

Attention,

 Transformer, and BERTYuan YAO

HKUST

Summary

- We have shown:
- CNN Architectures: LeNet5, Alexnet, VGG, GoogleNet, Resnet
- Recurrent Neural Networks and LSTM (GRU etc.)
- Today:
- Attention
- Transformer
- BERT
- Reference:
- Feifei Li, Stanford cs231n
- Chris Manning, Stanford cs224n

A Brief History in NLP

- In 2013-2015, LSTMs started achieving state-of-the-art results
- Successful tasks include: handwriting recognition, speech
- recognition, machine translation, parsing, image captioning
- LSTM became the dominant approach
- Now (2019), other approaches (e.g. Transformers) have become more dominant for certain tasks.
- For example in WMT (a MT conference + competition):
- In WMT 2016, the summary report contains "RNN" 44 times
- In WMT 2018, the report contains "RNN" 9 times and "Transformer" 63 times
- Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
- Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf

Neural Machine Translation

Machine Translation using Neural Nełworks

Neural Machine Translation (NMT)

Sequence-†o-sequence is versatile!

- Sequence-to-sequence is useful for more than just MT
- Many NLP tasks can be phrased as sequence-to-sequence:
- Summarization (long text \rightarrow short text)
- Dialogue (previous utterances \rightarrow next utterance)
- Parsing (input text \rightarrow output parse as sequence)
- Code generation (natural language \rightarrow Python code)
many to many

Training a NMT system by BP

Greedy Decoding

- We generate (or "decode") the target sentence by taking argmax on each step of the decoder, called greedy decoding (take most probable word on each step)
- It may not correct once wrong decisions are made

Beam Search Decoding

- Core idea: On each step of decoder, keep track of the \mathbf{k} most probable partial translations (which we call hypotheses)
- k is the beam size (in practice around 5 to 10)
- A hypothesis $(y(1), \ldots, y(\dagger))$ has a score which is its log probability:

$$
\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\log P_{\mathrm{LM}}\left(y_{1}, \ldots, y_{t} \mid x\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)
$$

- Scores are all negative, and higher score is better
- We search for high-scoring hypotheses, tracking top k on each step
- Beam search is not guaranteed to find optimal solution
- But much more efficient than exhaustive search!

Beam search decoding example:

Beam size $=\mathrm{k}=2$. Blue numbers $=\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)$

Sequence-to-sequence: the bottleneck problem

Attention Mechanism

It was firstly invented in computer vision, then to NLP.

Sequence-to-sequence with attention

Attention in Equations

- We have encoder hidden states $h_{1}, \ldots, h_{N} \in \mathbb{R}^{h}$
- On timestep t, we have decoder hidden state $s_{t} \in \mathbb{R}^{h}$
- We get the attention scores e^{t} for this step:

$$
\boldsymbol{e}^{t}=\left[\boldsymbol{s}_{t}^{T} \boldsymbol{h}_{1}, \ldots, \boldsymbol{s}_{t}^{T} \boldsymbol{h}_{N}\right] \in \mathbb{R}^{N}
$$

- We take softmax to get the attention distribution α^{t} for this step (this is a probability distribution and sums to 1)

$$
\alpha^{t}=\operatorname{softmax}\left(\boldsymbol{e}^{t}\right) \in \mathbb{R}^{N}
$$

- We use α^{t} to take a weighted sum of the encoder hidden states to get the attention output

$$
\boldsymbol{a}_{t}=\sum_{i=1}^{N} \alpha_{i}^{t} \boldsymbol{h}_{i} \in \mathbb{R}^{h}
$$

- Finally we concatenate the attention output \boldsymbol{a}_{t} with the decoder hidden state s_{t} and proceed as in the non-attention seq2seq model

$$
\left[\boldsymbol{a}_{t} ; \boldsymbol{s}_{t}\right] \in \mathbb{R}^{2 h}
$$

Motivation of Transformer

- We want parallelization but RNNs are inherently sequential

- Despite LSTMs, RNNs generally need attention mechanism to deal with long range dependencies - path length between states grows with distance otherwise
- But if attention gives us access to any state... maybe we can just use attention and don't need the RNN?
- And then NLP can have deep models ... and solve our vision envy

Transformer

"Attention is all you need"

Transformer (Vaswani et al. 2017)
 "Attention is all you need"

- https://arxiv.org/pdf/1706.03762.pdf
- Non-recurrent sequence-to-sequence model
- A deep model with a sequence of attentionbased transformer blocks
- Depth allows a certain amount of lateral information transfer in understanding sentences, in slightly unclear ways
- Final cost/error function is standard crossentropy error on top of a softmax classifier
- Initially built for NMT:
- Task: machine translation with parallel corpus
- Predict each translated word

Transformer Pytorch Notebook

- Learning about transformers on your own?
- Key recommended resource:
- http://nlp.seas.harvard.edu/2018/04/03/attention.html
- The Annotated Transformer by Sasha Rush, a Jupyter Notebook using PyTorch that explains everything!
- https://jalammar.github.io/illustrated-transformer/
- Illustrated Transformer by Jay Alammar, a Cartoon about Transformer with attention visualization notebook based on Tensor2Tensor.

Encoder-Decoder Blocks

$N=6$ layers

Encoder has two layers

Self-Attention + FeedForward

Attention Illustration

Dot-Product Attention

Dot-Product Self-Attention: Definition

- Inputs: a query q and a set of key-value (k-v) pairs, to an output
- Query, keys, values, and output are all vectors
- Output is weighted sum of values, where
- Weight of each value is computed by an inner product of query and corresponding key
- Queries and keys have same dimensionality d_{k}, value have d_{v}

$$
A(q, K, V)=\sum_{i} \frac{e^{q \cdot k_{i}}}{\sum_{j} e^{q \cdot k_{j}}} v_{i}
$$

Scaled Dot-Product Attention

- Problem: As d_{k} gets large, the variance of $q^{\top} k$ increases
- some values inside the softmax get large
- the softmax gets very peaked
- hence its gradient gets smaller.
- Solution: Scale by length of query/key vectors:

$$
A(q, K, V)=\sum_{i} \frac{e^{\frac{q \cdot k_{i}}{\sqrt{d_{k}}}}}{\sum_{j} e^{\frac{q \cdot k_{j}}{\sqrt{d_{k}}}}} v_{i}
$$

Attention: Multiple Inputs

Matrix input

Scaled dot-product

$={ }^{2}$

Dot-Product Attention: Matrix Form

- When we have multiple queries q, we stack them in a matrix Q :

$$
A(q, K, V)=\sum_{i} \frac{e^{\frac{q \cdot k_{i}}{\sqrt{d_{k}}}}}{\sum_{j} e^{\frac{q \cdot k_{j}}{\sqrt{d_{k}}}}} v_{i}
$$

$$
\longrightarrow \quad A(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V
$$

$$
\left[|Q| \times d_{k}\right] \times\left[d_{k} \times|K|\right] \times\left[|K| \times d_{v}\right]
$$

$$
\begin{array}{ll}
\operatorname{softmax} \\
\text { row-wise }
\end{array} \quad \bar{Z} \quad\left\|\|=\left[|Q| x d_{v}\right]\right.
$$

Multi-head Attention

- Problem with simple self-attention:
- Only one way for words to interact with one-another
- Solution: Multi-head attention
- First map Q, K, V into h=8 many lower dimensional spaces via W matrices
- Then apply attention, then concatenate outputs and pipe through linear layer
- Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions.
$\operatorname{MultiHead}(Q, K, V)=\operatorname{Concat}\left(\right.$ head $_{1}, \ldots$, head $\left._{\mathrm{h}}\right) W^{O}$ where $^{\text {head }}{ }_{i}=\operatorname{Attention}\left(Q W_{i}^{Q}, K W_{i}^{K}, V W_{i}^{V}\right)$

Multihead

h=8 heads

Concatenation

1) Concatenate all the attention heads

2) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN
$=$

Linear

2) Multiply with a weight matrix W° that was trained jointly with the model

X

Multi-head Attention

1) This is our
2) We embed each word*

Thinking
Machines

* In all encoders other than \#0, we don't need embedding.
We start directly with the output of the encoder right below this one

3) Split into 8 heads.

We multiply X or
R with weight matrices
4) Calculate attention using the resulting Q/K/V matrices
5) Concatenate the resulting Z matrices, then multiply with weight matrix W° to produce the output of the layer

...

A Transformer block

- Each block has two "sublayers"
- Multihead attention
- 2-layer feed-forward NNet (with ReLU)
- Each of these two steps also has:
- Residual (short-cut) connection: x+sublayer(x)
- LayerNorm(x+sublayer(x)) normalizes features over inputs to be of mean 0 , variance 1 , and adds two more parameters (Ba-Kiros-Hinton, 2016)

$$
\begin{aligned}
& \tilde{z}_{i}^{l}=f\left(\frac{g^{l}}{\sigma^{l}}\left(z_{i}^{l}-\mu^{l}\right)+b^{l}\right) \\
& \mu^{l}=\frac{1}{B} \sum_{i=1}^{B} z_{i}^{l} \quad \sigma^{l}=\sqrt{\frac{1}{B} \sum_{i=1}^{B}\left(z_{i}^{l}-\mu^{l}\right)^{2}} B \text { is the number of inputs }
\end{aligned}
$$

Residue (Shortcut)

Encoder Input

- Actual word representations are word pieces: byte pair encoding
- Start with a vocabulary of characters
- Most frequent ngram pairs \mapsto a new ngram
- Example: "es, est" 9 times, "lo" 7 times

Also added is a positional encoding so same words at different locations have different overall representations:

$$
\begin{aligned}
P E_{(p o s, 2 i)} & =\sin \left(p o s / 10000^{2 i / d_{\mathrm{model}}}\right) \\
P E_{(p o s, 2 i+1)} & =\cos \left(p o s / 10000^{2 i / d_{\mathrm{model}}}\right)
\end{aligned}
$$

where pos is the position and i is the dimension. Or learned.

Vocabulary

I, o, w, e, r, n, w, s, t, i, d, es, est, lo

Sin/Cos Position Encoding

Figure. A real example of positional encoding for 20 words (rows) with an embedding size of 512 (columns). Each row corresponds the a positional encoding of a vector. So the first row would be the vector we'd add to the embedding of the first word in an input sequence. Each row contains 512 values - each with a value between 1 and -1 . We've color-coded them so the pattern is visible.

Transformer Encoder

- Blocks are repeated $\mathrm{N}=6$ or more times

Transformer Decoder

- 2 sublayer changes in decoder
- Masked decoder self-attention on previously generated outputs
- Encoder-Decoder Attention, where queries come from previous decoder layer and keys and values come from output of encoder
- Blocks repeated $\mathrm{N}=6$ times also

Encoder-Decoder

Illustration of Encoder-Decoder

Illustration of Encoder-Decoder

Decoding time step: 1 (2) 3456
OUTPUT

Attention Visualization

Head 2 (yellow) only

8 heads mixture

Summary: The Transformer EncoderDecoder [Vaswani et al. 2017]

- Looking back at the whole model

[input sequence]
[output sequence]

Summary: The Transformer EncoderDecoder [Vaswani et al. 2017]

- Looking back at the whole model

[input sequence]
[output sequence]

Summary: The Transformer EncoderDecoder [Vaswani et al. 2017]

- Looking back at the whole model

[input sequence]
[output sequence]

Empirical advantages of Transformer vs. LSTM

- 1. Self-attention == no locality bias
- Long-distance context has "equal opportunity"
- 2. Single multiplication per layer == efficiency on TPU

Transformer

X_0_0	X_0_1	X_0_2	X_0_3
X_1_0	X_1_1	X_1_2	X_1_3

Bi-Directionality

Uni-Direction LSTM

- Semi-Supervised Sequence Learning, Google, 2015

Train LSTM
Language Model

Fine-tune on Classification Task

Bi-Direction LSTM: ELMo -- Embeddings from Language Models

- Peters et al. (2018) Deep Contextual Word Embeddings, NAACL 2018. https://arxiv.org/abs/1802.05365
- Learn a deep Bi-NLM and use all its layers in prediction

Train Separate Left-to-Right and Right-to-Left LMs

Apply as "Pre-trained Embeddings"

Pretraining for three types of architectures in Transformers

The transformer architecture influences the type of pretraining:

- Decoders:
- Unidirectional Language models! What we've seen so far.
- Nice to generate from; can'† condition on future words
- Encoders:
- Gets bidirectional context - can condition on future!
- Wait, how do we pretrain them?
- Encoder-Decoders:
- Good parts of decoders and encoders?
- What's the best way to pretrain them?

GPT (Generative Pre-Training): unidirectional transformer-decoder

- Improving Language Understanding by Generative Pre-Training, OpenAI, 2018
- 2018's GPT was a big success in pretraining a decoder!
- Transformer decoder with 12 layers.
- 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.
- Byte-pair encoding with 40,000 merges
- Trained on BooksCorpus: over 7000 unique books.
- Contains long spans of contiguous text, for learning long-distance dependencies.
- Language models! What we've seen so far.
- Nice to generate from; can't condition on future words

How about bi-directional transformers? - Yes, BERT!

BERT: Devlin, Chang, Lee, Toutanova (2018)

- BERT (Bidirectional Encoder Representations from Transformers):
- Pre-training of Deep Bidirectional Transformers for Language Understanding, which is then fine-tuned for a task
- Want: truly bidirectional information flow without leakage in a deep model

Encoders

- Gets bidirectional context - can condition on future!
- Wait, how do we pretrain them?

Masked Language Model

- Problem: How the words see each other in bi-directions?
- Solution: Mask out $k \%$ of the input words, and then predict the masked words
- We always use $k=15 \%$

- Too little masking: Too expensive to train
- Too much masking: Not enough context

Masked LM

- Problem: Masked token never seen at fine-tuning
- Solution: 15% of the words to predict, but don't replace with [MASK] 100% of the time. Instead:
- 80% of the time, replace with [MASK]
- went to the store \rightarrow went to the [MASK]
- 10% of the time, replace random word
- went to the store \rightarrow went to the running
- 10% of the time, keep same
- went to the store \rightarrow went to the store

Next Sentence Prediction

- To learn relationships between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence

```
Sentence A = The man went to the store.
Sentence B= He bought a gallon of milk.
Label = IsNextSentence
```

Sentence $\mathbf{A}=$ The man went to the store.
Sentence B = Penguins are flightless.
Label $=$ NotNextSentence

BERT sentence pair encoding

- Token embeddings are word pieces (30k)
- Learned segmented embedding represents each sentence
- Positional embedding is as for other Transformer architectures

Training

- 2 model released:
- BERT-Base: 12-layer, 768-hidden, 12-head, 110 million params.
- BERT-Large: 24-layer, 1024-hidden, 16-head, 340 million params.
- Training Data:
- BookCorpus (800M words)
- English Wikipedia (2.5B words)
- Batch Size: 131,072 words
- (1024 sequences * 128 length or 256 sequences * 512 length)
- Training Time: 1M steps (~40 epochs)
- Optimizer: AdamW, 1e-4 learning rate, linear decay
- Trained on 4×4 or 8×8 TPU slice for 4 days
- Pretraining is expensive and impractical on a single GPU; Finetuning is practical and common on a single GPU

BERT model fine tuning

- Simply learn a classifier built on the top layer for each task that you fine tune for

Pre-training

Fine-Tuning

BERT model fine tuning

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

Single Sentence
(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Rapid Progress for Pre-training (GLUE Benchmark)

Over $3 x$ reduction in error in 2 years, "superhuman" performance

But let's change the x-axis to computational cost...

BERT-Large uses 60x more compute than ELMo

But let's change the x-axis to computational cost...

RoBERTa uses $16 x$ more compute than BERT-Large

More compute, more better?

ALBERT uses 10x more compute than RoBERTa

ELECTRA: "Efficiently Learning an Encoder to Classify Token Replacements Accurately"

- Clark, Luong, Le, and Manning, ICLR 2020. https://openreview.net/pdf?id=r1xMH1BtvB
- Bidirectional model but learn from all tokens

Generating Replacements

Results: GLUE Score vs Compute

Limitations of Pretrained Encoders

- Those results looked great! Why not used pretrained encoders for everything?
- If your task involves generating sequences, consider using a pretrained decoder; BERT and other pretrained encoders don't naturally lead to nice autoregressive (1-word-at-a-time) generation methods.

Pretraining encoders-decoders: T5

- Pretraining encoder-decoders: what pretraining objective to use?
- What Raffel et al., 2018 found to work best was span corruption: T5.
- Replace different-length spans from the input with unique placeholders; decode out the spans that were removed!
- A fascinating property of T5: it can be finetuned to answer a wide range of questions, retrieving knowledge from its parameters.

Original text
Thank you for inviting, me to your party last week.

GPT-3, In-context learning, and very large models

- So far, we've interacted with pretrained models in two ways:
- Sample from the distributions they define (maybe providing a prompt)
- Fine-tune them on a task we care about, and take their predictions.
- Very large language models seem to perform some kind of learning without gradient steps simply from examples you provide within their contexts.
- GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters.
- GPT-3 has 175 billion parameters.

Transformers for Vision

Vision Transformer (VIT)

Transformer Encoder

Data-efficient image transformer (DeiT)

- Deit introduce ViT a distillation mode with a teacher network, and a richer data augmentation.

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

(d) Architecture

Thank you!

