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Supervised Learning

» Data: (X, y)
X is input, y is output/response (label)

» Goal: Learn a functfion fo map x>y

=» Examples:
» Classification,
= regression,
» object detection,
®» semantic segmentation,

®» mage capftioning, etc.




Unsupervised Learning

» Data: x
Just input data, no output labels!

» Goal: Learn some underlying hidden structure of the data

=» Examples:
» (Clustering,

» dimensionality reduction (manifold learning),

» Density (probability) estimation,

» Generatfive models:
Generative Models

Given training data, generate new samples from same distribution

B4 -

Training data ~ p,,,.(X) Generated samples ~ p

» Autoencoder

» GANsS, efc.

model )

Want to learn p_ . (x) similar to p,_,_(X)




Today: Selt-Supervised Learning

Data: x
» Just input data, no output labels!

» Data labeling is expensive and thus high-quality labeled dataset is limited.

Both Self-Supervised Learning (SSL) and Generative model learn good data
representation from unlabelled dataset.

Generative learning aims to model data distribution p,,,(X), or generating data.

Self-supervised learning methods solve “pretext’ tasks that produce good features
for downstream tasks:

= Pretext task: (x x;) or (x, T(x))

® | earning good representation makes it easier to transfer useful information to a variety of
downstream fasks.

» c.g. A downstream task has only a few examples.

®» c.g. Zero-shot transfer to new tasks.



Selt-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images
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image completion rotation prediction “jigsaw puzzle” colorization

» Solving the pretext tasks allow the model to learn good features.

» We can automatically generate labels for the pretext tasks.




Evaluation of self-supervised learning

feature

E> self-supervised E> extractor
learning (e.g., a

convnet)

lots of
unlabeled
dat
ata * 90°
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conv fc

1. Learn good feature extractors from self-
supervised pretext tasks, e.g., predicting
image rotations

= supervised :>[ evaluate on the 1

learning target task

e.g. classification, detection

A bird
small amount of

labeled data on
the target task conv Imear
classifier

2. Attach a shallow network on the feature
extractor; train the shallow network on the
target task with small amount of labeled data



Methods of Self-Supervised Learning
- Self-prediction
- Contrastive learning




Self-Prediction

» Self-prediction: Given an individual data sample, the task is to predict one
part of the sample given the other part.

» The part to be predicted pretends to be missing.

"

?

“Intra-sample” prediction: reconstruction




Contrastive Learning

» Contrastive learning: Given multiple data samples, the task is to predict the
relationship among them.

®» The multiple samples can be selected from the dataset based on some
known logics (e.g. the order of words / sentences), or fabricated by altering
the original version.

)

“Inter-sample” prediction: similar or not?




Self-prediction




Self-Prediction

» Self-prediction construct prediction tasks within every individual data
sample: to predict a part of the data from the rest while pretending we
don’'t know that part.

» Predict any part of the input from any
other part.

» Predict the future from the past.

SN |
» Predict the future from the recent past. ' '

» Predict the past from the present.

» Predict the top from the bottom. mﬁ
» Predict the occluded from the visible ’ 1
» Pretend there is a part of the input you « Past Future —

don’t know and predict that. Present Slide: LeCun




Self-Prediction: Autoregressive
Generation

» The autoregressive model predicts future behavior based on past behavior.
Any data that comes with an innate sequential order can be modeled with
regression.

®» fxamples:
» Audio (WaveNet, WaveRNN)

» Autoregressive language modeling (GPT, XLNet)

» |mages in raster scan (PixelCNN, PixelRNN, iGPT)




Self-Prediction: Masked Generation

» We mask a random portion of information and pretend it is missing,
irespective of the natural sequence. The model learns to predict the
missing portion given other unmasked information.

®» fxamples:

» Masked language modeling (BERT)

®» |mages with masked patch (denoising autoencoder, context autoencoder,
colorization)




Example: Masked AutoEncoder (MAE)

®» A |large random subset of image

=
m = patches (75%) is masked out.
[ B o c
) B » Masked foken is infroduced after
= = Encoder.
ﬁ encoder - decoder =
H
‘ =
D o
R m
=
=
Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask .
tokens are introduced after the encoder, and the full set of en- - SOU.rce' He eT Ol' 202] :
coded patches and mask tokens is processed by a small decoder arXiv:2111.06377/.

that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.



Example: Masked AutoEncoder (MAE)

[Source: He et al. 2021. arXiv:2111.06377. Masked Autoencoders Are Scalable Vision Learners]

» High masking rafio (75%) works
well.
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Figure 5. Masking ratio. A high masking ratio (75%) works well
for both fine-tuning (top) and linear probing (bottom). The y-axes
are ImageNet-1K validation accuracy (%) in all plots in this paper.

original mask 75% mask 85% mask 95%




Self-Prediction: Innate Relationship
Prediction

Some transformation (e.g. rotation, inpainting, jigsaw puzzle, coloring) of

one data sample should maintain the original information or follow the
desired innate logic.

®» fxamples:

» Order of image patches (e.g., relative position, jigsaw puzzle)

= |mage rotation

» Counting features across patches

D 11121|31| 4




Pretext task: predict rotations

» Hypothesis: a model could recognize the correct rotation of an object only
if it has the “visual commonsense” of what the object should look like
unperturbed.

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation



Rotation prediction

» Self-supervised learning by rotating the entire input images.

» The model learns to predict which rotation is applied (4-way classification)

‘ Objectives:

ConvNet » Maximize prob.
0

> g(X,y=0) > model F() F°(Xx°)

‘ Predict 0 degrees rotation (y=0)

|
|

Rotate 0 degrees
Rotated image: X° |
|
|

ConvNet ‘ > Maximize prob.

model F(.) | F'(x")

R E | Predict 90 degrees rotation (y=1) ‘
otated image: X ‘

| |
ConvNet Maximize prob.
model F(.) F*(X?) |
7 ‘ Predict 180 degrees rotation (y=2) ‘
|
|
ConvNet 7 p Maximize prob. ‘

model F(.) ) ‘

> g(X,y=1) — g

Rotate 90 degrees

> gx0=2)

Rotate 180 degrees 3
Rotated image: X’

—» g(X,y=3) —»

Rotate 270 degrees | Predict 270 degrees rotation (y=3) |

Rotated image: X°




Evaluation on semi-supervised learning

» Self-supervised learning on

0 | | CIFAR10 (entire training set).
90 - ' / > F

reeze convl + conv2
80+ - / -

/ Learn convd + linear layers with
70 - subset of labeled CIFARTO data

S ool / _ (classification).
: 50
40/

30

t

Ours - Semi-supervised
= Supervised

20

0 10 #mm;eiiiples o0 00 » Gidaris, et al. ICLR 2018,
arXiv:1803.07728




Evaluation of transfer learning

Classification Detection Segmentation
(%emAP) (%mAP) (%mloU)

Trained layers | fc6-8  all all all Pretrained with full
ImageNet labels | 789 799 568 48.0 ImageNet supervision
Random 533 434 19.8 .
Random rescaled Krahenbiihl et al. (2015) | 392 566 456 326 [+ Nopretraining
Egomotion (Agrawal et al., 2015) 310 542 43.9
Context Encoders (Pathak et al., 2016b) 346 56.5 44.5 29.7 . .
Tracking (Wang & Gupta, 2015) 556 631 474 Self-supervised learning on
Context (Doersch et al., 2015) 55.1 65.3 51.1 : .
Colorization (Zhang et al., 2016a) 615 656 469 35.6 ImageNet (entire training
BIGAN (Donahue et al., 2016) 523 60.1 469 34.9 set) with AlexNet.
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 53.2 37.6
NAT (Bojanowski & Joulin, 2017) 567 653 49.4
Split-Brain (Zhang et al., 2016b) 63.0 67.1 46.7 36.0 .
ColorProxy (Larsson et al., 2017) 65.9 38.4 Finetune on labeled data
Counting (Noroozi et al., 2017) - 67.7 514 36.6 from Pascal VOC 2007.

[ (Ours) RotNet 70.87 72.97 544 39.1

Self-supervised learning with rotation prediction source: Gidaris et al. 2018




Visualize learned features

Convl 27 x 27 Conv3 13 x 13 Conv56 x 6 Convl 27 x 27 Conv313 x 13 Conv56 X 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model




Pretext task: predict relative patch locations

Example:

(Image source: Doersch et al., ICCV 2015)




Pretext task: solving “jigsaw puzzles”

shuffled
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(Image source: Noroozi & Favaro, 2016)




Pretext task: predict missing pixels
(iInpainting)

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)




Learning to inpaint by reconstruction

® | earning to reconstruct the missing pixels
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Image Source: Pathak et al., 2016




Learning to inpaint by reconstruction

» | 0ss = reconstruction + adversarial learning

» Adversarial loss between “real” images and inpainfed images

L(x) — Lrecon (CE) + Ladv (m)
Lyecon () = ||M * (z — Fy((1 — M) * z))|[;
Loy = maxp Ellog(D(z))] + log(1 — D(F((1 — M) * z)))]




Inpainfing evaluation

Input (context) reconstruction adversarial recon + adv




Transfer features to classification

» Self-supervised learning on ImageNet training set, tfransfer to classification
(Pascal VOC 2007), detection (Pascal VOC 2007), and semantic
segmentation (Pascal VOC 2012)

Pretraining Method Supervision Pretraining time Classification Detection Segmentation
ImageNet [26] 1000 class labels 3 days 78.2% 56.8% 48.0%
Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 29:2%
Agrawal et al. [1] egomotion 10 hours 52.9% 41.8% -
Wang et al. [39] motion 1 week 58.7% 47.4% -
Doersch et al. [7] relative context 4 weeks 55.3% 46.6% -

Ours context 14 hours 56.5% 44.5% 30.0%

Source: Pathak et al., 2016




Pretext task: image coloring

¥ L
. % et e
Grayscale image: L channel Color information: ab channels
X € RHXWXl ?E]RHXWXZ

===

Source: Richard Zhang / Phillip Isola




Learning features from colorization:
Split-brain Autoencoder

» Cross-channel prediction

<)

Source: Richard Zhang / Phillip Isola




Learning features from colorization:
Split-brain Autoencoder

» Example:

Input Image X

Source: Richard Zhang / Phillip Isola




Pretext task: video coloring

» |dea: model the temporal coherence of colors in videos

» Hypothesis: learning to color video frames should allow model to learn to
track regions or objects without labels!

reference frame how should | color these frames?

Vondrick et al., 2018




Pretext task: video coloring

» |dea: model the temporal coherence of colors in videos

Grayscale Video Embeddings
Reference A | Af i A.Ci | Reference

Frame O ® Lf o Colors
\

Target Py ® y /wf PY B Predicted

Frame A Ay A, colors
3 Y;j

attention map on the predicted color = weighted loss between predicted color
reference frame sum of the reference color and ground truth color

€xXp (szfg) _ min E L (yj,cj)
A = = A;ic; Yjs Cj
T Yeexp (fLf5) & Z 7 "

Vondrick et al., 2018




Summary

» Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

®» The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order 1o solve the pretext
tasks.

» We don't care about the performance of these pretext tasks, but rather
how useful the learned features are for downstream tasks (classification,
detection, segmentation).

= Problems:
» |) coming up with individual pretext tasks is tedious, and

» ?) the learned representations may not be general.



Pretext tasks from image transtormations

e /
L £
F e
9
= l

image completion rotation prediction “‘ligsaw puzzle” colorization

®» | earned representations may be fied to a specific pretext task!

®» Can we come up with a more general pretext taske




A more general pretext faske

same object
< >

different object




Contrastive Learning

attract




Contrastive learning




Contrastive Learning

» The goal of contrastive representation learning is to learn such an
embedding space in which similar sample pairs stay close to each other
while dissimilar ones are far apart.

- So
// \\
z N
& N
4 \
4 \
’ \
4 \
,I 0 -
\ o =~
1 VL \\\
. | 1 N
\ ) N
4 \
\ 7 1 \
\ r \
\ ] \
\ ! /7 \
\ L \
N 4 f
N ,
S ¥
~ -
~ ! 1
~ -
S -~ = \ 1
\ /
\ ’
\ ’
\ ’
A /
N 4
~ .




Early work on metric and confrastive
learning

Metric learning (Xing et al. 2002) Triplet loss (Schroff et al. 2015)
daw,y) = e =ylla = /(& = 9)T Al - v) Q.m R
Positi Anchor Positive e

Contrastive Loss (Chopra & Hadsell et al. 2005)

N-pair loss (Sohn 2016)

1. IfY;; = 0, then update W to decrease
Dw = [|Gw(Xs) — Gw(X;)l2

. IfY;; = 1, then update W to increase
Dw = [|Gw (X;) — Gw(X;)ll2




Contrastive Learning of Images

X reference

:c+ positive

&L  negative




A Modern Formulation

» For x. reference sample; x+ positive sample; x- negative sample

score(f(x), f(x™)) >> score(f(x), f(z7))

» Given a chosen score function, we aim to learn an encoder function f that
yields high score for positive pairs (x, x+) and low scores for negative pairs
(x, x-).




Contrastive loss function

» Given 1 positive sample and N-1 negative samples, cross-entropy oss:

L=-Ex

log

exp(s(f(z), f ($+))

® exp(s(f(z), (@) + 50, exp(s(f(2), f (7))

score for the score for the N-1
positive pair negative pairs




INfONCE loss

Loss funct_ion given 1 positive sample and N - 1 negative samples:
exp(s(f(z), f(z™))
exp(s(f(x), f(x)) + 3,2 exp(s(f(x), f(z}))

Commonly known as the InfoNCE loss (van den Oord et al.. 2018)
A lower bound on the mutual information between f(x) and f(x")

MI[f(z), f(z")] —log(N) = —L

L = —]EX log

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019
Detailed derivation: Poole et al., 2019




SIMCLR: A Simple Framework for
Contrastive Learning

Maximize agreement

Z; - > Zj
» Cosine similarity as the score
. g(-) g(-)
function: 2Tz
S; j= S — h; <— Representation —> h;

[12i [ 1]2]]

» Generate positive samples through
data augmentation:

» random cropping, random color
distortion, and random blur.

» B ase enco d er f an d p rOJ eC 1- IoN Figure 2. A simple framework for contrastive learning of visual
c o« o representations. Two separate data augmentation operators are

h ed d g (d ISCQA rd e d d fTe r TTCI ININ g ) sampled from the same family of augmentations (¢ ~ 7T and

. . . t' ~ T) and applied to each data example to obtain two correlated

are TI’O IN ed WITh con TI’CISTIVG |OSS views. A base encoder network f(-) and a projection head g(-)

are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.

Source: Chen et al., ICML 2020




Training linear classifier on SIMCLR
features

*SimCLR (4x) » Train feature encoder on

®Supervised
— 5F i . -
S .- *SimCLR (2x) ImageNet (entire fraining set)
R oCPCV2-L using SIMCLR.
5 'O *simCLR some  dMoCo 4x) .
g oPIRL-c2x AMDIM, » Freeze feature encoder, train a
% % ecrove TPIRL-ene 10C0 ) inear classifier on top with
o
= FIRL eBigBIGAN labeled data.
8 gof §MoCo 95!
ol LA
g
£ i eRotation
29 elnstDisc
2.5 5.0 1(.)0 260 460 Gé6

Number of Parameters (Millions)

» Chen et al. ICML 2020




Semi-supervised learning on SIMCLR

features

Label fraction » Train feature encoder on
Method Architecture t 0% ImageNet (entire fraining sef)
0 . .
. . d using SIMCLR.
Supervised baseline ResNet-50 484 804
Methods using other label-propagation: » Finetune the encoder with 1% /
Pseudo-label ResNet-50 51.6 824
VAT+Entropy Min. ResNet-50 470 834 ] O% Of labeled data on
UDA (w. RandAug)  ResNet-50 - 885 ImageNet.
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2
Methods using representation learning only:
InstDisc ResNet-50 392 774
BigBiGAN RevNet-50 (4x) 552  78.8
PIRL ResNet-50 572  83.8
CPC v2 ResNet-161(x) 779 912

SimCLR (ours) ResNet-50 75.5
SimCLR (ours) ResNet-50 (2x) 83.0
SimCLR (ours) ResNet-50 (4x)

87.8
91.2

» Chen et al. ICML 2020

Table 7. ImageNet accuracy of models trained with few labels.



SIMCLR: projection head

=0 ®» linear/ non-linear projection heads
improve representation learning.

I II II » A possible explanation:

Projection
e Linear ®» confrastive learning objective may
msm Non-linear discard useful information for

(o)}
o

Top 1
(O,
o

B
o

m== None downstream tasks
30 . . .
5 S o® ® representation space z is trained fo be
ijectlon output dimensionality invariant to data fransformation.

= by leveraging the projection head g(').
- more information can be preserved in

v Maximize agreement
[ ZT : ] the h representation space
9(") 9(")

h; <— Representation — h;

» Chen et al. ICML 2020




SIMCLR needs large batch size!

Large training batch size is crucial
for SIMCLR!

»
» | arge batch size causes large
| memory footprint during

65.0
62.5 backpropagation: requires
600 distributed fraining on TPUs
= Batch size (ImageNet experiments)
57.5 N 256
N 512
55.0 1024
mmm 2048
52.5 w4096
w8192
50.0 ENEEEN EEEEa

100 200 300 400 500 600 700 800 900 1000
Training epochs

Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch.'” ®» Chen et al. ICML 2020




Momentum Conftrastive Learning (MoCo)

contrastive loss No Gradient

A
(—> similarity <®

q ko k1 ko

e

encoder momentum
encoder
A f A
ke ke ke
xquery 55'0 y Ty Yy 5% y

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query g to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.

» Key differences to SimCLR:

» Keep arunning queue of keys
(negative samples).

» Compute gradients and update the
encoder only through the queries.

» Decouple min-batch size with the
number of keys: can support a large
number of negative samples.

» The key encoder is slowly progressing
through the momentum update
rules:

Ok < mbx + (1 — m)bq

He et al. CVPR 2020



MoCo v2

» A hybrid of ideas from SImCLR and MoCo:
» From SIMCLR: non-linear projection head and strong data augmentation.

» From MoCo: momentum-updated queues that allow training on a large number
of negative samples (no TPU required!).

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan  Ross Girshick  Kaiming He
Facebook AI Research (FAIR)

Source: Chen et al., 2020




MoCo v2 vs. SImCLR

unsup. pre-train ImageNet

case MLP aug+ <cos epochs batch acc.
MoCo v1 [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 x224), trained on features from unsuper-
vised pre-training. “aug+” in SIMCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

mechanism  batch  memory/GPU  time /200-ep.

MoCo 256 5.0G 53 hrs
end-to-end 256 7.4G 65 hrs
end-to-end 4096 93.0GT n/a

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. ': based on our estimation.

Non-linear projection head and
strong data augmentation are
crucial for contrastive learning.

Decoupling mini-batch size with
negative sample size allows MoCo-
V2 to outperform SImCLR with
smaller batch size (256 vs. 8192).

... all with much smaller memory
footprint! (“end-to-end” means
SIMCLR here)

Chen et al. 2020



MoCo v3: the State of the Art

An Empirical Study of Training Self-Supervised Vision Transformers

Xinlei Chen*

Saining Xie*

Kaiming He

Facebook AI Research (FAIR)

Code: https://github.com/facebookresearch/moco-v3

Abstract

This paper does not describe a novel method. Instead,
it studies a straightforward, incremental, yet must-know
baseline given the recent progress in computer vision: self-
supervised learning for Vision Transformers (ViT). While
the training recipes for standard convolutional networks
have been highly mature and robust, the recipes for ViT are
yet to be built, especially in the self-supervised scenarios
where training becomes more challenging. In this work, we
go back to basics and investigate the effects of several fun-
damental components for training self-supervised ViT. We
observe that instability is a major issue that degrades accu-
racy, and it can be hidden by apparently good results. We
reveal that these results are indeed partial failure, and they
can be improved when training is made more stable. We
benchmark ViT results in MoCo v3 and several other self-
supervised frameworks, with ablations in various aspects.
We discuss the currently positive evidence as well as chal-
lenges and open questions. We hope that this work will pro-
vide useful data points and experience for future research.

framework model params acc. (%)
linear probing:
iGPT [9] iGPT-L 1362M 69.0
iGPT [9] iGPT-XL 6801M 72.0
MoCo v3 ViT-B 86M 76.7
MoCo v3 ViT-L 304M 77.6
MoCo v3 ViT-H 632M 78.1
MoCo v3 ViT-BN-H 632M 79.1
MoCo v3 ViT-BN-L/7 304M 81.0
end-to-end fine-tuning:
masked patch pred. [16] ViT-B 86M 79.97
MoCo v3 ViT-B 86M 83.2
MoCo v3 ViT-L 304M 84.1
Table 1.  State-of-the-art Self-supervised Transformers in

ImageNet classification, evaluated by linear probing (top panel)
or end-to-end fine-tuning (bottom panel). Both iGPT [9] and
masked patch prediction [16] belong to the masked auto-encoding
paradigm. MoCo v3 is a contrastive learning method that com-
pares two (224 x224) crops. ViT-B, -L, -H are the Vision Trans-
formers proposed in [16]. ViT-BN is modified with BatchNorm,
and “/7” denotes a patch size of 7x7. T: pre-trained in JFT-300M.

Chen et al. ICCV 2021



From Instance to Sequence ...

Predictions
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Instance-level contrastive learning: Sequence-level contrastive learning:
contrastive learning based on contrastive learning based on
positive & negative instances. sequential / temporal orders.

Examples: SImCLR, MoCo Example: Contrastive Predictive Coding (CPC)




Contrastive Predictive Coding (CPC)

» Confrastive: contrast between
“right” and “wrong” sequences
using contrastive learning.

» Predictive: the model has to predict
future patterns given the current
context.

» Coding: the model learns useful

AL L
Jame\ [omc\ [amc\ fam \/ S\ Joenc\ famc\ [ \ feature vectors, or “code”, for

ees | mea | m | @ | Sen | T | T | T downs’rreqm tasks, similar to other
self-supervised methods

| | . . . » Can be applied to a variety of
. . ' positive learning problems, but not as
. effective in learning image

context . . representations compared to

. instance-level methods.
negative

» Source: van den Oord et al. 2018
arXiv:1807.03748




Contrastive Language-Image Pre-training

(CLIP)

1. Contrastive pre-training

Image
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2. Create dataset classifier from label text

a photo of Text
4 —
a {object}. Encoder

s o
d 2

3. Use for zero-shot prediction

Contrastive learning between image and natural language sentences, enables zero-

shot learning.

Radford et al., 2021



A Short History of Contrastive
Representation Learning

» Common loss functions:

Contrastive loss (Chopra et al. 2005)

Triplet loss (Schroff et al. 2015; FaceNet)

Lifted structured loss (Song et al. 2015)

Multi-class n-pair loss (Sohn 2016)

Noise confrastive estimation (“NCE"”; Gutmann & Hyvarinen 2010)

INfONCE (van den Oord, et al. 2018)

Soft-nearest neighbors loss (Salakhutdinov & Hinton 2007, Frosst et al. 2019)



Summary: SIMCLR

» SimCLR: a simple framework for 2 - ORIIIZC aETceTCT
conftrastive representation g(.)x TQU
learning
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» Key ideas: non-linear projection
head to allow flexible f()
representation learning

» Simple to implement, effective in
learning visual representation

» Requires large fraining batch size
to be effective; large memory
footprint

Source: Chen et al., 2020




Summary: MoCo

» MoCo (v1, v2): contrastive
learning using momentum sample
encoder

» Decouples negative sample size
from minibatch size; allows large
batch fraining without TPU

» MoCo-v2 combines the key ideas
from SIMCLR, i.e., nonlinear
projection head, strong data
augmentation, with momentum
contrastive learning
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Figure 1. A batching perspective of two optimization mechanisms
for contrastive learning. Images are encoded into a representation
space, in which pairwise affinities are computed.

He et al., 2020; Chen et al., 2020



Thank you!




