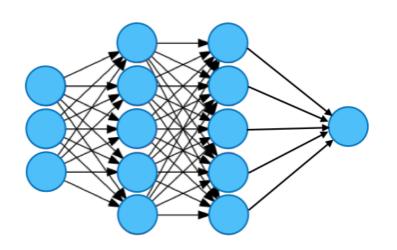
$$X_1, ..., X_n \sim (1 - \epsilon)N(\theta, I_p) + \epsilon N(\widetilde{\theta}, I_p)$$



$$\widehat{\theta} \approx (1 - \epsilon)\theta + \epsilon \widetilde{\theta}$$



$$\widehat{\theta} \approx \theta$$



$$\widehat{\theta} \approx \theta$$

JS-GAN

A classifier with hidden layers leads to robustness. Why?

$$\mathsf{JS}_g(\mathbb{P},\mathbb{Q}) = \max_{w \in \mathbb{R}^d} \left[\mathbb{P} \log \frac{1}{1 + e^{-w^T g(X)}} + \mathbb{Q} \log \frac{1}{1 + e^{w^T g(X)}} \right] + \log 4.$$

Proposition.

$$\mathsf{JS}_q(\mathbb{P},\mathbb{Q}) = 0 \iff \mathbb{P}g(X) = \mathbb{Q}g(X)$$

JS-GAN

$$\widehat{\theta} = \underset{\eta \in \mathbb{R}^p}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_{\eta} \log(1 - T(X)) \right] + \log 4$$

Theorem [GLYZ18]. For a neural network class \mathcal{T} with at least one hidden layer and appropriate regularization, we have

$$\|\widehat{\theta} - \theta\|^2 \lesssim \begin{cases} \frac{p}{n} + \epsilon^2 & \text{(indicator/sigmoid/ramp)} \\ \frac{p \log p}{n} + \epsilon^2 & \text{(ReLUs+sigmoid features)} \end{cases}$$

with high probability uniformly over $\theta \in \mathbb{R}^p, Q$.

JS-GAN: Adaptation to Unknown Covariance

unknown covariance?

$$X_1, ..., X_n \sim (1 - \epsilon)N(\theta, \Sigma) + \epsilon Q$$

$$(\widehat{\theta}, \widehat{\Sigma}) = \underset{\eta, \Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(\eta, \Gamma)} \log(1 - T(X)) \right]$$

no need to change the discriminator class

Generalization

Strong Contamination model:

 $X_1, ..., X_n \stackrel{iid}{\sim} P$ for some P satisfying $\mathsf{TV}(P, E(\theta, \Sigma, H)) \leq \epsilon$

$$(\widehat{\theta}, \widehat{\Sigma}, \widehat{H}) = \underset{\eta \in \mathbb{R}^p, \Gamma \in \mathcal{E}_p(M), H \in \mathcal{H}(M')}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n S(T(X_i), 1) + \mathbb{E}_{X \sim E(\eta, \Gamma, G)} S(T(X), 0) \right]$$

We are going to replace the log likelihoods in JS-GAN by some scoring functions

$$\log t \mapsto S(t,1) : [0,1] \to \mathbb{R}$$
$$\log(1-t) \mapsto S(t,0) : [0,1] \to \mathbb{R}$$

that map the probability (likelihood) to some real numbers.

Fisher Consistency: Proper Scoring Rule

lacktriangle With a Bernoulli experiment of probability p observing 1, define the expected score

$$S(t,p) = pS(t,1) + (1-p)S(t,0)$$

 \blacktriangleright Like likelihood functions, as a function of t, we hope that S(t,p) is maximized at t=p

$$\max_{t} S(t, p) = S(p, p) =: G(p)$$

Such a score is called Proper Scoring Rule.

Savage Representation of Proper Scoring Rule

Lemma (Savage representation)

- ▶ For a proper scoring rule S(t, p):
 - -G(t) = S(t,t) is convex
 - -S(t,0) = G(t) tG'(t)
 - S(t,1) = G(t) + (1-t)G'(t)
 - -S(t,p) = pS(t,1) + (1-p)S(t,0) = G(t) + G'(t)(p-t)

Divergence

$$D_{\mathcal{T}}(P,Q) = \max_{T \in \mathcal{T}} \left[\frac{1}{2} \mathbb{E}_{X \sim P} S(T(X), 1) + \frac{1}{2} \mathbb{E}_{X \sim Q} S(T(X), 0) \right] - G(1/2),$$

Proposition 1 Given any regular proper scoring rule $\{S(\cdot,1), S(\cdot,0)\}$ and any class $\mathcal{T} \ni \{\frac{1}{2}\}$, $D_{\mathcal{T}}(P,Q)$ is a divergence function, and

$$D_{\mathcal{T}}(P,Q) \le D_f\left(P \left\| \frac{1}{2}P + \frac{1}{2}Q\right), \tag{4}$$

where f(t) = G(t/2) - G(1/2). Moreover, whenever $\mathcal{T} \ni \frac{dP}{dP+dQ}$, the inequality above becomes an equality.

A scoring rule S is *regular* if both $S(\cdot,0)$ and $S(\cdot,1)$ are real-valued, except possibly that $S(0,1)=-\infty$ or $S(1,0)=-\infty$.

Example 1: Log Score and JS-GAN

1. Log Score. The log score is perhaps the most commonly used rule because of its various intriguing properties [31]. The scoring rule with $S(t,1) = \log t$ and $S(t,0) = \log(1-t)$ is regular and strictly proper. Its Savage representation is given by the convex function $G(t) = t \log t + (1-t) \log(1-t)$, which is interpreted as the negative Shannon entropy of Bernoulli(t). The corresponding divergence function $D_{\mathcal{T}}(P,Q)$, according to Proposition 3.1, is a variational lower bound of the Jensen-Shannon divergence

$$\mathsf{JS}(P,Q) = \frac{1}{2} \int \log \left(\frac{dP}{dP + dQ} \right) dP + \frac{1}{2} \int \log \left(\frac{dQ}{dP + dQ} \right) dQ + \log 2.$$

Its sample version (13) is the original GAN proposed by [25] that is widely used in learning distributions of images.

Example 2: Zero-One Score and TV-GAN

2. Zero-One Score. The zero-one score $S(t,1) = 2\mathbb{I}\{t \geq 1/2\}$ and $S(t,0) = 2\mathbb{I}\{t < 1/2\}$ is also known as the misclassification loss. This is a regular proper scoring rule but not strictly proper. The induced divergence function $D_{\mathcal{T}}(P,Q)$ is a variational lower bound of the total variation distance

$$\mathsf{TV}(P,Q) = P\left(\frac{dP}{dQ} \ge 1\right) - Q\left(\frac{dP}{dQ} \ge 1\right) = \frac{1}{2}\int |dP - dQ|.$$

The sample version (13) is recognized as the TV-GAN that is extensively studied by [21] in the context of robust estimation.

Example 3: Quadratic Score and LS-GAN

3. Quadratic Score. Also known as the Brier score [6], the definition is given by $S(t,1) = -(1-t)^2$ and $S(t,0) = -t^2$. The corresponding convex function in the Savage representation is given by G(t) = -t(1-t). By Proposition 2.1, the divergence function (3) induced by this regular strictly proper scoring rule is a variational lower bound of the following divergence function,

$$\Delta(P,Q) = \frac{1}{8} \int \frac{(dP - dQ)^2}{dP + dQ},$$

known as the triangular discrimination. The sample version (5) belongs to the family of least-squares GANs proposed by [39].

Example 4: Boosting Score

4. Boosting Score. The boosting score was introduced by [7] with $S(t,1) = -\left(\frac{1-t}{t}\right)^{1/2}$ and $S(t,0) = -\left(\frac{t}{1-t}\right)^{1/2}$ and has an connection to the AdaBoost algorithm. The corresponding convex function in the Savage representation is given by $G(t) = -2\sqrt{t(1-t)}$. The induced divergence function $D_{\mathcal{T}}(P,Q)$ is thus a variational lower bound of the squared Hellinger distance

$$H^2(P,Q) = \frac{1}{2} \int \left(\sqrt{dP} - \sqrt{dQ}\right)^2.$$

Example 5: Beta Score and new GANs

5. Beta Score. A general Beta family of proper scoring rules was introduced by [7] with $S(t,1) = -\int_t^1 c^{\alpha-1} (1-c)^{\beta} dc$ and $S(t,0) = -\int_0^t c^{\alpha} (1-c)^{\beta-1} dc$ for any $\alpha, \beta > -1$. The log score, the quadratic score and the boosting score are special cases of the Beta score with $\alpha = \beta = 0$, $\alpha = \beta = 1$, $\alpha = \beta = -1/2$. The zero-one score is a limiting case of the Beta score by letting $\alpha = \beta \to \infty$. Moreover, it also leads to asymmetric scoring rules with $\alpha \neq \beta$.

Smooth Proper Scores

Assumption (Smooth Proper Scoring Rules)

We assume that

- $G^{(2)}(1/2) > 0$ and $G^{(3)}(t)$ is continuous at t = 1/2;
- Moreover, there is a universal constant $c_0 > 0$, such that $2G^{(2)}(1/2) \ge G^{(3)}(1/2) + c_0$.
 - The condition $2G^{(2)}(1/2) \geq G^{(3)}(1/2) + c_0$ is automatically satisfied by a symmetric scoring rule, because S(t,1) = S(1-t,0) immediately implies that $G^{(3)}(1/2) = 0$.
 - For the Beta score with $S(t,1)=-\int_t^1 c^{\alpha-1}(1-c)^\beta dc$ and $S(t,0)=-\int_0^t c^\alpha (1-c)^{\beta-1} dc$ for any $\alpha,\beta>-1$, it is easy to check that such a c_0 (only depending on α,β) exists as long as $|\alpha-\beta|<1$.

Statistical Optimality

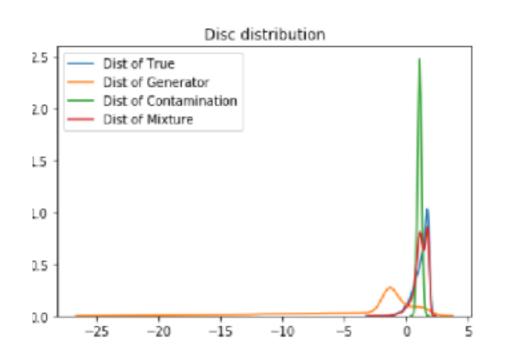
Theorem [GYZ19]. For a neural network class \mathcal{T} with at least one hidden layer and appropriate regularization, we have

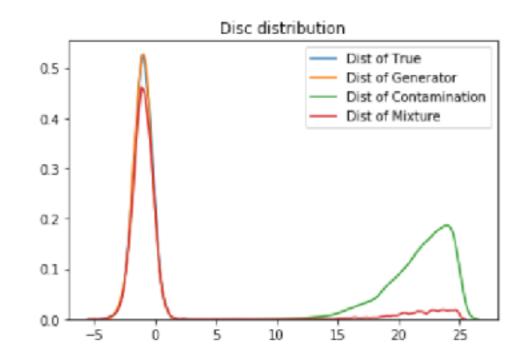
$$\|\widehat{\theta} - \theta\|^2 \le C\left(\frac{p}{n} \vee \epsilon^2\right),$$

$$\|\widehat{\Sigma} - \Sigma\|_{\text{op}}^2 \le C\left(\frac{p}{n} \vee \epsilon^2\right),$$

Experiments

Discriminator identifies outliers

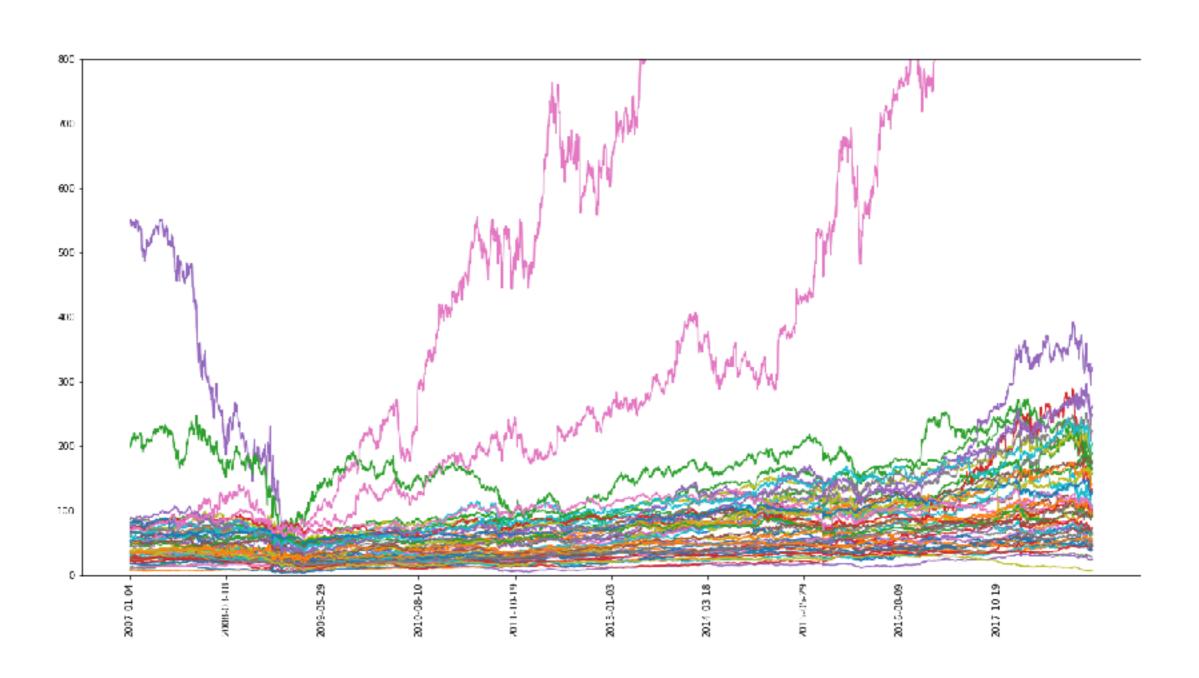


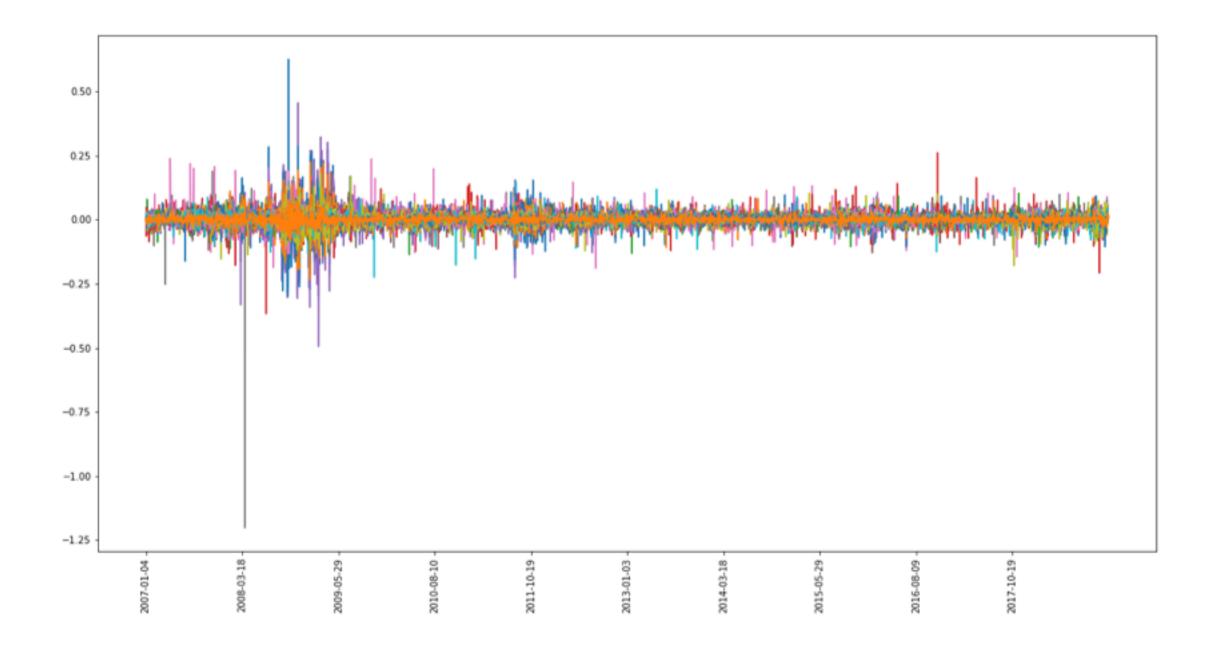


$$(1 - \epsilon)N(0_p, I_p) + \epsilon Q$$
$$N(5 * 1_p, I_p)$$

- Discriminator helps identify outliers or contaminated samples
- Generator fits uncontaminated portion of true samples

Application: Price of 50 stocks from 2007/01 to 2018/12 Corps are selected by ranking in market capitalization





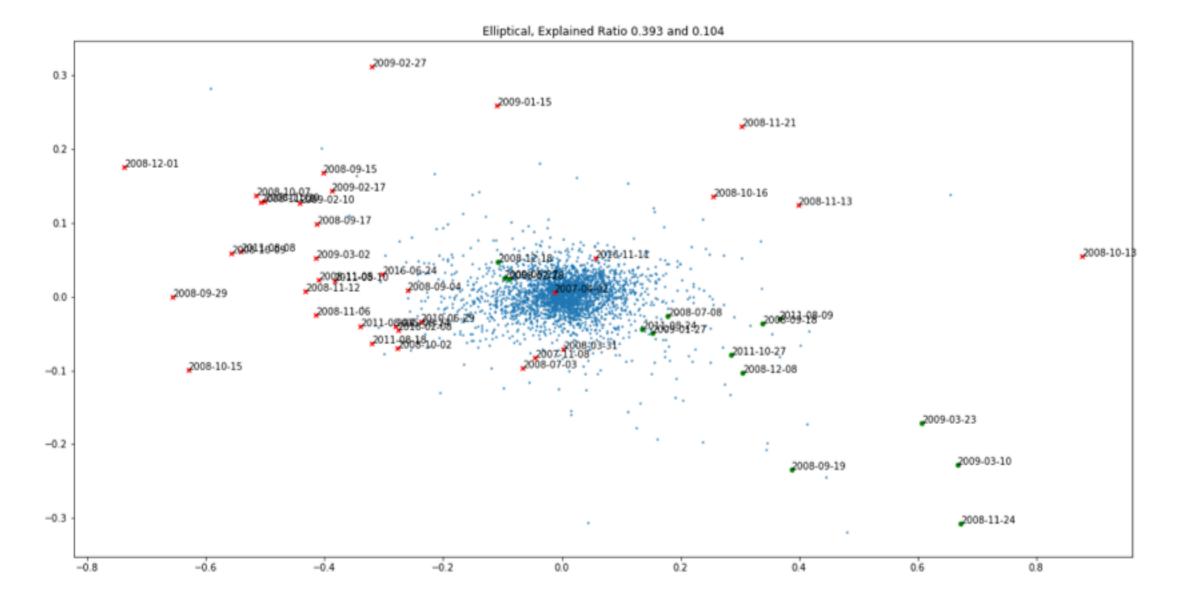
Log-return. y[i] = log(price_{i+1}/price_{i})

Apply SVD on scatter.

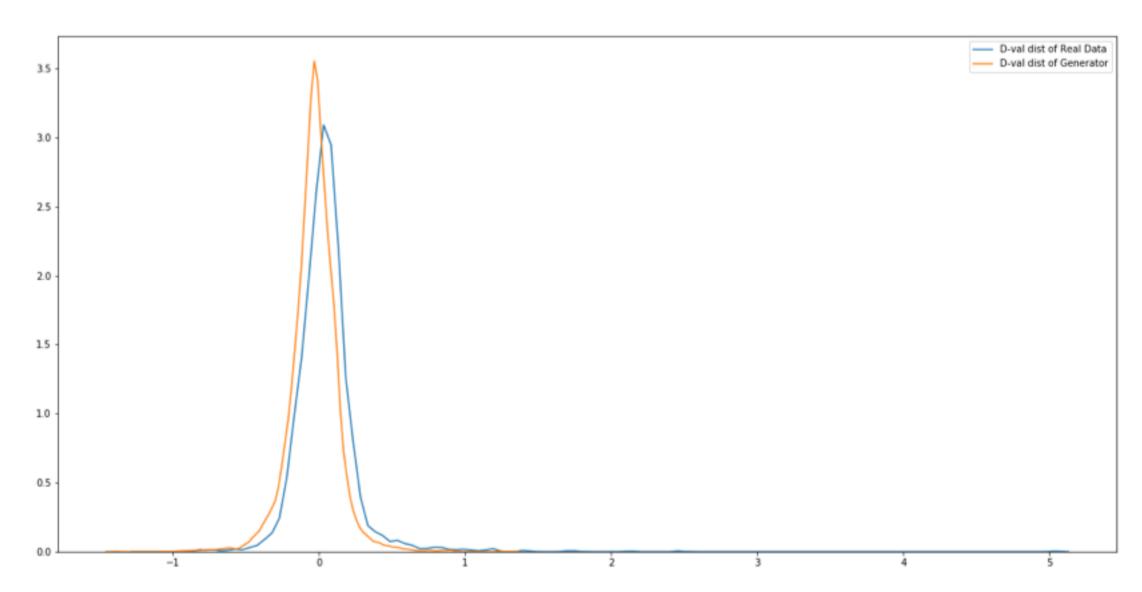
Dimension reduction on R^2.

outlier x and o are selected from Discriminator value distribution.

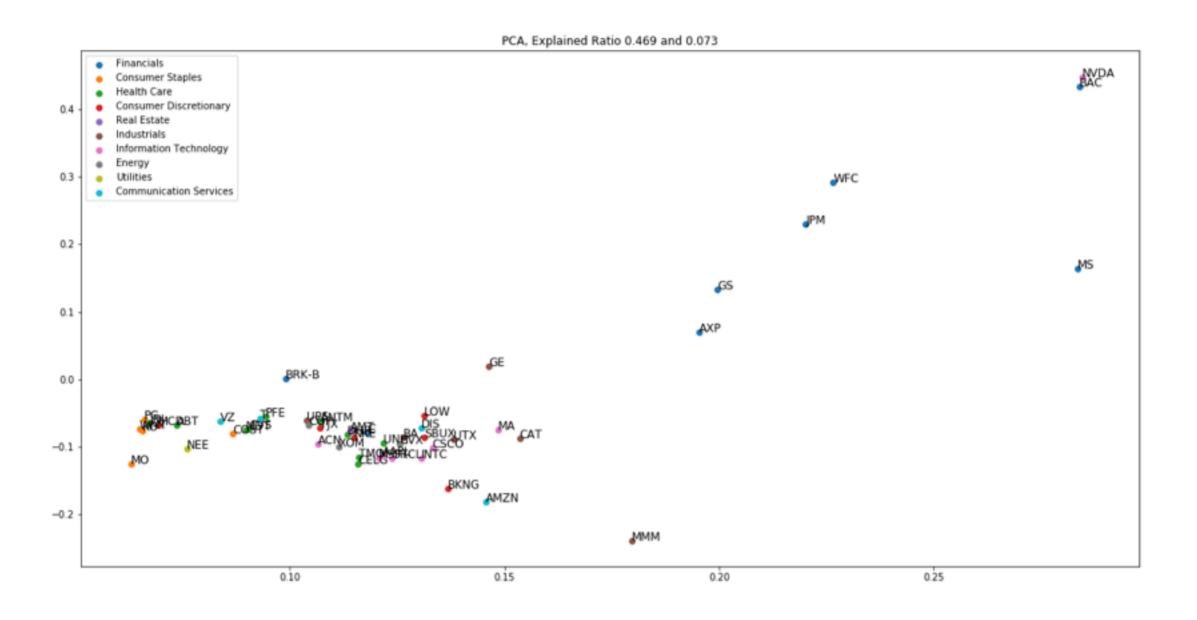
Fit data by Elliptical-GAN.



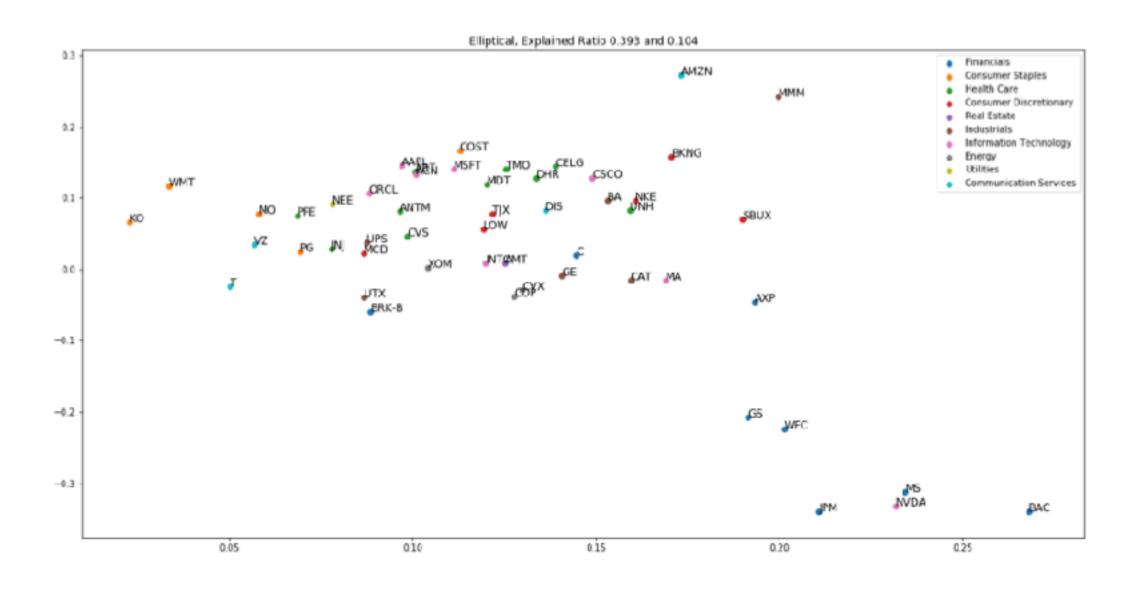
Discriminator value distribution from (Elliptical) Generator and real samples. Outliers are chosen from samples larger/ lower than a chosen percentile of Generator distribution



Standard (non-robust) PCA: First two direction are dominated by few corps —> not robust



Robust PCA: Loadings of Elliptical Scatter Comparing with PCA, it's more robust in the sense that it does not totally dominate by Financial company (JPM, GS)



Reference

- Gao, Liu, Yao, Zhu, Robust Estimation and Generative Adversarial Networks, *ICLR 2019*, https://arxiv.org/abs/1810.02030
- Gao, Yao, Zhu, Generative Adversarial Networks for Robust Scatter Estimation: A Proper Scoring Rule Perspective, *Journal of Machine Learning Research*, 21(160):1-48, 2020. https://arxiv.org/abs/1903.01944

Thank You

