

Locality or Sparsity of Computation

Minsky and Papert, 1969
Perceptron can't do XOR classification Perceptron needs infinite global information to compute connectivity

Locality or Sparsity is important:
Locality in time?
Locality in space?

Connectivity is of infinite order

- Which one of these two figures is connected?

Figure 5.1

Theorem (Minsky-Papert'1969)
The decision function that $f(X)=[X$ is connected $]$ for $X \subseteq \mathbb{R}^{p}$ is not of any finite order, i.e. for any $k<\infty$, there does not exist a (possibly of infinite members) family of $\left\{\phi_{\alpha}(X): \operatorname{supp}\left(\phi_{\alpha}\right) \leq k\right\}$ whose supports are at most k, such that

$$
\begin{equation*}
f(X)=\left[\sum_{\alpha} \phi_{\alpha}(X) \geq 0\right] \tag{21}
\end{equation*}
$$

Multilayer Perceptrons (MLP) and Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)

Learning representations by back-propagating errors, Nature, 323(9): 533-536

BP algorithms as stochastic gradient descent algorithms (Robbins-Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

MLP classifies XOR, but the global hurdle on topology (connectivity) computation still exists

Topology can be learned with finite information if the manifold is stable (finite condition number)
 Blum-Shub-Smale models of Real Computation

A Model of Real Computation

- Starting from Blum, Shub, Smale (1989)
- It admits inputs and operations (addition, substraction, multiplication, and (in the case of fields) division) of real (complex) numbers with infinite precision
- "The key importance of the condition number, which measures the closeness of a problem instance to the manifold

Condition
The Geometry of Numerical Algorithms

The Condition Number of a Manifold

Throughout our discussion, we associate to \mathcal{M} a condition number $(1 / \tau)$ where τ is defined as the largest number having the property: The open normal bundle about \mathcal{M} of radius r is embedded in \mathbb{R}^{N} for every $r<\tau$. Its image Tub_{τ} is a tubular neighborhood of \mathcal{M} with its canonical projection map

$$
\pi_{0}: \operatorname{Tub}_{\tau} \rightarrow \mathcal{M}
$$

Smallest Local Feature Size

$G=\left\{x \in \mathbb{R}^{N}\right.$ such that \exists distinct $p, q \in \mathcal{M}$ where $\left.d(x, \mathcal{M})=\|x-p\|=\|x-q\|\right\}$,
where $d(x, \mathcal{M})=\inf _{y \in \mathcal{M}}\|x-y\|$ is the distance of x to \mathcal{M}. The closure of G is called the medial axis and for any point $p \in \mathcal{M}$ the local feature size $\sigma(p)$ is the distance of p to the medial axis. Then it is easy to check that

$$
\tau=\inf _{p \in \mathcal{M}} \sigma(p)
$$

Find Homology with Finite Samples [Niyogi, Smale, Weinberger (2008)]

Theorem 3.1 Let \mathcal{M} be a compact submanifold of \mathbb{R}^{N} with condition number τ. Let $\bar{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of n points drawn in i.i.d. fashion according to the uniform probability measure on \mathcal{M}. Let $0<\epsilon<\tau / 2$. Let $U=\bigcup_{x \in \bar{x}} B_{\epsilon}(x)$ be a correspondingly random open subset of \mathbb{R}^{N}. Then for all

$$
n>\beta_{1}\left(\log \left(\beta_{2}\right)+\log \left(\frac{1}{\delta}\right)\right)
$$

the homology of U equals the homology of \mathcal{M} with high confidence (probability $>1-\delta$).

$$
\beta_{1}=\frac{\operatorname{vol}(\mathcal{M})}{\left(\cos ^{k}\left(\theta_{1}\right)\right) \operatorname{vol}\left(B_{\epsilon / 4}^{k}\right)} \quad \text { and } \quad \beta_{2}=\frac{\operatorname{vol}(\mathcal{M})}{\left(\cos ^{k}\left(\theta_{2}\right)\right) \operatorname{vol}\left(B_{\epsilon / 8}^{k}\right)}
$$

Here k is the dimension of the manifold \mathcal{M} and $\operatorname{vol}\left(B_{\epsilon}^{k}\right)$ denotes the k-dimensional Partha Niyogi@Chiccago, volume of the standard k-dimensional ball of radius ϵ. Finally, $\theta_{1}=\arcsin (\epsilon / 8 \tau)$ and 1967-2010 $\theta_{2}=\arcsin (\epsilon / 16 \tau)$.

Curse of Dimensionality and "Quantum Algorithms"

To construct a Rips-complex of dimension of n points: $O\left(2^{n}\right)$ number of simplices is needed in the worst case => $O($ poly(n)) in Quantum Algorithms

ARTICLE
Received 17 Sep 2014 | Accepted 9 Nov 2015 | Published 25 Jan 2016 Dol: 10.1038/ncommsi0138 OPEN
Quantum algorithms for topological and geometric analysis of data

Seth Lloyd', Silvano Garnerone ${ }^{2}$ \& Paolo Zanardi ${ }^{3}$

A Proof of Concept Demonstration by 6-photon Quantum Computer [Huang et al. 2018, arXiv:1801.06316]

FIG. 2. Quantum circuit for quantum TDA. (a) Outline of the original quantum circuit. (b) A scatterplot including three data points. (c) Graph representation of the 1 -simplices state $\left.\mid \rho /)^{1}=\mid 110\right)$ for $3<\epsilon_{1}<4$. The first and second data points are $\left.\mid \varphi)^{t_{2}}=(\mid 110)+|101\rangle\right) / \sqrt{2}$ for $4<e 2<5$. The first data point is connected to the second and third points by two edges. (e) Optimized connectedto the second and hird poins by wo edges. (e) Gpimized ircur wists. The blocks with different colors represent the four basic stages.

(b)

(c)

FIG. 4. Final experimental results. The output is determined by measuring the eigenvalue register in the Pauli- Z basis. Measured expectation values (blue bars) and theoretically predicted values gray bars) are shown for two different 1 -simplices state inputs: (a) $|\varphi\rangle_{1}^{\epsilon_{1}}=|110\rangle$, (b) $|\varphi\rangle_{1}^{\epsilon_{2}}=(|110\rangle+|101\rangle) / \sqrt{2}$. Error bars represent one standard deviation, deduced from propagated Poissonian counting statistics of the raw detection events. (c) The barcode for $0<\epsilon<5$. Since no k-dimensional holes for $k \geq 1$ exist at these cales, only the 0 -th Betti barcode is given here. For $0<\epsilon<3$ er is equal to the number of points. That is, there are thre bars $0<\epsilon<3$ At scales of $3<\epsilon_{1}<4$ and $4<\epsilon_{2}<5$, the 0 -th Bett number are 2 and 1 .

Transfer Learning: Fine Tuning

Transfer Learning?

- Filters learned in first layers of a network are transferable from one task to another
- When solving another problem, no need to retrain the lower layers, just fine tune upper ones
- Is this simply due to the large amount of images in ImageNet?
- Does solving many classification problems simultaneously result in features that are more easily transferable?
- Does this imply filters can be learned in unsupervised manner?
- Can we characterize filters mathematically?

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

2. Small Dataset (C classes)
 2014
3. Bigger dataset
\(\left.\begin{array}{|c|}\hline FC-C

\hline \hline FC-4096

\hline \hline FC-4096

\hline MaxPool

\hline \hline Conv-512

\hline \hline Conv-512

\hline MaxPool

\hline \hline Conv-512

\hline \hline Conv-512

\hline MaxPool

\hline \hline Conv-256

\hline \hline Conv-256

\hline MaxPool

\hline \hline Conv-128

\hline \hline Conv-128

\hline MaxPool

\hline \hline Conv-64

\hline \hline Conv-64

\hline Image

\hline\end{array}\right\}\)| With bigger |
| :--- |
| dataset, train |
| more layers |

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble... Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Example Demo

- Jupyter notebook with pytorch

Visualizing Convolutional Networks

Understanding intermediate neurons?

Input Image:
$3 \times 224 \times 224$

What are the intermediate features looking for?

Class Scores: 1000 numbers

Visualizing CNN Features: Gradient Ascent

- Gradient ascent: Generate a synthetic image that maximally activates a neuron

$$
\mathrm{I}^{*}=\arg \max _{1}[\mathrm{f}(\mathrm{I})+\underset{\mathrm{R}(\mathrm{I})}{1}
$$

Neuron value
Natural image regularizer

Visualizing CNN Features: Gradient Ascent

1. Initialize image to zeros

$\arg \max _{I} S_{c}(I)-\lambda\|I\|_{2}^{2}$
score for class c (before Softmax)

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels
4. Make a small update to the image

Visualizing CNN Features: Gradient Ascent

$$
\arg \max _{I} S_{c}(I)-\lambda\|I\|_{2}^{2}
$$

Better regularizer: Penalize L2 norm of image; also during optimization periodically
(1) Gaussian blur image
(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Hartebeest

Station Wagon

Billiard Table

Black Swan

Visualizing CNN Features: Gradient Ascent

Use the same approach to visualize intermediate features

It's easy to visualize early layers

First Layer: Visualize Filters

AlexNet:
$64 \times 3 \times 11 \times 11$

ResNet-18:
$64 \times 3 \times 7 \times 7$

ResNet-101:
$64 \times 3 \times 7 \times 7$

DenseNet-121:
$64 \times 3 \times 7 \times 7$

Last layers are hard to visualize

Last Layer: Dimensionality Reduction

Visualize the "space" of FC7 feature vectors by reducing dimensionality of vectors from 4096 to 2 dimensions

Simple algorithm: Principle Component Analysis (PCA)

More complex: t-SNE

Saliency Maps

How to tell which pixels matter for classification?

Dog

Compute gradient of (unnormalized) class score with respect to image pixels, take absolute value and max over RGB channels

Guided BP

Intermediate features via (guided) backprop

ReLU

Pick a single intermediate neuron, e.g. one value in $128 \times 13 \times 13$ conv5 feature map

Compute gradient of neuron value with respect to image pixels

Forward pass	ReLU							
	1	-1	5	\rightarrow	1	0	5	
	2	-5	7		2	0	0	
	-3	2	4		0	2	4	
Backward pass: backpropagation	-2	0	-1	\leftarrow	-2	3	-1	
	6	0	0		6	-3	1	
	0	-1	3		2	-1	3	
Backward pass: "deconvnet"	0	3	0	\leftarrow	-2	3	-1	
	6	0	1		6	-3	1	
	2	0	3		2	-1	3	
Backward pass: guided backpropagation	0	0	0	\leftarrow	-2	3	-1	
	6	0	0		6	-3	1	
	0	0	3		2	-1	3	
Images come out nicer if you only backprop positive gradients through each ReLU (guided backprop)								
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.								

Intermediate features via Guided BP

DeepDream: amplifying features

Rather than synthesizing an image to maximize a specific neuron, instead try to amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:

1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation
3. Backward: Compute gradient on image
4. Update image

Example: DeepDream of Sky

More Examples

Python Notebooks

- An interesting Pytorch Implementation of these visualizatoin methods
- https://github.com/utkuozbulak/pytorch-cnn-visualizations
- Some examples demo

Neural Style

Example: The Noname Lake in PKU

Application of Deep Learning: Content-Style synthetic pictures
By "neural-style"

Neural Style

- J C Johnson's Website: https://github.com/jcjohnson/neural-style
- A torch implementation of the paper
- A Neural Algorithm of Artistic Style,
- by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
- http://arxiv.org/abs/1508.06576

Style-Content Feature Extraction

Style Reconstructions

\uparrow

\uparrow

Input image

Style Features as Second Order Statistics

Neural Texture Synthesis

Neural Texture Synthesis

$$
E_{l}=\frac{1}{4 N_{l}^{2} M_{l}^{2}} \sum_{i, j}\left(G_{i j}^{l}-\hat{G}_{i j}^{l}\right)^{2} \quad \mathcal{L}(\vec{x}, \hat{\vec{x}})=\sum_{l=0}^{L} w_{l} E_{l}
$$

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN, record activations on every layer; layer i gives feature map of shape $C_{i} \times H_{i} \times W_{i}$
3. At each layer compute the Gram matrix giving outer product of features:

Gatys, Ecker, and Bethge, "Texture Synthesis Using Convolutional Neural Networks", NIPS 2015 Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Neural Texture Synthesis

Reconstructing texture from higher layers recovers larger features from the input texture

Neural Texture Synthesis: Gram Reconstruction

Texture synthesis (Gram reconstruction)

Feature Inversion

Given a CNN feature vector for an image, find a new image that:

- Matches the given feature vector
- "looks natural" (image prior regularization)

$$
\begin{gathered}
\mathbf{x}^{*}=\underset{\mathbf{x} \in \mathbb{R}^{H} \times W \times C}{\operatorname{argmin}} \ell\left(\Phi \left(\underline{\left.\mathbf{x}), \Phi_{0}\right)+\lambda \mathcal{R}(\mathbf{x})}\right.\right. \text { Given feature vector } \\
\quad \ell\left(\Phi(\mathbf{x}), \Phi_{0}\right)=\left\|\Phi(\mathbf{x})-\Phi_{0}\right\|^{2} \\
\mathcal{R}_{V^{\beta}}(\mathbf{x})=\sum_{i, j}\left(\left(x_{i, j+1}-x_{i j}\right)^{2}+\left(x_{i+1, j}-x_{i j}\right)^{2}\right)^{\frac{\beta}{2}} \text { Features of new image }
\end{gathered}
$$ (encourages spatial smoothness)

Feature Inversion

Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, "Understanding Deep Image Representations by Inverting Them", CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, "Perceptual Losses for Real-Time Style Transfer and Super-Resolution", ECCV 2016. Copyright Springer, 2016.
Figure from Johnson, Alani, and Fei-f
Reproduced for educational purposes.

Neural Style Transfer: Feature + Gram

Reconstruc
Texture synthesis (Gram
reconstruction)

Losses for Real-Time Style Transfer and
Super-Resolution", ECCV 2016. Copyright Springer, 2016 Reproduced for educational purposes.

Combined Loss for both Content ($1^{\text {st }}$ order

 statistics) and Style (2 $2^{\text {nd }}$ order statistics: Gram)$$
\begin{gathered}
\mathcal{L}_{\text {content }}(\vec{p}, \vec{x}, l)=\frac{1}{2} \sum_{i, j}\left(F_{i j}^{l}-P_{i j}^{l}\right)^{2} \\
\mathcal{L}_{\text {style }}(\vec{a}, \vec{x})=\sum_{l=0}^{L} w_{l} E_{l} \\
E_{l}=\frac{1}{4 N_{l}^{2} M_{l}^{2}} \sum_{i, j}\left(G_{i j}^{l}-A_{i j}^{l}\right)^{2} \\
G_{i j}^{l}=\sum_{k} F_{i k}^{l} F_{j k}^{l}
\end{gathered}
$$

Neural Style Transfer

Content Image

This image is licensed under CC-BY 3.0

Style Image

Starry Night by Van Gogh is in the public domain

Style Transfer!

$\frac{\text { This image }}{\text { permission. }}$

CNN learns texture features, not shapes!

(a) Texture image
81.4\%
10.3\%
8.2\%

Indian elephant
indri
black swan

(b) Content image
71.1\% tabby cat
17.3\% grey fox
3.3\% Siamese cat

(c) Texture-shape cue conflict 63.9\% Indian elephant 26.4\% indri 9.6\% black swan

Examples

- Jupyter Notebook Demo

Adversarial Examples and Robustness

Deep Learning may be fragile: adversarial examples

$\operatorname{sign}\left(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)\right)$
"nematode"
8.2\% confidence

$\boldsymbol{x}+$
$\epsilon \operatorname{sign}\left(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)\right)$ "gibbon" 99.3% confidence
[Goodfellow et al., 2014]

- Small but malicious perturbations can result in severe misclassification
- Malicious examples generalize across different architectures
- What is source of instability?
- Can we robustify network?

Adversarial Examples: Fooling Images

- Start from an arbitrary image
- Pick an arbitrary class
- Modify the image to maximize the class
- Repeat until network is fooled

Fooling Images/Adversarial Examples

African elephant

schooner

koala

iPod

Difference

Difference

10x Difference

Convolutional Networks lack Robustness

"black hole"
87.7\% confidence

"donut" 99.3\% confidence

Adversarial Robust Training

- Traditional training:

$$
\min _{\theta} J_{n}\left(\theta, \mathbf{z}=\left(x_{i}, y_{i}\right)_{i=1}^{n}\right)
$$

- e.g. square or cross-entropy loss as negative log-likelihood of logit models
- Robust optimization (Madry et al. ICLR'2018):

$$
\min _{\theta} \max _{\left\|\epsilon_{i}\right\| \leq \delta} J_{n}\left(\theta, \mathbf{z}=\left(x_{i}+\epsilon_{i}, y_{i}\right)_{i=1}^{n}\right)
$$

- robust to any distributions, yet computationally hard

Extended by Hongyang ZHANG et al. by TRADES, 2019.

Thank you!

