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Summary

´ We had covered so far
´ Linear models (linear and logistic regression) – always a good start, simple yet powerful

´ Model Assessment and Selection – basics for all methods

´ Trees, Random Forests, and Boosting – good for high dim mixed-type heterogeneous 
features 

´ Support Vector Machines – good for small amount of data but high dim geometric 
features

´ Next, neural networks for unstructured data (image, language etc.):
´ Convolutional Neural Networks – image data

´ Generative models and GANs – new unsupervised learning for image, etc.

´ Recurrent Neural Networks, LSTM – sequence data

´ Transformer, BERT – machine translation etc.

´ Reinforcement Learning – Markov decision process, playing games, etc.



Kaggle survey: Top ML Methods

Academic Industry

https://www.kaggle.com/surveys/2017



What type of data is used at work?
https://www.kaggle.com/surveys/2017

Academic Industry



Some reference books on Deep Learning

´ Deep Learning with Python, Manning Publications 2017
´ by François Chollet

´ https://www.manning.com/books/deep-learning-with-
python?a_aid=keras&a_bid=76564dff

´ Deep Learning, MIT Press 2016
´ By Ian Goodfellow, Yoshua Bengio, and Aaron Courville,

´ http://www.deeplearningbook.org/

´ Many other public resources



A Brief History of Neural Networks



Perceptron: single-layer

Background Info

Perceptron, the basic block

Invented by Frank Rosenblatt (1957)

z = −→w · −→x + b
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“The theory reported here clearly demonstrates the feasibility and fruitfulness of a 
quantitative statistical approach to the organization of cognitive systems. By the study of 
systems such as the perceptron, it is hoped that those fundamental laws of organization 
which are common to all information handling systems, machines and men included, may 
eventually be understood.”  -- Frank Rosenblatt 

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. In, 
Psychological Review, Vol. 65, No. 6, pp. 386-408, November, 1958.

Cybernetics/neural networks

Norbert Wiener Warren McCulloch & Walter Pitts Frank Rosenblatt



The Perceptron Algorithm

The Perceptron Algorithm is a Stochastic Gradient Descent method 
(Robbins–Monro 1950; Kiefer-Wolfowitz 1951) :

Project 2 7

http://dx.doi.org/10.1016/j.acha.2015.11.005

In project 1, some explorations can be found here for your reference:

1) Jianhui ZHANG, Hongming ZHANG,Weizhi ZHU, and Min FAN: https://deeplearning-math.
github.io/slides/Project1_ZhangZhangZhuFan.pdf,

2) Wei HU, Yuqi ZHAO, Rougang YE, and Ruijian HAN: https://deeplearning-math.

github.io/slides/Project1_HuZhaoYeHan.pdf.

Moreover, the following report by Shun ZHANG from Fudan University presents a comparison
with Neural Style features:

3) https://www.dropbox.com/s/ccver43xxvo14is/ZHANG.Shun_essay.pdf?dl=0.

Appendix

`(w) = �
X

i2Mw

yi hw,xii , Mw = {i : yi hxi, wi < 0, yi 2 {�1, 1}}.

wt+1 = wt � ⌘tri`(w)

=

⇢
wt � ⌘tyixi, if yiwT

t xi < 0,
wt, otherwise.

ti = yi

Max-Margin:

min kwk2

s.t. yix
T
i w � 1, 8i

f(x) = W2�(W1x)

where �(u) = max(0, u) is ReLU, W1 2 Rd⇥q, and W2 2 Rq⇥1

Margin

� := min
i

yif(xi)

Normalized Margin

�n :=
�

Q2
i=1 kWik

Perceptron Algorithm

I Define misclassification margin error:

`(w) = �
X

i2Mw

yi hw,xii , Mw = {i : yi hxi, wi < 0, yi 2 {�1, 1}}

I The perceptron algorithm:

wt+1 = wt � ⌘tri`(wt)

=

⇢
wt � ⌘tyixi, if yiwT

t xi < 0,
wt, otherwise .
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Separable Data with Margin: Stopping of 
Perceptron after Finite Steps

The Perceptron Algorithm

When talking about the functional margin, we are referring to the functional margin of
the entire dataset, defined as the minimum of all functional margins:

� =min
i

tiwTxi . (9)

With these definitions in place, we can now continue to prove the convergence theorem.
The perceptron convergence theoremwas proved by Block (1962) andNoviko↵ (1962).

The following version is based on that in Cristianini and Shawe-Taylor (2000).

Theorem 1 (Block, Noviko↵). Let the training set S = {(x1, t1), . . . , (xn, tn)} be contained in
a sphere of radius R about the origin. Assume the dataset to be linearly separable, and let
wopt , kwoptk = 1, define the hyperplane separating the samples, having functional margin
� > 0. We initialise the normal vector asw0 = 0. The number of updates, k, of the perceptron
algorithms is then bounded by

k 
 
2R
�

!2
. (10)

Proof. Though the proof can be done using the augmented normal vector and samples
defined in the beginning, the notation will be a lot easier if we introduce a di↵erent
augmentation: ŵ = (wT, b/R)T = (w1, . . . ,wD,b/R)T and x̂ = (xT,R)T = (x1, . . . ,xD,R)T.
We first derive an upper bound on how fast the normal vector grows. As the hyper-

plane is unchanged if we multiply ŵ by a constant, we can set ⌘ = 1 without loss of
generality. Let ŵk+1 be the updated (augmented) normal vector after the kth error has
been observed.

kŵk+1k2 = (ŵk + ti x̂i )T(ŵk + ti x̂i ) (11)

= ŵT
k ŵk + x̂Ti x̂i +2tiŵT

k x̂i (12)

= kŵkk2 + kx̂ik2 + 2tiŵT
k x̂i . (13)

Since an update was triggered, we know that tiŵT
k x̂i  0, thus

kŵkk2 + kx̂ik2 + 2tiŵT
k x̂i  kŵkk2 + kx̂ik2 (14)

= kŵkk2 + (kxik2 +R2) (15)

 kŵkk2 + 2R2 . (16)

This implies that kŵkk2  2kR2, thus

kŵk+1k2  2(k +1)R2 . (17)

We then proceed to show how the inner product between an update of the normal
vector and ŵopt increase with each update:

ŵT
optŵk+1 = ŵT

optŵk + tiŵT
optx̂i (18)

� ŵT
optŵk +� (19)

� (k +1)� , (20)

since ŵT
optŵk � k� . We therefore have

k2�2  (ŵT
optŵk)2  kŵoptk2kŵkk2  2kR2kŵoptk2 , (21)

where we have made use of the Cauchy-Schwarz inequality. As k2�2 grows faster than
2kR2, Eq. (21) can hold if and only if

k  2kŵoptk2
R2

�2 . (22)
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optŵk +� (19)

� (k +1)� , (20)

since ŵT
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The Perceptron Algorithm

Figure 1 A dataset consisting of two classes separated by a hyperplane wTx + b = 0. The func-
tional margin � is the shortest distance from the hyperplane to any of the samples. The
distance from the hyperplane to the origin is b.

steps such that it, on average, moves closer to the minimum of Eq. (3). More formally,
we obtain the normal vector of iteration k +1 as follows:

wk+1 =wk +�w. (4)

The minimisation scheme we will use is known as stochastic gradient descent (SGD)
and updates the normal vector each time it encounters a misclassified point. In SGD
�w = �⌘rE(w), where ⌘ is the so-called learning rate parameter. Thus,

wk+1 =wk � ⌘rE(w) (5)
=wk + ⌘tixi . (6)

To update the normal vector, all we have to do is to add (or subtract) one of the mis-
classified samples.
This concludes the perceptron learning algorithm. To find a hyperplane separating

the classes of the training set, we continuously apply Eq. (6) until no misclassified
points are left. Note, however, that each time we update the normal vector, some of the
previously correctly classified samples may become misclassified, so the perceptron
learning algorithm (Eq. (6)) is not guaranteed to reduce the overall error with each
update. The perceptron convergence theorem, however, states that if it is possible to
separate the two classes of the dataset with a hyperplane, then the perceptron learning
algorithm is guaranteed to find it in a finite number of iterations.

The perceptron convergence theorem

To prove the perceptron convergence theorem, we need to introduce some definitions.
Fig. 1 illustrates the situation of a hyperplane separating a dataset consisting of two
classes. The first definition we will need is the concept of a containing sphere centred
at the origin. This sphere will have a radius R, such that

R =max
i
kxik . (7)

The second definition we will need is that of the functional margin. This is simply the
distance from the hyperplane to a sample xi ,

�i = tiwTxi . (8)

2
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Proof. 

Proof of Perceptron Convergence Theorem

I For convenience, denote
– ŵ =

�
wT

, b/R
�T

= (w1, . . . , wD, b/R)T

– x̂ =
�
xT

, R
�T

= (x1, . . . , xD, R)T

I The perceptron algorithm:

ŵt+1 =

⇢
ŵt � ⌘tyixi, if yiŵT

t x̂i < 0,
ŵt, otherwise .

where we set ⌘t = 1 as the hyperplane is unchanged if we multiply
the normal vector ŵ by a constant.

Perceptron Convergence Theorem Proof 4



Proof (continued, growth of |wk|)
Proof of Perceptron Convergence Theorem

I We first derive an upper bound on how fast kŵk2 grows.

kŵk+1k2 = (ŵk + yix̂i)
> (ŵk + yix̂i)

= ŵ>
k ŵk + x̂>

i x̂i + 2yiŵ
>
k x̂i

= kŵkk2 + kx̂ik2 + 2yiŵ
>
k x̂i

 kŵkk2 + kx̂ik2 , by yiŵ
>
k x̂i < 0,

= kŵkk2 +
⇣
kxik2 +R

2
⌘

 kŵkk2 + 2R2
, by kxik2  R

2

which implies kŵkk2  2kR2.

Perceptron Convergence Theorem Proof 5



Proof (lower bound, projection on wopt)
Proof of Perceptron Convergence Theorem

I We then proceed to show how the inner product between an update
of the normal vector and ŵopt increases with each update

ŵT
optŵk+1 = ŵT

optŵk + yiŵ
T
optx̂i

� ŵ>
optŵk + �, by yiŵ

>
k x̂i > �

� (k + 1)�

i.e. ŵT
optŵk � k�.

I Then by the Cauchy-Schwartz inequality

k
2
�
2 

�
ŵ>

optŵk

�2  kŵoptk2 kŵkk2  2kR2 kŵoptk2

) k  2 kŵoptk2
R

2

�2
(1)

Perceptron Convergence Theorem Proof 6



Proof (continued)

Proof of Perceptron Convergence Theorem

I As b < R, we can rewrite the norm of the normal vector:

kŵoptk2 = kwoptk2 +
b
2

R2
 kwoptk2 + 1 = 2

I Therefore, the number of mistake updates can be bounded by

k  4
R

2

�2
=

✓
2R

�

◆2

.

This completes the proof.

Perceptron Convergence Theorem Proof 7



Locality or Sparsity of Computation

Why are compositional 
functions important?

Which one of these reasons: 
Physics? 

Neuroscience? <=== 
Evolution?

What is special about 
locality of computation?


Locality in “space”? 

Locality in “time”?

Locality of Computation

Locality or Sparsity is important:
Locality in time?
Locality in space? 

Minsky and Papert, 1969
Perceptron can’t do XOR classification
Perceptron needs infinite global 

information to compute connectivity

ᐟᕪᗑᕶጱᒫӞེ٧

Marvin Minsky
(1927-2016)

Seymour Papert
(1928-)

1969ଙڊᇇ̽Perceptrons̾Ӟԡ҅ᦊԅՐᶌ
ੴ᮱ᬳളጱᐟᕪᗑᕶ෫ဩํපᦒᕞ
զ݊உग़ᤩݸጱᘏժզᦝփᦝጱᥡᅩ



Locality or Sparsity is a fundamental 
limitation

´ Minsky-Papert model admits infinitely many neurons (wide network) in parallel 
processing, yet only sparse or local inputs. Note that it is not a Turing model.

Outline Applications Introduction Di↵erential Inclusions Statistical Consistency Summary

Appendix: Minsky-Papert’s Perceptrons

Definition (Minsky-Papert’1969)

The decision function that f (X ) 2 {1,�1} for X ✓ Rp has order k, if it can be

represented by a superposition of functions whose supports are at most k, i.e.

there exists a (possibly of infinite members) family of {�↵(X ) : supp(�↵)  k}
such that

f (X ) =
X

↵

�↵(X )

Yuan Yao Boosting with Structural Sparsity



Examples of Finite Orders

Outline Applications Introduction Di↵erential Inclusions Statistical Consistency Summary

Appendix: Minsky-Papert’s Perceptrons

• f (X ) = [X is nonempty] has order 1, as �a(X ) = [a 2 X ] and

f (X ) =
P

a
�a(X ).

• f (X ) = [X is convex] has order 3, as

f (X ) = �
X

a,b2X

[midpoint ([a, b]) not in X ]

• The only topologically invariant predicates of finite order are functions of

the Euler number E(X ), which for simplicial complex X ✓ R2 is defined as

E(X ) := #(faces (X ))�#(edges (X )) + #(vertices (X ))

= �0 � �1

Yuan Yao Boosting with Structural Sparsity



Connectivity is of infinite order

´ Which one of these two figures is connected? 

Outline Applications Introduction Di↵erential Inclusions Statistical Consistency Summary

Appendix: Minsky-Papert’s Perceptrons

Theorem (Minsky-Papert’1969)

The decision function that f (X ) = [X is connected] for X ✓ Rp is not of any

finite order, i.e. for any k < 1, there does not exist a (possibly of infinite

members) family of {�↵(X ) : supp(�↵)  k} whose supports are at most k,

such that

f (X ) =

"
X

↵

�↵(X ) � 0

#
(21)

Yuan Yao Boosting with Structural Sparsity



Convolutional Neural Networks: local
receptive field and shift invariance

Background Info

Convolutional Neural Network (CNN)

Can be traced to Neocognitron of Kunihiko Fukushima
(1979)
Yann LeCun combined convolutional neural networks with
back propagation (1989)
Imposes shift invariance and locality on the weights
Forward pass remains similar
Backpropagation slightly changes – need to sum over the
gradients from all spatial positions

Source: [LeCun et al., 1998]
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Biol. Cybernetics 36, 193 202 (1980) Biological 
Cybernetics 
 9 by Springer-Verlag 1980 

Neocognitron: A Self-organizing Neural Network Model 
for a Mechanism of Pattern Recognition 
Unaffected by Shift in Position 

Kunihiko Fukushima 
NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan 

Abstract. A neural network model for a mechanism of 
visual pattern recognition is proposed in this paper. 
The network is self-organized by "learning without a 
teacher", and acquires an ability to recognize stimulus 
patterns based on the geometrical similarity (Gestalt) 
of their shapes without affected by their positions. This 
network is given a nickname "neocognitron". After 
completion of self-organization, the network has a 
structure similar to the hierarchy model of the visual 
nervous system proposed by Hubel and Wiesel. The 
network consists of an input layer (photoreceptor 
array) followed by a cascade connection of a number of 
modular structures, each of which is composed of two 
layers of cells connected in a cascade. The first layer of 
each module consists of "S-cells', which show charac- 
teristics similar to simple cells or lower order hyper- 
complex cells, and the second layer consists of 
"C-cells" similar to complex cells or higher order 
hypercomplex cells. The afferent synapses to each 
S-cell have plasticity and are modifiable. The network 
has an ability of unsupervised learning: We do not 
need any "teacher" during the process of self- 
organization, and it is only needed to present a set of 
stimulus patterns repeatedly to the input layer of the 
network. The network has been simulated on a digital 
computer. After repetitive presentation of a set of 
stimulus patterns, each stimulus pattern has become to 
elicit an output only from one of the C-cells of the last 
layer, and conversely, this C-cell has become selectively 
responsive only to that stimulus pattern. That is, none 
of the C-cells of the last layer responds to more than 
one stimulus pattern. The response of the C-cells of the 
last layer is not affected by the pattern's position at all. 
Neither is it affected by a small change in shape nor in 
size of the stimulus pattern. 

1. Introduction 

The mechanism of pattern recognition in the brain is 
little known, and it seems to be almost impossible to 

reveal it only by conventional physiological experi- 
ments. So, we take a slightly different approach to this 
problem. If we could make a neural network model 
which has the same capability for pattern recognition 
as a human being, it would give us a powerful clue to 
the understanding of the neural mechanism in the 
brain. In this paper, we discuss how to synthesize a 
neural network model in order to endow it an ability of 
pattern recognition like a human being. 

Several models were proposed with this intention 
(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971; 
Fukushima, 1975). The response of most of these 
models, however, was severely affected by the shift in 
position and/or by the distortion in shape of the input 
patterns. Hence, their ability for pattern recognition 
was not so high. 

In this paper, we propose an improved neural 
network model. The structure of this network has been 
suggested by that of the visual nervous system of the 
vertebrate. This network is self-organized by "learning 
without a teacher", and acquires an ability to recognize 
stimulus patterns based on the geometrical similarity 
(Gestalt) of their shapes without affected by their 
position nor by small distortion of their shapes. 

This network is given a nickname "neocognitron"l, 
because it is a further extention of the "cognitron", 
which also is a self-organizing multilayered neural 
network model proposed by the author before 
(Fukushima, 1975). Incidentally, the conventional 
cognitron also had an ability to recognize patterns, but 
its response was dependent upon the position of the 
stimulus patterns. That is, the same patterns which 
were presented at different positions were taken as 
different patterns by the conventional cognitron. In the 
neocognitron proposed here, however, the response of 
the network is little affected by the position of the 
stimulus patterns. 

1 Preliminary report of the neocognitron already appeared else- 
where (Fukushima, 1979a, b) 

0340-1200/80/0036/0193/$02.00 
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Neither is it affected by a small change in shape nor in 
size of the stimulus pattern. 

1. Introduction 

The mechanism of pattern recognition in the brain is 
little known, and it seems to be almost impossible to 

reveal it only by conventional physiological experi- 
ments. So, we take a slightly different approach to this 
problem. If we could make a neural network model 
which has the same capability for pattern recognition 
as a human being, it would give us a powerful clue to 
the understanding of the neural mechanism in the 
brain. In this paper, we discuss how to synthesize a 
neural network model in order to endow it an ability of 
pattern recognition like a human being. 

Several models were proposed with this intention 
(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971; 
Fukushima, 1975). The response of most of these 
models, however, was severely affected by the shift in 
position and/or by the distortion in shape of the input 
patterns. Hence, their ability for pattern recognition 
was not so high. 

In this paper, we propose an improved neural 
network model. The structure of this network has been 
suggested by that of the visual nervous system of the 
vertebrate. This network is self-organized by "learning 
without a teacher", and acquires an ability to recognize 
stimulus patterns based on the geometrical similarity 
(Gestalt) of their shapes without affected by their 
position nor by small distortion of their shapes. 

This network is given a nickname "neocognitron"l, 
because it is a further extention of the "cognitron", 
which also is a self-organizing multilayered neural 
network model proposed by the author before 
(Fukushima, 1975). Incidentally, the conventional 
cognitron also had an ability to recognize patterns, but 
its response was dependent upon the position of the 
stimulus patterns. That is, the same patterns which 
were presented at different positions were taken as 
different patterns by the conventional cognitron. In the 
neocognitron proposed here, however, the response of 
the network is little affected by the position of the 
stimulus patterns. 

1 Preliminary report of the neocognitron already appeared else- 
where (Fukushima, 1979a, b) 
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron 

shifted in parallel from cell to cell. Hence, all the cells in 
a single cell-plane have receptive fields of the same 
function, but at different positions. 

We will use notations Us~(k~,n ) to represent the 
output of an S-cell in the kr th  S-plane in the l-th 
module, and Ucl(k~, n) to represent the output of a C-cell 
in the kr th  C-plane in that module, where n is the two- 
dimensional co-ordinates representing the position of 
these cell's receptive fields in the input layer. 

Figure 2 is a schematic diagram illustrating the 
interconnections between layers. Each tetragon drawn 
with heavy lines represents an S-plane or a C-plane, 
and each vertical tetragon drawn with thin lines, in 
which S-planes or C-planes are enclosed, represents an 
S-layer or a C-layer. 

In Fig. 2, a cell of each layer receives afferent 
connections from the cells within the area enclosed by 
the elipse in its preceding layer. To be exact, as for the 
S-cells, the elipses in Fig. 2 does not show the connect- 
ing area but the connectable area to the S-cells. That is, 
all the interconnections coming from the elipses are 
not always formed, because the synaptic connections 
incoming to the S-cells have plasticity. 

In Fig. 2, for the sake of simplicity of the figure, 
only one cell is shown in each cell-plane. In fact, all the 
cells in a cell-plane have input synapses of the same 
spatial distribution as shown in Fig. 3, and only the 
positions of the presynaptic cells are shifted in parallel 
from cell to cell. 

R3 ~I 

modifioble synapses 

) unmodifiable synopses 

Since the cells in the network are interconnected in 
a cascade as shown in Fig. 2, the deeper the layer is, the 
larger becomes the receptive field of each cell of that 
layer. The density of the cells in each cell-plane is so 
determined as to decrease in accordance with the 
increase of the size of the receptive fields. Hence, the 
total number of the cells in each cell-plane decreases 
with the depth of the cell-plane in the network. In the 
last module, the receptive field of each C-cell becomes 
so large as to cover the whole area of input layer U0, 
and each C-plane is so determined as to have only one 
C-cell. 

The S-cells and C-cells are excitatory cells. That is, 
all the efferent synapses from these cells are excitatory. 
Although it is not shown in Fig. 2, we also have 

Fig. 3. Illustration showing the input interconnections to the cells 
within a single cell-plane 

Fig. 2. Schematic diagram illustrating the 
interconnections between layers in the 
neocognitron 



Multilayer Perceptrons (MLP) and 
Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)
Learning representations by back-propagating 

errors, Nature, 323(9): 533-536

BP algorithms as stochastic gradient descent 
algorithms (Robbins–Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

MLP classifies XOR, but the global hurdle on 
topology (connectivity) computation still exists

Background Info

Multi-layer perceptron

17 / 50



BP Algorithm: Forward Pass
Background Info

Forward pass

Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]’s
Nonlinearities: sigmoid, hyperbolic tangent, (recently)
ReLU.

Algorithm 1 Forward pass
Input: x0
Output: xL

1: for ℓ = 1 to L do
2: xℓ = fℓ(Wℓxℓ−1 + bℓ)
3: end for

18 / 50

Background Info

Multi-layer perceptron

17 / 50



BP algorithm = Gradient Descent Method
Background Info

Training neural networks

Training examples {xi
0}n

i=1 and labels {yi}n
i=1

Output of the network {xi
L}m

i=1
Objective

J({Wl}, {bl}) = 1
n

n∑

i=1

1
2∥y

i − xi
L∥22 (1)

Gradient descent

Wl = Wl − η
∂J

∂Wl

bl = bl − η
∂J

∂bl

: In practice: use Stochastic Gradient Descent (SGD)

19 / 50

Other losses include cross-entropy, logistic loss, exponential loss, etc.
Background Info

Multi-layer perceptron

17 / 50



Derivation of BP: Lagrangian Multiplier
LeCun et al. 1988

Background Info

back-propagation – derivation
derivation from LeCun et al. 1988

Given n training examples (Ii, yi) ≡ (input,target) and L layers
Constrained optimization

min
W,x

∑n
i=1 ∥xi(L)− yi∥2

subject to xi(ℓ) = fℓ

[
Wℓxi (ℓ− 1)

]
,

i = 1, . . . , n, ℓ = 1, . . . , L, xi(0) = Ii

Lagrangian formulation (Unconstrained)

min
W,x,B

L(W, x, B)

L(W, x, B) = ∑n
i=1

{

∥xi(L)− yi∥22 +

∑L
ℓ=1 Bi(ℓ)T

(
xi(ℓ)− fℓ

[
Wℓxi (ℓ− 1)

])}

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf 20 / 50http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf



Background Info

back-propagation – derivation
∂L
∂B

Forward pass

xi(ℓ) = fℓ

[
Wℓxi (ℓ− 1)
︸ ︷︷ ︸

Ai(ℓ)

]
ℓ = 1, . . . , L, i = 1, . . . , n

∂L
∂x , zℓ = [∇fℓ]B(ℓ)

Backward (adjoint) pass

z(L) = 2∇fL

[
Ai(L)

]
(yi − xi(L))

zi(ℓ) = ∇fℓ

[
Ai(ℓ)

]
W T

ℓ+1zi(ℓ + 1) ℓ = 0, . . . , L− 1

W ←W + λ ∂L
∂W

Weight update

Wℓ ←Wℓ + λ
∑n

i=1 zi(ℓ)xT
i (ℓ− 1) 21 / 50



Long-Short-Term-Memory (LSTM, 1997)

´ Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long short-term 
memory". Neural Computation. 9 (8): 1735–1780. 
(https://www.bioinf.jku.at/publications/older/2604.pdf)

´ BP can not train deep networks due to gradient vanishing problem etc.

´ Introduction of short path to train deep networks without vanishing 
gradient problem.

´ This idea will return to Convolutional Networks as ResNet in 2015.
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Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

You can think of the LSTM equations visually like this:

Compute the 
forget gate

Forget some 
cell content

Compute the 
input gate

Compute the 
new cell content

Compute the 
output gate

Write some new cell content

Output some cell content 
to the hidden state

25



Decision Trees and Boosting

´ Breiman, Friedman, Olshen, Stone, (1983): CART

´ ``The Boosting problem‘’ (M. Kearns & L. Valiant): 
Can a set of weak learners create a single strong 
learner? (三个臭皮匠顶个诸葛亮？)

´ Breiman (1996): Bagging

´ Freund, Schapire (1997): AdaBoost

´ Breiman (2001): Random Forests



Support Vector Machine (Max-Margin 
Classifier)
418 12. Flexible Discriminants
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FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/∥β∥. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗j are on the wrong side of their margin by
an amount ξ∗j = Mξj; points on the correct side have ξ∗j = 0. The margin is
maximized subject to a total budget

∑

ξi ≤ constant. Hence
∑

ξ∗j is the total
distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN ), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xTβ + β0 = 0}, (12.1)

where β is a unit vector: ∥β∥ = 1. A classification rule induced by f(x) is

G(x) = sign[xTβ + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xTβ+β0 = 0. Since the classes are separable, we can find a function
f(x) = xTβ + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,∥β∥=1

M

subject to yi(x
T
i β + β0) ≥M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

∥β∥

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

Appendix: Primal-Dual support vector classifiers

Appendix: Equivalent reformulation of
Hard Margin

maximize�0,�1,...,�pM

subject to
pX

j=1

�2
j = 1,

and yi(�0 + �1xi1 + ... + �pxip) � M for all i

,

minimize�0,�1,...,�pk�k2 :=
X

j

�2
j

subject to yi(�0 + �1xi1 + ... + �pxip) � 1 for all i ,

using M = 1/k�k.
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Vladmir Vapnik, 1994

Convex optimization + Reproducing Kernel Hilbert Spaces (Grace Wahba etc.)



MNIST Challenge Test Error: SVM vs. CNN
LeCun et al. 1998
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Linear
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Pairwise

Simple SVM performs 
as well as Multilayer 
Convolutional Neural 
Networks which need 
careful tuning (LeNets)

Second dark era for NN: 
2000s



LeNet

´ Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied 
to document recognition. Proceedings of the IEEE, november 1998.



Fully Connected Layer

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201727

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10



Convolution 
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)



Convolution Layer: a first (blue) filter
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28



Convolution Layer: a second (green) 
filter

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201733

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter



Convolution Layer

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201734

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!



A Closer Look at Convolution: stride=1
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201745

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:



A Closer Look at Convolution: stride=2
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:
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N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\



A Closer Look at Convolution: Padding
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
       F = 5 => zero pad with 2
       F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0



ConvNet:
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Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

Stride = 1
Padding = 0



Formula: NewImageSize = 
floor((ImageSize – Filter + 2*Padding)/Stride + 1)

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201761



ReLU

Background Info

AlexNet (2012)
ReLU

Non-saturating function and therefore faster convergence
when compared to other nonlinearities
Problem of dying neurons

Source: https://ml4a.github.io/ml4a/neural_networks/

24 / 50



Max Pooling
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING



2000-2010: The Era of SVM, Boosting, … 
as nights of Neural Networks



Restricted Boltzman Machine
(Deep Learning)
´ Hinton and Salakhutdinov,

Reducing the Dimensionality of 
Data with Neural Networks,
Science, 2006

´ Reinvigorating research in Deep 
Learning 

´ Shows importance of pretraining

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 20178

[Hinton and Salakhutdinov 2006]

Reinvigorated research in 
Deep Learning

A bit of history...

Illustration of Hinton and Salakhutdinov 2006  by Lane 
McIntosh, copyright CS231n 2017



Around the year of 2012…

Speech Recognition: TIMIT

Deep Learning revolution: success and challenges

Deep Learning for Speech Recognition

Performance improvements in spoken word error rate over the years on the
TIMIT acoustic-phonetic continuous speech corpus dataset.

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 9 / 85

Computer Vision: ImageNetBackground Info

Instance of Common Task Framework, 1

ImageNet (subset):
1.2 million training images
100,000 test images
1000 classes

ImageNet large-scale visual recognition Challenge

source: https://www.linkedin.com/pulse/must-read-path-breaking-papers-image-classification-muktabh-mayank

13 / 50

Deep Learning



Depth as function of yearBackground Info

Depth as function of year

[He et al., 2016]
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AlexNet (2012): ArchitectureBackground Info

AlexNet (2012)
Architecture

8 layers: first 5 convolutional, rest fully connected
ReLU nonlinearity
Local response normalization
Max-pooling
Dropout

Source: [Krizhevsky et al., 2012]

23 / 50



AlexNet (2012): Dropout

Background Info

AlexNet (2012)
Dropout

Source: [Srivastava et al., 2014]

Zero every neuron with probability 1− p

At test time, multiply every neuron by p

26 / 50



VGG (2014) [Simonyan-Zisserman’14]Background Info

VGG (2014) [Simonyan and Zisserman, 2014]

Deeper than AlexNet: 11-19 layers versus 8
No local response normalization
Number of filters multiplied by two every few layers
Spatial extent of filters 3× 3 in all layers
Instead of 7× 7 filters, use three layers of 3× 3 filters

Gain intermediate nonlinearity
Impose a regularization on the 7× 7 filters

Source: https://blog.heuritech.com/2016/02/29/ 33 / 50



GoogLeNet [Szegedy et al., 2014] 

´ 22 layers 

´ Efficient “Inception” module 

´ No FC layers 

´ Only 5 million parameters! 

´ 12x less than AlexNet

´ ILSVRC’14 classification winner 
(6.7% top 5 error) 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201737

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational 
efficiency
 

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!          

12x less than AlexNet
- ILSVRC’14 classification winner 

(6.7% top 5 error)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201738

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

“Inception module”: design a 
good local network topology 
(network within a network) and 
then stack these modules on 
top of each other



ResNet (2015) [HGRS-15]Background Info

ResNet (2015)

Solves problem by adding
skip connections
Very deep: 152 layers
No dropout
Stride
Batch normalization

Source: Deep Residual Learning for Image Recognition
35 / 50



Batch Normalization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201762

Step 1: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)



Batch Normalization
Background Info

Batch normalization

Algorithm 2 Batch normalization [Ioffe and Szegedy, 2015]
Input: Values of x over minibatch x1 . . . xB, where x is a certain
channel in a certain feature vector
Output: Normalized, scaled and shifted values y1 . . . yB

1: µ = 1
B

∑B
b=1 xb

2: σ2 = 1
B

∑B
b=1(xb − µ)2

3: x̂b = xb−µ√
σ2+ϵ

4: yb = γx̂b + β

Accelerates training and makes initialization less sensitive
Zero mean and unit variance feature vectors

37 / 50



BatchNorm at Test
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Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer 
functions differently:

The mean/std are not computed 
based on the batch. Instead, a single 
fixed empirical mean of activations 
during training is used.

(e.g. can be estimated during training 
with running averages)



Complexity vs. Accuracy of Different 
Networks

Background Info

Characteristics of different networks

Source: Eugenio Culurciello
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Inception-v4 = ResNet + Inception

´ “Inception” module:
´ Introduced by Szegedy et al., 2014 in
GoogLeNet

´ ILSVRC’14 classification winner (6.7% 
top 5 error) 

´ Apply parallel filter operations on the 
input from previous layer: 
´ Dimensionality reduction (1x1 conv)

´ Multiple receptive field sizes for 
convolution (1x1, 3x3, 5x5) 

´ Pooling operation (3x3) 

´ Concatenate all filter outputs 
together depth-wise 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201737

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational 
efficiency
 

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!          

12x less than AlexNet
- ILSVRC’14 classification winner 

(6.7% top 5 error)



Reaching Human Performance Level in 
Games

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning

What’s Driving the Tsunami?

Intellectual Significance

Human Impact

Reaching Human Level Performance

1997 2004

2017
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning

What’s Driving the Tsunami?

Intellectual Significance

Human Impact

Reaching Human Level Performance

1997 2004

2017
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?AlphaGo “LEE” 2016: Monte-Carlo Tree Pruning Search+CNN

AlphaGo ”ZERO” D Silver et al. Nature 550, 354–359 (2017) doi:10.1038/nature24270

Deep Blue in 1997



Deep Learning Softwares

´ Pytorch (developed by Yann LeCun and Facebook):
´ http://pytorch.org/tutorials/

´ Tensorflow (developed by Google based on Caffe)
´ https://www.tensorflow.org/tutorials/

´ Theano (developed by Yoshua Bengio)
´ http://deeplearning.net/software/theano/tutorial/

´ Keras (based on Tensorflow or Pytorch)
´ https://www.manning.com/books/deep-learning-with-

python?a_aid=keras&a_bid=76564dff



Show some examples by jupyter
notebooks



Thank you!


