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Supervised Learning

´ Data: (x, y)
x is input, y is output/response (label) 

´ Goal: Learn a function to map x -> y 

´ Examples: 
´ Classification, 

´ regression, 

´ object detection,

´ semantic segmentation,

´ image captioning, etc. Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

So far… Supervised Learning
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Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.
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Unsupervised Learning

´ Data: x
Just input data, no output labels! 

´ Goal: Learn some underlying hidden structure of the data 

´ Examples: 
´ Clustering, 

´ dimensionality reduction (manifold learning), 

´ Density (probability) estimation, 

´ Generative models:

´ Autoencoder

´ GANs, etc. 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Generative Models
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Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution



Today: Self-Supervised Learning
´ Data: x

´ Just input data, no output labels! 

´ Data labeling is expensive and thus high-quality labeled dataset is limited.

´ Both Self-Supervised Learning (SSL) and Generative model learn good data
representation from unlabelled dataset.

´ Generative learning aims to model data distribution pdata(x), or generating data.

´ Self-supervised learning methods solve “pretext” tasks that produce good features
for downstream tasks:
´ Pretext task: (x-I, xi) or (x, T(x))

´ Learning good representation makes it easier to transfer useful information to a variety of
downstream tasks.

´ e.g. A downstream task has only a few examples.

´ e.g. Zero-shot transfer to new tasks.



Self-supervised pretext tasks

´ Solving the pretext tasks allow the model to learn good features. 

´ We can automatically generate labels for the pretext tasks. 

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202125

Self-supervised pretext tasks

?

Example: learn to predict image transformations / complete corrupted images

image completion

θ=?

rotation prediction “jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.

Example: learn to predict image transformations / complete corrupted images 



Evaluation of self-supervised learning

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202129

How to evaluate a self-supervised learning method?

lots of 
unlabeled 

data

self-supervised 
learning

feature 
extractor
(e.g., a 

convnet) 

small amount of 
labeled data on 
the target task

supervised 
learning

evaluate on the 
target task

e.g. classification, detection

90°

conv fc

bird

conv linear 
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1. Learn good feature extractors from 
self-supervised pretext tasks, e.g., 
predicting image rotations

2. Attach a shallow network on the 
feature extractor; train the shallow 
network on the target task with small 
amount of labeled data1. Learn good feature extractors from self-

supervised pretext tasks, e.g., predicting 
image rotations 

2. Attach a shallow network on the feature 
extractor; train the shallow network on the 
target task with small amount of labeled data 



Methods of Self-Supervised Learning
- Self-prediction
- Contrastive learning



Self-Prediction

´ Self-prediction: Given an individual data sample, the task is to predict one 
part of the sample given the other part. 

´ The part to be predicted pretends to be missing. 

“Intra-sample” prediction: reconstruction 

Self-prediction: Given an individual data sample, the task is to predict one part of the 
sample given the other part.  

The part to be predicted pretends to be missing.

Methods for Framing Self-Supervised Learning Tasks

?

“Intra-sample” prediction
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Contrastive Learning

´ Contrastive learning: Given multiple data samples, the task is to predict the 
relationship among them. 

´ The multiple samples can be selected from the dataset based on some 
known logics (e.g. the order of words / sentences), or fabricated by altering 
the original version. 

Contrastive learning: Given multiple data samples, the task is to predict the 
relationship among them.

The multiple samples can be selected from the dataset based on some known logics 
(e.g. the order of words / sentences), or fabricated by altering the original version.

Methods for Framing Self-Supervised Learning Tasks

relationship?

“Inter-sample” prediction
20

“Inter-sample” prediction: similar or not? 



Self-prediction



Self-Prediction

´ Self-prediction construct prediction tasks within every individual data 
sample: to predict a part of the data from the rest while pretending we 
don’t know that part. 

Self-prediction construct prediction tasks within every individual data sample: to 
predict a part of the data from the rest while pretending we don’t know that part.

Self-Prediction

(Famous illustration from Yann LeCun)
22



Self-Prediction: Autoregressive 
Generation
´ The autoregressive model predicts future behavior based on past behavior. 

Any data that comes with an innate sequential order can be modeled with 
regression. 

´ Examples: 
´ Audio (WaveNet, WaveRNN) 

´ Autoregressive language modeling (GPT, XLNet) 

´ Images in raster scan (PixelCNN, PixelRNN, iGPT) 
The autoregressive model predicts future behavior based on past behavior. Any data 
that comes with an innate sequential order can be modeled with regression.

Examples:
● Audio (WaveNet, WaveRNN)
● Autoregressive language modeling (GPT, XLNet)
● Images in raster scan (PixelCNN, PixelRNN, iGPT)

Self-Prediction: Autoregressive Generation

? ?

24



Self-Prediction: Masked Generation

´ We mask a random portion of information and pretend it is missing, 
irrespective of the natural sequence. The model learns to predict the 
missing portion given other unmasked information. 

´ Examples: 
´ Masked language modeling (BERT) 

´ Images with masked patch (denoising autoencoder, context autoencoder, 
colorization) We mask a random portion of information and pretend it is missing, irrespective of the 

natural sequence. The model learns to predict the missing portion given other 
unmasked information.

Examples:
● Masked language modeling (BERT)
● Images with masked patch (denoising autoencoder, context autoencoder, 

colorization)

Self-Prediction: Masked Generation

? ??
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Example: Masked AutoEncoder (MAE)
Masked Autoencoders Are Scalable Vision Learners

Kaiming He⇤,† Xinlei Chen⇤ Saining Xie Yanghao Li Piotr Dollár Ross Girshick
⇤equal technical contribution †project lead

Facebook AI Research (FAIR)

Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....

decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-
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1 ´ A large random subset of image

patches (75%) is masked out.
´ Masked token is introduced after

Encoder.

´ Source: He et al. 2021. 
arXiv:2111.06377.

Masked Autoencoders Are Scalable Vision Learners

Kaiming He⇤,† Xinlei Chen⇤ Saining Xie Yanghao Li Piotr Dollár Ross Girshick
⇤equal technical contribution †project lead

Facebook AI Research (FAIR)

Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-
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Example: Masked AutoEncoder (MAE)
[Source: He et al. 2021. arXiv:2111.06377. Masked Autoencoders Are Scalable Vision Learners]

´ High masking ratio (75%) works
well.ing patch to be predicted. We add positional embeddings to

all tokens in this full set; without this, mask tokens would
have no information about their location in the image. The
decoder has another series of Transformer blocks.

The MAE decoder is only used during pre-training to
perform the image reconstruction task (only the encoder
is used to produce image representations for recognition).
Therefore, the decoder architecture can be flexibly designed
in a manner that is independent of the encoder design. We
experiment with very small decoders, narrower and shal-
lower than the encoder. For example, our default decoder
has <10% computation per token vs. the encoder. With this
asymmetrical design, the full set of tokens are only pro-
cessed by the lightweight decoder, which significantly re-
duces pre-training time.

Reconstruction target. Our MAE reconstructs the input
by predicting the pixel values for each masked patch. Each
element in the decoder’s output is a vector of pixel values
representing a patch. The last layer of the decoder is a lin-
ear projection whose number of output channels equals the
number of pixel values in a patch. The decoder’s output is
reshaped to form a reconstructed image. Our loss function
computes the mean squared error (MSE) between the recon-
structed and original images in the pixel space. We compute
the loss only on masked patches, similar to BERT [14].1

We also study a variant whose reconstruction target is
the normalized pixel values of each masked patch. Specif-
ically, we compute the mean and standard deviation of all
pixels in a patch and use them to normalize this patch. Us-
ing normalized pixels as the reconstruction target improves
representation quality in our experiments.

Simple implementation. Our MAE pre-training can be im-
plemented efficiently, and importantly, does not require any
specialized sparse operations. First we generate a token for
every input patch (by linear projection with an added po-
sitional embedding). Next we randomly shuffle the list of
tokens and remove the last portion of the list, based on the
masking ratio. This process produces a small subset of to-
kens for the encoder and is equivalent to sampling patches
without replacement. After encoding, we append a list of
mask tokens to the list of encoded patches, and unshuffle
this full list (inverting the random shuffle operation) to align
all tokens with their targets. The decoder is applied to this
full list (with positional embeddings added). As noted, no
sparse operations are needed. This simple implementation
introduces negligible overhead as the shuffling and unshuf-
fling operations are fast.

1Computing the loss only on masked patches differs from traditional
denoising autoencoders [58] that compute the loss on all pixels. This
choice is purely result-driven: computing the loss on all pixels leads to
a slight decrease in accuracy (e.g., ⇠0.5%).
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Figure 5. Masking ratio. A high masking ratio (75%) works well
for both fine-tuning (top) and linear probing (bottom). The y-axes
are ImageNet-1K validation accuracy (%) in all plots in this paper.

4. ImageNet Experiments
We do self-supervised pre-training on the ImageNet-1K

(IN1K) [13] training set. Then we do supervised training to
evaluate the representations with (i) end-to-end fine-tuning
or (ii) linear probing. We report top-1 validation accuracy
of a single 224⇥224 crop. Details are in Appendix A.1.
Baseline: ViT-Large. We use ViT-Large (ViT-L/16) [16]
as the backbone in our ablation study. ViT-L is very big (an
order of magnitude bigger than ResNet-50 [25]) and tends
to overfit. The following is a comparison between ViT-L
trained from scratch vs. fine-tuned from our baseline MAE:

scratch, original [16] scratch, our impl. baseline MAE
76.5 82.5 84.9

We note that it is nontrivial to train supervised ViT-L from
scratch and a good recipe with strong regularization is
needed (82.5%, see Appendix A.2). Even so, our MAE pre-
training contributes a big improvement. Here fine-tuning is
only for 50 epochs (vs. 200 from scratch), implying that the
fine-tuning accuracy heavily depends on pre-training.

4.1. Main Properties
We ablate our MAE using the default settings in Table 1

(see caption). Several intriguing properties are observed.
Masking ratio. Figure 5 shows the influence of the mask-
ing ratio. The optimal ratios are surprisingly high. The ra-
tio of 75% is good for both linear probing and fine-tuning.
This behavior is in contrast with BERT [14], whose typical
masking ratio is 15%. Our masking ratios are also much
higher than those in related works [6, 16, 2] in computer
vision (20% to 50%).

The model infers missing patches to produce different,
yet plausible, outputs (Figure 4). It makes sense of the
gestalt of objects and scenes, which cannot be simply com-
pleted by extending lines or textures. We hypothesize that
this reasoning-like behavior is linked to the learning of use-
ful representations.

Figure 5 also shows that linear probing and fine-tuning
results follow different trends. For linear probing, the ac-
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original mask 75% mask 85% mask 95%

Figure 4. Reconstructions of ImageNet validation images using
an MAE pre-trained with a masking ratio of 75% but applied on
inputs with higher masking ratios. The predictions differ plausibly
from the original images, showing that the method can generalize.

2. Related Work

Masked language modeling and its autoregressive coun-
terparts, e.g., BERT [14] and GPT [47, 48, 4], are highly
successful methods for pre-training in NLP. These methods
hold out a portion of the input sequence and train models
to predict the missing content. These methods have been
shown to scale excellently [4] and a large abundance of ev-
idence indicates that these pre-trained representations gen-
eralize well to various downstream tasks.

Autoencoding is a classical method for learning representa-
tions. It has an encoder that maps an input to a latent repre-
sentation and a decoder that reconstructs the input. For ex-
ample, PCA and k-means are autoencoders [29]. Denoising
autoencoders (DAE) [58] are a class of autoencoders that
corrupt an input signal and learn to reconstruct the origi-
nal, uncorrupted signal. A series of methods can be thought
of as a generalized DAE under different corruptions, e.g.,
masking pixels [59, 46, 6] or removing color channels [70].
Our MAE is a form of denoising autoencoding, but different
from the classical DAE in numerous ways.

Masked image encoding methods learn representations
from images corrupted by masking. The pioneering work
of [59] presents masking as a noise type in DAE. Context
Encoder [46] inpaints large missing regions using convolu-
tional networks. Motivated by the success in NLP, related
recent methods [6, 16, 2] are based on Transformers [57].
iGPT [6] operates on sequences of pixels and predicts un-
known pixels. The ViT paper [16] studies masked patch
prediction for self-supervised learning. Most recently, BEiT
[2] proposes to predict discrete tokens [44, 50].

Self-supervised learning approaches have seen significant
interest in computer vision, often focusing on different pre-
text tasks for pre-training [15, 61, 42, 70, 45, 17]. Re-
cently, contrastive learning [3, 22] has been popular, e.g.,
[62, 43, 23, 7], which models image similarity and dis-
similarity (or only similarity [21, 8]) between two or more
views. Contrastive and related methods strongly depend on
data augmentation [7, 21, 8]. Autoencoding pursues a con-
ceptually different direction, and it exhibits different behav-
iors as we will present.

3. Approach

Our masked autoencoder (MAE) is a simple autoencod-
ing approach that reconstructs the original signal given its
partial observation. Like all autoencoders, our approach
has an encoder that maps the observed signal to a latent
representation, and a decoder that reconstructs the origi-
nal signal from the latent representation. Unlike classical
autoencoders, we adopt an asymmetric design that allows
the encoder to operate only on the partial, observed signal
(without mask tokens) and a lightweight decoder that re-
constructs the full signal from the latent representation and
mask tokens. Figure 1 illustrates the idea, introduced next.

Masking. Following ViT [16], we divide an image into reg-
ular non-overlapping patches. Then we sample a subset of
patches and mask (i.e., remove) the remaining ones. Our
sampling strategy is straightforward: we sample random
patches without replacement, following a uniform distribu-
tion. We simply refer to this as “random sampling”.

Random sampling with a high masking ratio (i.e., the ra-
tio of removed patches) largely eliminates redundancy, thus
creating a task that cannot be easily solved by extrapolation
from visible neighboring patches (see Figures 2 – 4). The
uniform distribution prevents a potential center bias (i.e.,
more masked patches near the image center). Finally, the
highly sparse input creates an opportunity for designing an
efficient encoder, introduced next.

MAE encoder. Our encoder is a ViT [16] but applied only
on visible, unmasked patches. Just as in a standard ViT, our
encoder embeds patches by a linear projection with added
positional embeddings, and then processes the resulting set
via a series of Transformer blocks. However, our encoder
only operates on a small subset (e.g., 25%) of the full set.
Masked patches are removed; no mask tokens are used.
This allows us to train very large encoders with only a frac-
tion of compute and memory. The full set is handled by a
lightweight decoder, described next.

MAE decoder. The input to the MAE decoder is the full
set of tokens consisting of (i) encoded visible patches, and
(ii) mask tokens. See Figure 1. Each mask token [14] is a
shared, learned vector that indicates the presence of a miss-
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Self-Prediction: Innate Relationship 
Prediction 
´ Some transformation (e.g. rotation, inpainting, jigsaw puzzle, coloring) of 

one data sample should maintain the original information or follow the 
desired innate logic. 

´ Examples: 
´ Order of image patches (e.g., relative position, jigsaw puzzle) 

´ Image rotation 

´ Counting features across patches 

Some transformation (e.g. segmentation, rotation) of one data sample should 
maintain the original information or follow the desired innate logic. 

Examples:
● Order of image patches (e.g., relative position, jigsaw puzzle)
● Image rotation
● Counting features across patches

Self-Prediction: Innate Relationship Prediction

1

3

2

4
1 32 4=♥ ♥
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Pretext task: predict rotations

´ Hypothesis: a model could recognize the correct rotation of an object only 
if it has the “visual commonsense” of what the object should look like 
unperturbed. 

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202133

Pretext task: predict rotations

Hypothesis: a model could recognize the correct rotation of an object 
only if it has the “visual commonsense” of what the object should look 
like unperturbed.

(Image source: Gidaris et al. 2018)



Rotation prediction

´ Self-supervised learning by rotating the entire input images. 

´ The model learns to predict which rotation is applied (4-way classification) 

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202135

Pretext task: predict rotations

Self-supervised 
learning by rotating 
the entire input 
images. 

The model learns to 
predict which rotation 
is applied (4-way 
classification)

(Image source: Gidaris et al. 2018)



Evaluation on semi-supervised learning 

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202136

Evaluation on semi-supervised learning

(Image source: Gidaris et al. 2018)

Self-supervised learning on 
CIFAR10 (entire training set).

Freeze conv1 + conv2
Learn conv3 + linear layers 
with subset of labeled 
CIFAR10 data (classification).

´ Self-supervised learning on 
CIFAR10 (entire training set). 

´ Freeze conv1 + conv2
Learn conv3 + linear layers with 
subset of labeled CIFAR10 data 
(classification). 

´ Gidaris, et al. ICLR 2018, 
arXiv:1803.07728



Evaluation of transfer learning

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202137

Transfer learned features to supervised learning

source: Gidaris et al. 2018

Self-supervised learning on 
ImageNet (entire training 
set) with AlexNet.

Finetune on labeled data 
from Pascal VOC 2007.

Pretrained with full 
ImageNet supervision

No pretraining

Self-supervised learning with rotation prediction



Visualize learned features

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202138

Visualize learned visual attentions

(Image source: Gidaris et al. 2018)



Pretext task: predict relative patch locations

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202139

Pretext task: predict relative patch locations 

(Image source: Doersch et al., 2015)(Image source: Doersch et al., ICCV 2015) 



Pretext task: solving “jigsaw puzzles”

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202140

Pretext task: solving “jigsaw puzzles”

(Image source: Noroozi & Favaro, 2016)

(Image source: Noroozi & Favaro, 2016) 



Pretext task: predict missing pixels 
(inpainting) 

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202142

Pretext task: predict missing pixels (inpainting)

Source: Pathak et al., 2016

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)



Learning to inpaint by reconstruction

´ Learning to reconstruct the missing pixels

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202143

Learning to inpaint by reconstruction

Learning to reconstruct the missing pixels
Source: Pathak et al., 2016

Image Source: Pathak et al., 2016



Learning to inpaint by reconstruction

´ Loss = reconstruction + adversarial learning 

´ Adversarial loss between “real” images and inpainted images

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202145

Learning to inpaint by reconstruction

Source: Pathak et al., 2016

Loss = reconstruction + adversarial learning

Adversarial loss between “real” images and inpainted images



Inpainting evaluation

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202146

Inpainting evaluation

Source: Pathak et al., 2016

Input (context) reconstruction adversarial recon + adv



Transfer features to classification

´ Self-supervised learning on ImageNet training set, transfer to classification 
(Pascal VOC 2007), detection (Pascal VOC 2007), and semantic 
segmentation (Pascal VOC 2012) 

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202147

Source: Pathak et al., 2016

Transfer learned features to supervised learning

Self-supervised learning on ImageNet training set, transfer to 
classification (Pascal VOC 2007), detection (Pascal VOC 2007), and 
semantic segmentation (Pascal VOC 2012)

Source: Pathak et al., 2016



Pretext task: image coloring

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202148

Pretext task: image coloring

Source: Richard Zhang / Phillip Isola
Source: Richard Zhang / Phillip Isola 



Learning features from colorization: 
Split-brain Autoencoder

´ Cross-channel prediction

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202150

Learning features from colorization: 
Split-brain Autoencoder

Source: Richard Zhang / Phillip Isola

Idea: cross-channel predictions

Source: Richard Zhang / Phillip Isola 



Learning features from colorization: 
Split-brain Autoencoder

´ Example:

Source: Richard Zhang / Phillip Isola Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202151

Learning features from colorization: 
Split-brain Autoencoder

Source: Richard Zhang / Phillip Isola



Pretext task: video coloring

´ Idea: model the temporal coherence of colors in videos 

´ Hypothesis: learning to color video frames should allow model to learn to 
track regions or objects without labels! 

Vondrick et al., 2018 
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Pretext task: video coloring

Source: Vondrick et al., 2018

t = 1 t = 2 t = 3

...

reference frame

t = 0

how should I color these frames?

Idea: model the temporal coherence of colors in videos

Should be the same color!

Hypothesis: learning to color video frames should allow model to 
learn to track regions or objects without labels!



Pretext task: video coloring
´ Idea: model the temporal coherence of colors in videos 

Vondrick et al., 2018 Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202161

Learning to color videos

Source: Vondrick et al., 2018

attention map on the 
reference frame

predicted color = weighted 
sum of the reference color

loss between predicted color 
and ground truth color



Summary

´ Pretext tasks focus on “visual common sense”, e.g., predict rotations, 
inpainting, rearrangement, and colorization. 

´ The models are forced learn good features about natural images, e.g., 
semantic representation of an object category, in order to solve the pretext 
tasks. 

´ We don’t care about the performance of these pretext tasks, but rather 
how useful the learned features are for downstream tasks (classification, 
detection, segmentation). 

´ Problems: 
´ 1) coming up with individual pretext tasks is tedious, and 

´ 2) the learned representations may not be general. 



Pretext tasks from image transformations

´ Learned representations may be tied to a specific pretext task! 

´ Can we come up with a more general pretext task? 

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202125

Self-supervised pretext tasks

?

Example: learn to predict image transformations / complete corrupted images

image completion

θ=?

rotation prediction “jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.



A more general pretext task?

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202170

A more general pretext task?

?

θ=?

same object

different object



Contrastive Learning

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202171

Contrastive Representation Learning

?

θ=?

attract

repel



Contrastive learning



Contrastive Learning

´ The goal of contrastive representation learning is to learn such an 
embedding space in which similar sample pairs stay close to each other 
while dissimilar ones are far apart. The goal of contrastive representation learning is to learn such an embedding space in 

which similar sample pairs stay close to each other while dissimilar ones are far apart.

Contrastive Learning

After learning

29



Early work on metric and contrastive 
learning

Metric learning (Xing et al. 2002)

Multiple Instance Learning & Metric Learning

N-pair loss (Sohn 2016)

Triplet loss (Schroff et al. 2015)

Contrastive Loss (Chopra & Hadsell et al. 2005)

16



Contrastive Learning of Images

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202174

Contrastive Representation Learning

?

θ=?

reference

positive

negative



A Modern Formulation

´ For x: reference sample; x+ positive sample; x- negative sample 

´ Given a chosen score function, we aim to learn an encoder function f that 
yields high score for positive pairs (x, x+) and low scores for negative pairs 
(x, x-). 

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202175

A formulation of contrastive learning
What we want:

x: reference sample; x+ positive sample; x- negative sample

Given a chosen score function, we aim to learn an encoder 
function f that yields high score for positive pairs (x, x+) and 
low scores for negative pairs (x, x-).



Contrastive loss function

´ Given 1 positive sample and N-1 negative samples, cross-entropy loss:

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202177

A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

...Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202179

A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

score for the 
positive pair

score for the N-1 
negative pairs

This seems familiar …
Cross entropy loss for a N-way softmax classifier!
I.e., learn to find the positive sample from the N samples



InfoNCE loss

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202180

A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x+)

The larger the negative sample size (N), the tighter the bound
Detailed derivation: Poole et al., 2019

Detailed derivation: Poole et al., 2019 



SimCLR: A Simple Framework for 
Contrastive Learning 
´ Cosine similarity as the score 

function: 

´ Generate positive samples through 
data augmentation: 
´ random cropping, random color 

distortion, and random blur. 

´ Base encoder f and projection 
head g (discarded after training) 
are trained with contrastive loss

Source: Chen et al., ICML 2020 Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202187

SimCLR: mini-batch training

list of positive pairs

= classification label for each row 

Each 2k and 2k + 1 
element is a positive pair

“Affinity matrix”

*We use a slightly different formulation in the assignment. 
You should follow the assignment instructions.

A Simple Framework for Contrastive Learning of Visual Representations

• Composition of multiple data augmentation operations
is crucial in defining the contrastive prediction tasks that
yield effective representations. In addition, unsupervised
contrastive learning benefits from stronger data augmen-
tation than supervised learning.

• Introducing a learnable nonlinear transformation be-
tween the representation and the contrastive loss substan-
tially improves the quality of the learned representations.

• Representation learning with contrastive cross entropy
loss benefits from normalized embeddings and an appro-
priately adjusted temperature parameter.

• Contrastive learning benefits from larger batch sizes and
longer training compared to its supervised counterpart.
Like supervised learning, contrastive learning benefits
from deeper and wider networks.

We combine these findings to achieve a new state-of-the-art
in self-supervised and semi-supervised learning on Ima-
geNet ILSVRC-2012 (Russakovsky et al., 2015). Under the
linear evaluation protocol, SimCLR achieves 76.5% top-1
accuracy, which is a 7% relative improvement over previous
state-of-the-art (Hénaff et al., 2019). When fine-tuned with
only 1% of the ImageNet labels, SimCLR achieves 85.8%
top-5 accuracy, a relative improvement of 10% (Hénaff et al.,
2019). When fine-tuned on other natural image classifica-
tion datasets, SimCLR performs on par with or better than
a strong supervised baseline (Kornblith et al., 2019) on 10
out of 12 datasets.

2. Method
2.1. The Contrastive Learning Framework

Inspired by recent contrastive learning algorithms (see Sec-
tion 7 for an overview), SimCLR learns representations
by maximizing agreement between differently augmented
views of the same data example via a contrastive loss in
the latent space. As illustrated in Figure 2, this framework
comprises the following four major components.

• A stochastic data augmentation module that transforms
any given data example randomly resulting in two cor-
related views of the same example, denoted x̃i and x̃j ,
which we consider as a positive pair. In this work, we
sequentially apply three simple augmentations: random
cropping followed by resize back to the original size, ran-
dom color distortions, and random Gaussian blur. As
shown in Section 3, the combination of random crop and
color distortion is crucial to achieve a good performance.

• A neural network base encoder f(·) that extracts repre-
sentation vectors from augmented data examples. Our
framework allows various choices of the network archi-
tecture without any constraints. We opt for simplicity
and adopt the commonly used ResNet (He et al., 2016)

 �Representation�!

x

x̃i x̃j

hi hj

zi zj

t ⇠ T t
0 ⇠ T

f(·) f(·)

g(·) g(·)

Maximize agreement

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ⇠ T and
t0 ⇠ T ) and applied to each data example to obtain two correlated
views. A base encoder network f(·) and a projection head g(·)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(·) and
use encoder f(·) and representation h for downstream tasks.

to obtain hi = f(x̃i) = ResNet(x̃i) where hi 2 Rd is
the output after the average pooling layer.

• A small neural network projection head g(·) that maps
representations to the space where contrastive loss is
applied. We use a MLP with one hidden layer to obtain
zi = g(hi) = W (2)�(W (1)hi) where � is a ReLU non-
linearity. As shown in section 4, we find it beneficial to
define the contrastive loss on zi’s rather than hi’s.

• A contrastive loss function defined for a contrastive pre-
diction task. Given a set {x̃k} including a positive pair
of examples x̃i and x̃j , the contrastive prediction task
aims to identify x̃j in {x̃k}k 6=i for a given x̃i.

We randomly sample a minibatch of N examples and define
the contrastive prediction task on pairs of augmented exam-
ples derived from the minibatch, resulting in 2N data points.
We do not sample negative examples explicitly. Instead,
given a positive pair, similar to (Chen et al., 2017), we treat
the other 2(N � 1) augmented examples within a minibatch
as negative examples. Let sim(u,v) = u>v/kukkvk de-
note the dot product between `2 normalized u and v (i.e.
cosine similarity). Then the loss function for a positive pair
of examples (i, j) is defined as

`i,j = � log
exp(sim(zi, zj)/⌧)P2N

k=1 [k 6=i] exp(sim(zi, zk)/⌧)
, (1)

where [k 6=i] 2 {0, 1} is an indicator function evaluating to
1 iff k 6= i and ⌧ denotes a temperature parameter. The fi-
nal loss is computed across all positive pairs, both (i, j)
and (j, i), in a mini-batch. This loss has been used in
previous work (Sohn, 2016; Wu et al., 2018; Oord et al.,
2018); for convenience, we term it NT-Xent (the normalized
temperature-scaled cross entropy loss).

A Simple Framework for Contrastive Learning of Visual Representations

• Composition of multiple data augmentation operations
is crucial in defining the contrastive prediction tasks that
yield effective representations. In addition, unsupervised
contrastive learning benefits from stronger data augmen-
tation than supervised learning.

• Introducing a learnable nonlinear transformation be-
tween the representation and the contrastive loss substan-
tially improves the quality of the learned representations.

• Representation learning with contrastive cross entropy
loss benefits from normalized embeddings and an appro-
priately adjusted temperature parameter.

• Contrastive learning benefits from larger batch sizes and
longer training compared to its supervised counterpart.
Like supervised learning, contrastive learning benefits
from deeper and wider networks.

We combine these findings to achieve a new state-of-the-art
in self-supervised and semi-supervised learning on Ima-
geNet ILSVRC-2012 (Russakovsky et al., 2015). Under the
linear evaluation protocol, SimCLR achieves 76.5% top-1
accuracy, which is a 7% relative improvement over previous
state-of-the-art (Hénaff et al., 2019). When fine-tuned with
only 1% of the ImageNet labels, SimCLR achieves 85.8%
top-5 accuracy, a relative improvement of 10% (Hénaff et al.,
2019). When fine-tuned on other natural image classifica-
tion datasets, SimCLR performs on par with or better than
a strong supervised baseline (Kornblith et al., 2019) on 10
out of 12 datasets.

2. Method
2.1. The Contrastive Learning Framework

Inspired by recent contrastive learning algorithms (see Sec-
tion 7 for an overview), SimCLR learns representations
by maximizing agreement between differently augmented
views of the same data example via a contrastive loss in
the latent space. As illustrated in Figure 2, this framework
comprises the following four major components.

• A stochastic data augmentation module that transforms
any given data example randomly resulting in two cor-
related views of the same example, denoted x̃i and x̃j ,
which we consider as a positive pair. In this work, we
sequentially apply three simple augmentations: random
cropping followed by resize back to the original size, ran-
dom color distortions, and random Gaussian blur. As
shown in Section 3, the combination of random crop and
color distortion is crucial to achieve a good performance.

• A neural network base encoder f(·) that extracts repre-
sentation vectors from augmented data examples. Our
framework allows various choices of the network archi-
tecture without any constraints. We opt for simplicity
and adopt the commonly used ResNet (He et al., 2016)
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Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ⇠ T and
t0 ⇠ T ) and applied to each data example to obtain two correlated
views. A base encoder network f(·) and a projection head g(·)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(·) and
use encoder f(·) and representation h for downstream tasks.

to obtain hi = f(x̃i) = ResNet(x̃i) where hi 2 Rd is
the output after the average pooling layer.

• A small neural network projection head g(·) that maps
representations to the space where contrastive loss is
applied. We use a MLP with one hidden layer to obtain
zi = g(hi) = W (2)�(W (1)hi) where � is a ReLU non-
linearity. As shown in section 4, we find it beneficial to
define the contrastive loss on zi’s rather than hi’s.

• A contrastive loss function defined for a contrastive pre-
diction task. Given a set {x̃k} including a positive pair
of examples x̃i and x̃j , the contrastive prediction task
aims to identify x̃j in {x̃k}k 6=i for a given x̃i.

We randomly sample a minibatch of N examples and define
the contrastive prediction task on pairs of augmented exam-
ples derived from the minibatch, resulting in 2N data points.
We do not sample negative examples explicitly. Instead,
given a positive pair, similar to (Chen et al., 2017), we treat
the other 2(N � 1) augmented examples within a minibatch
as negative examples. Let sim(u,v) = u>v/kukkvk de-
note the dot product between `2 normalized u and v (i.e.
cosine similarity). Then the loss function for a positive pair
of examples (i, j) is defined as

`i,j = � log
exp(sim(zi, zj)/⌧)P2N

k=1 [k 6=i] exp(sim(zi, zk)/⌧)
, (1)

where [k 6=i] 2 {0, 1} is an indicator function evaluating to
1 iff k 6= i and ⌧ denotes a temperature parameter. The fi-
nal loss is computed across all positive pairs, both (i, j)
and (j, i), in a mini-batch. This loss has been used in
previous work (Sohn, 2016; Wu et al., 2018; Oord et al.,
2018); for convenience, we term it NT-Xent (the normalized
temperature-scaled cross entropy loss).



Training linear classifier on SimCLR
features

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202188

Training linear classifier on SimCLR features

Train feature encoder on 
ImageNet (entire training set) 
using SimCLR.

Freeze feature encoder, train a 
linear classifier on top with 
labeled data.

Source: Chen et al., 2020

´ Train feature encoder on 
ImageNet (entire training set) 
using SimCLR. 

´ Freeze feature encoder, train a 
linear classifier on top with 
labeled data. 

´ Chen et al. ICML 2020



Semi-supervised learning on SimCLR
features 

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202189

Semi-supervised learning on SimCLR features

Train feature encoder on 
ImageNet (entire training set) 
using SimCLR.

Finetune the encoder with 1% / 
10% of labeled data on ImageNet.

Source: Chen et al., 2020

´ Train feature encoder on 
ImageNet (entire training set) 
using SimCLR. 

´ Finetune the encoder with 1% / 
10% of labeled data on 
ImageNet. 

´ Chen et al. ICML 2020



SimCLR: projection head

´ Linear / non-linear projection heads 
improve representation learning. 

´ A possible explanation: 
´ contrastive learning objective may 

discard useful information for 
downstream tasks 

´ representation space z is trained to be 
invariant to data transformation. 

´ by leveraging the projection head g(ᐧ), 
more information can be preserved in 
the h representation space 

´ Chen et al. ICML 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202190

SimCLR design choices: projection head

Linear / non-linear projection heads improve 
representation learning.

A possible explanation: 
● contrastive learning objective may discard 

useful information for downstream tasks
● representation space z is trained to be 

invariant to data transformation. 
● by leveraging the projection head g(ᐧ), 

more information can be preserved in the 
h representation space

Source: Chen et al., 2020



SimCLR needs large batch size!

´ Large training batch size is crucial 
for SimCLR! 

´ Large batch size causes large 
memory footprint during 
backpropagation: requires 
distributed training on TPUs 
(ImageNet experiments) 

´ Chen et al. ICML 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202191

SimCLR design choices: large batch size

Large training batch size is crucial for 
SimCLR!

Large batch size causes large memory 
footprint during backpropagation: 
requires distributed training on TPUs 
(ImageNet experiments) 

Source: Chen et al., 2020



Momentum Contrastive Learning (MoCo)

´ Key differences to SimCLR: 
´ Keep a running queue of keys 

(negative samples). 

´ Compute gradients and update the 
encoder only through the queries. 

´ Decouple min-batch size with the 
number of keys: can support a large 
number of negative samples. 

´ The key encoder is slowly progressing
through the momentum update 
rules: 

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202193

Momentum Contrastive Learning (MoCo)
Key differences to SimCLR:

● Keep a running queue of keys 
(negative samples).

● Compute gradients and update the 
encoder only through the queries.

● Decouple min-batch size with the 
number of keys: can support a large 
number of negative samples.

no_grad

Source: He et al., 2020

● The key encoder is slowly progressing 
through the momentum update rules:

He et al. CVPR 2020

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan Yuxin Wu Saining Xie Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present Momentum Contrast (MoCo) for unsuper-

vised visual representation learning. From a perspective on

contrastive learning [29] as dictionary look-up, we build

a dynamic dictionary with a queue and a moving-averaged

encoder. This enables building a large and consistent dic-

tionary on-the-fly that facilitates contrastive unsupervised

learning. MoCo provides competitive results under the

common linear protocol on ImageNet classification. More

importantly, the representations learned by MoCo transfer

well to downstream tasks. MoCo can outperform its super-

vised pre-training counterpart in 7 detection/segmentation

tasks on PASCAL VOC, COCO, and other datasets, some-

times surpassing it by large margins. This suggests that

the gap between unsupervised and supervised representa-

tion learning has been largely closed in many vision tasks.

Code: https://github.com/facebookresearch/moco

1. Introduction

Unsupervised representation learning is highly success-
ful in natural language processing, e.g., as shown by GPT
[50, 51] and BERT [12]. But supervised pre-training is still
dominant in computer vision, where unsupervised meth-
ods generally lag behind. The reason may stem from dif-
ferences in their respective signal spaces. Language tasks
have discrete signal spaces (words, sub-word units, etc.)
for building tokenized dictionaries, on which unsupervised
learning can be based. Computer vision, in contrast, further
concerns dictionary building [54, 9, 5], as the raw signal is
in a continuous, high-dimensional space and is not struc-
tured for human communication (e.g., unlike words).

Several recent studies [61, 46, 36, 66, 35, 56, 2] present
promising results on unsupervised visual representation
learning using approaches related to the contrastive loss

[29]. Though driven by various motivations, these methods
can be thought of as building dynamic dictionaries. The
“keys” (tokens) in the dictionary are sampled from data
(e.g., images or patches) and are represented by an encoder
network. Unsupervised learning trains encoders to perform
dictionary look-up: an encoded “query” should be similar
to its matching key and dissimilar to others. Learning is
formulated as minimizing a contrastive loss [29].

encoder momentum
encoder

q

contrastive loss

similarity

queue

k0 k1 k2 ...

xquery xkey
0 xkey

1 xkey
2 ...

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query q to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{k0, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.

From this perspective, we hypothesize that it is desirable
to build dictionaries that are: (i) large and (ii) consistent
as they evolve during training. Intuitively, a larger dictio-
nary may better sample the underlying continuous, high-
dimensional visual space, while the keys in the dictionary
should be represented by the same or similar encoder so that
their comparisons to the query are consistent. However, ex-
isting methods that use contrastive losses can be limited in
one of these two aspects (discussed later in context).

We present Momentum Contrast (MoCo) as a way of
building large and consistent dictionaries for unsupervised
learning with a contrastive loss (Figure 1). We maintain the
dictionary as a queue of data samples: the encoded repre-
sentations of the current mini-batch are enqueued, and the
oldest are dequeued. The queue decouples the dictionary
size from the mini-batch size, allowing it to be large. More-
over, as the dictionary keys come from the preceding sev-
eral mini-batches, a slowly progressing key encoder, imple-
mented as a momentum-based moving average of the query
encoder, is proposed to maintain consistency.
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Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan Yuxin Wu Saining Xie Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present Momentum Contrast (MoCo) for unsuper-

vised visual representation learning. From a perspective on

contrastive learning [29] as dictionary look-up, we build

a dynamic dictionary with a queue and a moving-averaged

encoder. This enables building a large and consistent dic-

tionary on-the-fly that facilitates contrastive unsupervised

learning. MoCo provides competitive results under the

common linear protocol on ImageNet classification. More

importantly, the representations learned by MoCo transfer

well to downstream tasks. MoCo can outperform its super-

vised pre-training counterpart in 7 detection/segmentation

tasks on PASCAL VOC, COCO, and other datasets, some-

times surpassing it by large margins. This suggests that

the gap between unsupervised and supervised representa-

tion learning has been largely closed in many vision tasks.

Code: https://github.com/facebookresearch/moco

1. Introduction

Unsupervised representation learning is highly success-
ful in natural language processing, e.g., as shown by GPT
[50, 51] and BERT [12]. But supervised pre-training is still
dominant in computer vision, where unsupervised meth-
ods generally lag behind. The reason may stem from dif-
ferences in their respective signal spaces. Language tasks
have discrete signal spaces (words, sub-word units, etc.)
for building tokenized dictionaries, on which unsupervised
learning can be based. Computer vision, in contrast, further
concerns dictionary building [54, 9, 5], as the raw signal is
in a continuous, high-dimensional space and is not struc-
tured for human communication (e.g., unlike words).

Several recent studies [61, 46, 36, 66, 35, 56, 2] present
promising results on unsupervised visual representation
learning using approaches related to the contrastive loss

[29]. Though driven by various motivations, these methods
can be thought of as building dynamic dictionaries. The
“keys” (tokens) in the dictionary are sampled from data
(e.g., images or patches) and are represented by an encoder
network. Unsupervised learning trains encoders to perform
dictionary look-up: an encoded “query” should be similar
to its matching key and dissimilar to others. Learning is
formulated as minimizing a contrastive loss [29].

encoder momentum
encoder

q

contrastive loss

similarity

queue

k0 k1 k2 ...

xquery xkey
0 xkey

1 xkey
2 ...

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query q to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{k0, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.

From this perspective, we hypothesize that it is desirable
to build dictionaries that are: (i) large and (ii) consistent
as they evolve during training. Intuitively, a larger dictio-
nary may better sample the underlying continuous, high-
dimensional visual space, while the keys in the dictionary
should be represented by the same or similar encoder so that
their comparisons to the query are consistent. However, ex-
isting methods that use contrastive losses can be limited in
one of these two aspects (discussed later in context).

We present Momentum Contrast (MoCo) as a way of
building large and consistent dictionaries for unsupervised
learning with a contrastive loss (Figure 1). We maintain the
dictionary as a queue of data samples: the encoded repre-
sentations of the current mini-batch are enqueued, and the
oldest are dequeued. The queue decouples the dictionary
size from the mini-batch size, allowing it to be large. More-
over, as the dictionary keys come from the preceding sev-
eral mini-batches, a slowly progressing key encoder, imple-
mented as a momentum-based moving average of the query
encoder, is proposed to maintain consistency.
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MoCo v2

´ A hybrid of ideas from SimCLR and MoCo: 
´ From SimCLR: non-linear projection head and strong data augmentation. 

´ From MoCo: momentum-updated queues that allow training on a large number 
of negative samples (no TPU required!). 

Source: Chen et al., 2020 

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

Abstract
Contrastive unsupervised learning has recently shown

encouraging progress, e.g., in Momentum Contrast (MoCo)

and SimCLR. In this note, we verify the effectiveness of two

of SimCLR’s design improvements by implementing them in

the MoCo framework. With simple modifications to MoCo—

namely, using an MLP projection head and more data

augmentation—we establish stronger baselines that outper-

form SimCLR and do not require large training batches. We

hope this will make state-of-the-art unsupervised learning

research more accessible. Code will be made public.

1. Introduction
Recent studies on unsupervised representation learning

from images [16, 13, 8, 17, 1, 9, 15, 6, 12, 2] are converging
on a central concept known as contrastive learning [5]. The
results are promising: e.g., Momentum Contrast (MoCo)
[6] shows that unsupervised pre-training can surpass its
ImageNet-supervised counterpart in multiple detection and
segmentation tasks, and SimCLR [2] further reduces the gap
in linear classifier performance between unsupervised and
supervised pre-training representations.

This note establishes stronger and more feasible base-
lines built in the MoCo framework. We report that two de-
sign improvements used in SimCLR, namely, an MLP pro-
jection head and stronger data augmentation, are orthogo-
nal to the frameworks of MoCo and SimCLR, and when
used with MoCo they lead to better image classification
and object detection transfer learning results. Moreover, the
MoCo framework can process a large set of negative sam-
ples without requiring large training batches (Fig. 1). In
contrast to SimCLR’s large 4k⇠8k batches, which require
TPU support, our “MoCo v2” baselines can run on a typical
8-GPU machine and achieve better results than SimCLR.
We hope these improved baselines will provide a reference
for future research in unsupervised learning.

2. Background
Contrastive learning. Contrastive learning [5] is a frame-
work that learns similar/dissimilar representations from
data that are organized into similar/dissimilar pairs. This
can be formulated as a dictionary look-up problem. An ef-
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momentum
encoder
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queue

(a) end-to-end (b) Momentum Contrast

co
nc
at
.

Figure 1. A batching perspective of two optimization mechanisms
for contrastive learning. Images are encoded into a representation
space, in which pairwise affinities are computed.

fective contrastive loss function, called InfoNCE [13], is:

Lq,k+,{k�} = � log
exp(q·k+/⌧)

exp(q·k+/⌧) +
X

k�

exp(q·k�/⌧)
. (1)

Here q is a query representation, k+ is a representation of
the positive (similar) key sample, and {k�} are representa-
tions of the negative (dissimilar) key samples. ⌧ is a temper-
ature hyper-parameter. In the instance discrimination pre-
text task [16] (used by MoCo and SimCLR), a query and a
key form a positive pair if they are data-augmented versions
of the same image, and otherwise form a negative pair.

The contrastive loss (1) can be minimized by various
mechanisms that differ in how the keys are maintained [6].
In an end-to-end mechanism (Fig. 1a) [13, 8, 17, 1, 9, 2],
the negative keys are from the same batch and updated end-
to-end by back-propagation. SimCLR [2] is based on this
mechanism and requires a large batch to provide a large set
of negatives. In the MoCo mechanism (Fig. 1b) [6], the neg-
ative keys are maintained in a queue, and only the queries
and positive keys are encoded in each training batch. A mo-
mentum encoder is adopted to improve the representation
consistency between the current and earlier keys. MoCo
decouples the batch size from the number of negatives.
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MoCo v2 vs. SimCLR

´ Non-linear projection head and 
strong data augmentation are 
crucial for contrastive learning. 

´ Decoupling mini-batch size with 
negative sample size allows MoCo-
V2 to outperform SimCLR with 
smaller batch size (256 vs. 8192). 

´ ... all with much smaller memory 
footprint! (“end-to-end” means 
SimCLR here) 

´ Chen et al. 2020

unsup. pre-train ImageNet VOC detection
case MLP aug+ cos epochs acc. AP50 AP AP75

supervised 76.5 81.3 53.5 58.8
MoCo v1 200 60.6 81.5 55.9 62.6

(a) X 200 66.2 82.0 56.4 62.6
(b) X 200 63.4 82.2 56.8 63.2
(c) X X 200 67.3 82.5 57.2 63.9
(d) X X X 200 67.5 82.4 57.0 63.6
(e) X X X 800 71.1 82.5 57.4 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(i) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+”:
with extra blur augmentation; “cos”: cosine learning rate schedule.

Improved designs. SimCLR [2] improves the end-to-end
variant of instance discrimination in three aspects: (i) a sub-
stantially larger batch (4k or 8k) that can provide more neg-
ative samples; (ii) replacing the output fc projection head
[16] with an MLP head; (iii) stronger data augmentation.

In the MoCo framework, a large number of negative
samples are readily available; the MLP head and data aug-
mentation are orthogonal to how contrastive learning is in-
stantiated. Next we study these improvements in MoCo.

3. Experiments
Settings. Unsupervised learning is conducted on the 1.28M
ImageNet [3] training set. We follow two common proto-
cols for evaluation. (i) ImageNet linear classification: fea-
tures are frozen and a supervised linear classifier is trained;
we report 1-crop (224⇥224), top-1 validation accuracy. (ii)
Transferring to VOC object detection [4]: a Faster R-CNN
detector [14] (C4-backbone) is fine-tuned end-to-end on the
VOC 07+12 trainval set1 and evaluated on the VOC 07
test set using the COCO suite of metrics [10]. We use the
same hyper-parameters (except when noted) and codebase
as MoCo [6]. All results use a standard-size ResNet-50 [7].

MLP head. Following [2], we replace the fc head in MoCo
with a 2-layer MLP head (hidden layer 2048-d, with ReLU).
Note this only influences the unsupervised training stage;
the linear classification or transferring stage does not use
this MLP head. Also, following [2], we search for an opti-
mal ⌧ w.r.t. ImageNet linear classification accuracy:

⌧ 0.07 0.1 0.2 0.3 0.4 0.5
w/o MLP 60.6 60.7 59.0 58.2 57.2 56.4
w/ MLP 62.9 64.9 66.2 65.7 65.0 64.3

Using the default ⌧ = 0.07 [16, 6], pre-training with the
MLP head improves from 60.6% to 62.9%; switching to
the optimal value for MLP (0.2), the accuracy increases to
66.2%. Table 1(a) shows its detection results: in contrast to
the big leap on ImageNet, the detection gains are smaller.

Augmentation. We extend the original augmentation in
[6] by including the blur augmentation in [2] (we find the

1For all entries (including the supervised and MoCo v1 baselines), we
fine-tune for 24k iterations on VOC, up from 18k in [6].

unsup. pre-train ImageNet
case MLP aug+ cos epochs batch acc.
MoCo v1 [6] 200 256 60.6
SimCLR [2] X X X 200 256 61.9
SimCLR [2] X X X 200 8192 66.6
MoCo v2 X X X 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] X X X 1000 4096 69.3
MoCo v2 X X X 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224⇥224), trained on features from unsuper-
vised pre-training. “aug+” in SimCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

mechanism batch memory / GPU time / 200-ep.
MoCo 256 5.0G 53 hrs

end-to-end 256 7.4G 65 hrs
end-to-end 4096 93.0G† n/a

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. †: based on our estimation.

stronger color distortion in [2] has diminishing gains in our
higher baselines). The extra augmentation alone (i.e., no
MLP) improves the MoCo baseline on ImageNet by 2.8%
to 63.4%, Table 1(b). Interestingly, its detection accuracy is
higher than that of using the MLP alone, Table 1(b) vs. (a),
despite much lower linear classification accuracy (63.4%
vs. 66.2%). This indicates that linear classification accu-

racy is not monotonically related to transfer performance

in detection. With the MLP, the extra augmentation boosts
ImageNet accuracy to 67.3%, Table 1(c).

Comparison with SimCLR. Table 2 compares SimCLR
[2] with our results, referred to as MoCo v2. For fair com-
parisons, we also study a cosine (half-period) learning rate
schedule [11] which SimCLR adopts. See Table 1(d, e). Us-
ing pre-training with 200 epochs and a batch size of 256,
MoCo v2 achieves 67.5% accuracy on ImageNet: this is
5.6% higher than SimCLR under the same epochs and batch

size, and better than SimCLR’s large-batch result 66.6%.
With 800-epoch pre-training, MoCo v2 achieves 71.1%,
outperforming SimCLR’s 69.3% with 1000 epochs.

Computational cost. In Table 3 we report the memory and
time cost of our implementation. The end-to-end case re-
flects the SimCLR cost in GPUs (instead of TPUs in [2]).
The 4k batch size is intractable even in a high-end 8-GPU
machine. Also, under the same batch size of 256, the end-
to-end variant is still more costly in memory and time, be-
cause it back-propagates to both q and k encoders, while
MoCo back-propagates to the q encoder only.

Table 2 and 3 suggest that large batches are not necessary
for good accuracy, and state-of-the-art results can be made
more accessible. The improvements we investigate require
only a few lines of code changes to MoCo v1, and we will
make the code public to facilitate future research.

2



MoCo v3: the State of the Art
An Empirical Study of Training Self-Supervised Vision Transformers

Xinlei Chen⇤ Saining Xie⇤ Kaiming He
Facebook AI Research (FAIR)

Abstract

This paper does not describe a novel method. Instead,
it studies a straightforward, incremental, yet must-know
baseline given the recent progress in computer vision: self-
supervised learning for Vision Transformers (ViT). While
the training recipes for standard convolutional networks
have been highly mature and robust, the recipes for ViT are
yet to be built, especially in the self-supervised scenarios
where training becomes more challenging. In this work, we
go back to basics and investigate the effects of several fun-
damental components for training self-supervised ViT. We
observe that instability is a major issue that degrades accu-
racy, and it can be hidden by apparently good results. We
reveal that these results are indeed partial failure, and they
can be improved when training is made more stable. We
benchmark ViT results in MoCo v3 and several other self-
supervised frameworks, with ablations in various aspects.
We discuss the currently positive evidence as well as chal-
lenges and open questions. We hope that this work will pro-
vide useful data points and experience for future research.

Code: https://github.com/facebookresearch/moco-v3

1. Introduction

Unsupervised pre-training has revolutionized natural
language processing (NLP) [37, 15, 38, 4]. In computer vi-
sion, the un-/self-supervised pre-training paradigms differ
from their NLP counterparts in at least two aspects: (i) the
learners in NLP are masked auto-encoders, while in vision
the recently popular choices are Siamese networks (e.g.,
[20, 10, 18, 7]); (ii) the backbone architectures in NLP are
self-attentional Transformers [43], while in vision the com-
mon choice is convolutional [28]—yet non-attentional—
deep residual networks (ResNets) [21]. To complete the big
picture of self-supervised learning in vision, and towards
closing the gap of pre-training methodology between vision
and language, it is of scientific merit to investigate these
differences.

This work focuses on training Transformers with the
leading self-supervised frameworks in vision. This in-
vestigation is a straightforward extension given the recent
progress on Vision Transformers (ViT) [16]. In contrast to
prior works [9, 16] that train self-supervised Transformers
with masked auto-encoding, we study the frameworks that
are based on Siamese networks, including MoCo [20] and

*: equal contribution.

framework model params acc. (%)
linear probing:
iGPT [9] iGPT-L 1362M 69.0
iGPT [9] iGPT-XL 6801M 72.0
MoCo v3 ViT-B 86M 76.7
MoCo v3 ViT-L 304M 77.6
MoCo v3 ViT-H 632M 78.1
MoCo v3 ViT-BN-H 632M 79.1
MoCo v3 ViT-BN-L/7 304M 81.0

end-to-end fine-tuning:
masked patch pred. [16] ViT-B 86M 79.9†

MoCo v3 ViT-B 86M 83.2
MoCo v3 ViT-L 304M 84.1

Table 1. State-of-the-art Self-supervised Transformers in
ImageNet classification, evaluated by linear probing (top panel)
or end-to-end fine-tuning (bottom panel). Both iGPT [9] and
masked patch prediction [16] belong to the masked auto-encoding
paradigm. MoCo v3 is a contrastive learning method that com-
pares two (224⇥224) crops. ViT-B, -L, -H are the Vision Trans-
formers proposed in [16]. ViT-BN is modified with BatchNorm,
and “/7” denotes a patch size of 7⇥7. †: pre-trained in JFT-300M.

others [10, 18, 7].
Unlike standard convolutional networks whose training

practice has been extensively studied thanks to continuous
community effort, ViT models are new and their recipes
are yet to be established. In this work, we go back to ba-
sics and investigate the fundamental components of train-
ing deep neural networks: the batch size, learning rate, and
optimizer. We find that under various cases, instability is a
major issue that impacts self-supervised ViT training.

Interestingly, we observe that unstable ViT training may
not result in catastrophic failure (e.g., divergence); instead,
it can cause mild degradation in accuracy (e.g., 1⇠3%).
Such a degree of degradation may not be noticeable, unless
a more stable counterpart is available for comparison. To
the best of our knowledge, this phenomena is rare in the lit-
erature of training convolutional networks1, and we believe
this problem and its hidden degradation are worth noticing.

To demonstrate the possible harm of instability, we
investigate a simple trick that can improve stability in
practice. Based on an empirical observation on gradient
changes, we freeze the patch projection layer in ViT, i.e.,
we use fixed random patch projection. We empirically show
that this trick alleviates the instability issue in several sce-
narios and consistently increases accuracy.

1See also postscript on a related discussion.
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From Instance to Sequence …

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 202199

Instance vs. Sequence Contrastive Learning

Instance-level contrastive learning: 
contrastive learning based on 
positive & negative instances.

Examples: SimCLR, MoCo

Sequence-level contrastive learning: 
contrastive learning based on 
sequential / temporal orders.

Example: Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 2018



Contrastive Predictive Coding (CPC) 

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 2021100

Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 2018, Figure source

Contrastive: contrast between 
“right” and “wrong” sequences 
using contrastive learning.

Predictive: the model has to 
predict future patterns given the 
current context.

Coding: the model learns useful 
feature vectors, or “code”, for 
downstream tasks, similar to other 
self-supervised methods.context

positive

negative

´ Contrastive: contrast between 
“right” and “wrong” sequences 
using contrastive learning. 

´ Predictive: the model has to predict 
future patterns given the current 
context. 

´ Coding: the model learns useful 
feature vectors, or “code”, for 
downstream tasks, similar to other 
self-supervised methods. 

´ Can be applied to a variety of 
learning problems, but not as 
effective in learning image 
representations compared to 
instance-level methods. 

´ Source: van den Oord et al. 2018 
arXiv:1807.03748



Contrastive Language–Image Pre-training 
(CLIP) 

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 13 - May 13, 2021112

Other examples

CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021

Contrastive learning between image and natural language sentences

Radford et al., 2021 

Contrastive learning between image and natural language sentences, enables zero-
shot learning. 



A Short History of Contrastive 
Representation Learning
´ Common loss functions: 

´ Contrastive loss (Chopra et al. 2005) 

´ Triplet loss (Schroff et al. 2015; FaceNet) 

´ Lifted structured loss (Song et al. 2015) 

´ Multi-class n-pair loss (Sohn 2016) 

´ Noise contrastive estimation (“NCE”; Gutmann & Hyvarinen 2010) 

´ InfoNCE (van den Oord, et al. 2018) 

´ Soft-nearest neighbors loss (Salakhutdinov & Hinton 2007, Frosst et al. 2019) 



Summary: SimCLR

´ SimCLR: a simple framework for 
contrastive representation 
learning 

´ Key ideas: non-linear projection 
head to allow flexible 
representation learning 

´ Simple to implement, effective in 
learning visual representation 

´ Requires large training batch size 
to be effective; large memory 
footprint 

Source: Chen et al., 2020 

A Simple Framework for Contrastive Learning of Visual Representations

• Composition of multiple data augmentation operations
is crucial in defining the contrastive prediction tasks that
yield effective representations. In addition, unsupervised
contrastive learning benefits from stronger data augmen-
tation than supervised learning.

• Introducing a learnable nonlinear transformation be-
tween the representation and the contrastive loss substan-
tially improves the quality of the learned representations.

• Representation learning with contrastive cross entropy
loss benefits from normalized embeddings and an appro-
priately adjusted temperature parameter.

• Contrastive learning benefits from larger batch sizes and
longer training compared to its supervised counterpart.
Like supervised learning, contrastive learning benefits
from deeper and wider networks.

We combine these findings to achieve a new state-of-the-art
in self-supervised and semi-supervised learning on Ima-
geNet ILSVRC-2012 (Russakovsky et al., 2015). Under the
linear evaluation protocol, SimCLR achieves 76.5% top-1
accuracy, which is a 7% relative improvement over previous
state-of-the-art (Hénaff et al., 2019). When fine-tuned with
only 1% of the ImageNet labels, SimCLR achieves 85.8%
top-5 accuracy, a relative improvement of 10% (Hénaff et al.,
2019). When fine-tuned on other natural image classifica-
tion datasets, SimCLR performs on par with or better than
a strong supervised baseline (Kornblith et al., 2019) on 10
out of 12 datasets.

2. Method
2.1. The Contrastive Learning Framework

Inspired by recent contrastive learning algorithms (see Sec-
tion 7 for an overview), SimCLR learns representations
by maximizing agreement between differently augmented
views of the same data example via a contrastive loss in
the latent space. As illustrated in Figure 2, this framework
comprises the following four major components.

• A stochastic data augmentation module that transforms
any given data example randomly resulting in two cor-
related views of the same example, denoted x̃i and x̃j ,
which we consider as a positive pair. In this work, we
sequentially apply three simple augmentations: random
cropping followed by resize back to the original size, ran-
dom color distortions, and random Gaussian blur. As
shown in Section 3, the combination of random crop and
color distortion is crucial to achieve a good performance.

• A neural network base encoder f(·) that extracts repre-
sentation vectors from augmented data examples. Our
framework allows various choices of the network archi-
tecture without any constraints. We opt for simplicity
and adopt the commonly used ResNet (He et al., 2016)

 �Representation�!

x

x̃i x̃j

hi hj

zi zj

t ⇠ T t
0 ⇠ T

f(·) f(·)

g(·) g(·)

Maximize agreement

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ⇠ T and
t0 ⇠ T ) and applied to each data example to obtain two correlated
views. A base encoder network f(·) and a projection head g(·)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(·) and
use encoder f(·) and representation h for downstream tasks.

to obtain hi = f(x̃i) = ResNet(x̃i) where hi 2 Rd is
the output after the average pooling layer.

• A small neural network projection head g(·) that maps
representations to the space where contrastive loss is
applied. We use a MLP with one hidden layer to obtain
zi = g(hi) = W (2)�(W (1)hi) where � is a ReLU non-
linearity. As shown in section 4, we find it beneficial to
define the contrastive loss on zi’s rather than hi’s.

• A contrastive loss function defined for a contrastive pre-
diction task. Given a set {x̃k} including a positive pair
of examples x̃i and x̃j , the contrastive prediction task
aims to identify x̃j in {x̃k}k 6=i for a given x̃i.

We randomly sample a minibatch of N examples and define
the contrastive prediction task on pairs of augmented exam-
ples derived from the minibatch, resulting in 2N data points.
We do not sample negative examples explicitly. Instead,
given a positive pair, similar to (Chen et al., 2017), we treat
the other 2(N � 1) augmented examples within a minibatch
as negative examples. Let sim(u,v) = u>v/kukkvk de-
note the dot product between `2 normalized u and v (i.e.
cosine similarity). Then the loss function for a positive pair
of examples (i, j) is defined as

`i,j = � log
exp(sim(zi, zj)/⌧)P2N

k=1 [k 6=i] exp(sim(zi, zk)/⌧)
, (1)

where [k 6=i] 2 {0, 1} is an indicator function evaluating to
1 iff k 6= i and ⌧ denotes a temperature parameter. The fi-
nal loss is computed across all positive pairs, both (i, j)
and (j, i), in a mini-batch. This loss has been used in
previous work (Sohn, 2016; Wu et al., 2018; Oord et al.,
2018); for convenience, we term it NT-Xent (the normalized
temperature-scaled cross entropy loss).



Summary: MoCo

´ MoCo (v1, v2): contrastive 
learning using momentum sample 
encoder 

´ Decouples negative sample size 
from minibatch size; allows large 
batch training without TPU 

´ MoCo-v2 combines the key ideas 
from SimCLR, i.e., nonlinear 
projection head, strong data 
augmentation, with momentum 
contrastive learning 

He et al., 2020; Chen et al., 2020 

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

Abstract
Contrastive unsupervised learning has recently shown

encouraging progress, e.g., in Momentum Contrast (MoCo)

and SimCLR. In this note, we verify the effectiveness of two

of SimCLR’s design improvements by implementing them in

the MoCo framework. With simple modifications to MoCo—

namely, using an MLP projection head and more data

augmentation—we establish stronger baselines that outper-

form SimCLR and do not require large training batches. We

hope this will make state-of-the-art unsupervised learning

research more accessible. Code will be made public.

1. Introduction
Recent studies on unsupervised representation learning

from images [16, 13, 8, 17, 1, 9, 15, 6, 12, 2] are converging
on a central concept known as contrastive learning [5]. The
results are promising: e.g., Momentum Contrast (MoCo)
[6] shows that unsupervised pre-training can surpass its
ImageNet-supervised counterpart in multiple detection and
segmentation tasks, and SimCLR [2] further reduces the gap
in linear classifier performance between unsupervised and
supervised pre-training representations.

This note establishes stronger and more feasible base-
lines built in the MoCo framework. We report that two de-
sign improvements used in SimCLR, namely, an MLP pro-
jection head and stronger data augmentation, are orthogo-
nal to the frameworks of MoCo and SimCLR, and when
used with MoCo they lead to better image classification
and object detection transfer learning results. Moreover, the
MoCo framework can process a large set of negative sam-
ples without requiring large training batches (Fig. 1). In
contrast to SimCLR’s large 4k⇠8k batches, which require
TPU support, our “MoCo v2” baselines can run on a typical
8-GPU machine and achieve better results than SimCLR.
We hope these improved baselines will provide a reference
for future research in unsupervised learning.

2. Background
Contrastive learning. Contrastive learning [5] is a frame-
work that learns similar/dissimilar representations from
data that are organized into similar/dissimilar pairs. This
can be formulated as a dictionary look-up problem. An ef-
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Figure 1. A batching perspective of two optimization mechanisms
for contrastive learning. Images are encoded into a representation
space, in which pairwise affinities are computed.

fective contrastive loss function, called InfoNCE [13], is:

Lq,k+,{k�} = � log
exp(q·k+/⌧)

exp(q·k+/⌧) +
X

k�

exp(q·k�/⌧)
. (1)

Here q is a query representation, k+ is a representation of
the positive (similar) key sample, and {k�} are representa-
tions of the negative (dissimilar) key samples. ⌧ is a temper-
ature hyper-parameter. In the instance discrimination pre-
text task [16] (used by MoCo and SimCLR), a query and a
key form a positive pair if they are data-augmented versions
of the same image, and otherwise form a negative pair.

The contrastive loss (1) can be minimized by various
mechanisms that differ in how the keys are maintained [6].
In an end-to-end mechanism (Fig. 1a) [13, 8, 17, 1, 9, 2],
the negative keys are from the same batch and updated end-
to-end by back-propagation. SimCLR [2] is based on this
mechanism and requires a large batch to provide a large set
of negatives. In the MoCo mechanism (Fig. 1b) [6], the neg-
ative keys are maintained in a queue, and only the queries
and positive keys are encoded in each training batch. A mo-
mentum encoder is adopted to improve the representation
consistency between the current and earlier keys. MoCo
decouples the batch size from the number of negatives.
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Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

Abstract
Contrastive unsupervised learning has recently shown

encouraging progress, e.g., in Momentum Contrast (MoCo)

and SimCLR. In this note, we verify the effectiveness of two

of SimCLR’s design improvements by implementing them in

the MoCo framework. With simple modifications to MoCo—

namely, using an MLP projection head and more data

augmentation—we establish stronger baselines that outper-

form SimCLR and do not require large training batches. We

hope this will make state-of-the-art unsupervised learning

research more accessible. Code will be made public.

1. Introduction
Recent studies on unsupervised representation learning

from images [16, 13, 8, 17, 1, 9, 15, 6, 12, 2] are converging
on a central concept known as contrastive learning [5]. The
results are promising: e.g., Momentum Contrast (MoCo)
[6] shows that unsupervised pre-training can surpass its
ImageNet-supervised counterpart in multiple detection and
segmentation tasks, and SimCLR [2] further reduces the gap
in linear classifier performance between unsupervised and
supervised pre-training representations.

This note establishes stronger and more feasible base-
lines built in the MoCo framework. We report that two de-
sign improvements used in SimCLR, namely, an MLP pro-
jection head and stronger data augmentation, are orthogo-
nal to the frameworks of MoCo and SimCLR, and when
used with MoCo they lead to better image classification
and object detection transfer learning results. Moreover, the
MoCo framework can process a large set of negative sam-
ples without requiring large training batches (Fig. 1). In
contrast to SimCLR’s large 4k⇠8k batches, which require
TPU support, our “MoCo v2” baselines can run on a typical
8-GPU machine and achieve better results than SimCLR.
We hope these improved baselines will provide a reference
for future research in unsupervised learning.

2. Background
Contrastive learning. Contrastive learning [5] is a frame-
work that learns similar/dissimilar representations from
data that are organized into similar/dissimilar pairs. This
can be formulated as a dictionary look-up problem. An ef-
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Figure 1. A batching perspective of two optimization mechanisms
for contrastive learning. Images are encoded into a representation
space, in which pairwise affinities are computed.

fective contrastive loss function, called InfoNCE [13], is:

Lq,k+,{k�} = � log
exp(q·k+/⌧)

exp(q·k+/⌧) +
X

k�

exp(q·k�/⌧)
. (1)

Here q is a query representation, k+ is a representation of
the positive (similar) key sample, and {k�} are representa-
tions of the negative (dissimilar) key samples. ⌧ is a temper-
ature hyper-parameter. In the instance discrimination pre-
text task [16] (used by MoCo and SimCLR), a query and a
key form a positive pair if they are data-augmented versions
of the same image, and otherwise form a negative pair.

The contrastive loss (1) can be minimized by various
mechanisms that differ in how the keys are maintained [6].
In an end-to-end mechanism (Fig. 1a) [13, 8, 17, 1, 9, 2],
the negative keys are from the same batch and updated end-
to-end by back-propagation. SimCLR [2] is based on this
mechanism and requires a large batch to provide a large set
of negatives. In the MoCo mechanism (Fig. 1b) [6], the neg-
ative keys are maintained in a queue, and only the queries
and positive keys are encoded in each training batch. A mo-
mentum encoder is adopted to improve the representation
consistency between the current and earlier keys. MoCo
decouples the batch size from the number of negatives.
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Thank you!


