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Locality or Sparsity of Computation

Why are compositional 
functions important?

Which one of these reasons: 
Physics? 

Neuroscience? <=== 
Evolution?

What is special about 
locality of computation?


Locality in “space”? 

Locality in “time”?

Locality of Computation

Locality or Sparsity is important:
Locality in time?
Locality in space? 

Minsky and Papert, 1969
Perceptron can’t do XOR classification
Perceptron needs infinite global 

information to compute connectivity

ᐟᕪᗑᕶጱᒫӞེ٧

Marvin Minsky
(1927-2016)

Seymour Papert
(1928-)
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Connectivity is of infinite order

´ Which one of these two figures is connected? 

Outline Applications Introduction Di↵erential Inclusions Statistical Consistency Summary

Appendix: Minsky-Papert’s Perceptrons

Theorem (Minsky-Papert’1969)

The decision function that f (X ) = [X is connected] for X ✓ Rp is not of any

finite order, i.e. for any k < 1, there does not exist a (possibly of infinite

members) family of {�↵(X ) : supp(�↵)  k} whose supports are at most k,

such that

f (X ) =

"
X

↵

�↵(X ) � 0

#
(21)

Yuan Yao Boosting with Structural Sparsity



Multilayer Perceptrons (MLP) and 
Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)
Learning representations by back-propagating 

errors, Nature, 323(9): 533-536

BP algorithms as stochastic gradient descent 
algorithms (Robbins–Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

MLP classifies XOR, but the global hurdle on 
topology (connectivity) computation still exists

Background Info

Multi-layer perceptron
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Topology can be learned with finite 
information if the manifold is stable 
(finite condition number)
Blum-Shub-Smale models of Real Computation



A Model of Real Computation

´ Starting from Blum, Shub, Smale (1989)

´ It admits inputs and operations 
(addition, substraction, multiplication, 
and (in the case of fields) division) of 
real (complex) numbers with infinite 
precision

´ “The key importance of the condition 
number, which measures the closeness 
of a problem instance to the manifold 
of ill-posed instances, is clearly 
developed.” – Richard Karp

x PREFACE 

isterio de Educaci6n y Ciencia of Spain, and the Generalitat de Catalunya. To all 
of these institutions we give our thanks. 

We note how the work here fits well into the spirit of the new organization 
"Foundations of Computational Mathematics" (FoCM). FoCM has held its first 
international meetings (Park City, Utah, July 1995, and IMPA, Rio de Janeiro, 
January 1997) and the proceedings of these meetings [Renegar, Shub, and Smale 
1996; Cucker and Shub 1997] contain a number of research papers extending and 
developing the ideas of this book. 

Throughout this book, the square 0 denotes the end of a proof or its absence. 

Hong Kong, March 1997 Lenore Blum 
Felipe Cucker 
Michael Shub 

Steve Smale 



The Condition Number of a Manifold

Discrete Comput Geom (2008) 39: 419–441 421

literature. Finally, it is also worth noting that there is a body of work on persistence
homology [7 , 20] that seeks alternative topological characterizations of the manifold
and its homology. See the discussion after Proposition 3.1.

In conclusion, we hope that researchers in graphics, pattern recognition, solid
modeling, molecular biology, finance, and other areas where large amounts of high-
dimensional data are available may find some use for the topological perspective on
data analysis embodied in the algorithms and analyses of this paper.

2 Preliminaries

Consider a compact Riemannian submanifold M of a Euclidean space RN . Sam-
ple the manifold according to a uniform probability measure on it. Thus points
x1, . . . , xn ∈ M are generated. This set of points x̄ = {x1, . . . , xn} is the data set on
the basis of which homology groups will be calculated. In later sections we consider
the case when the data are drawn from a probability measure with support close to
the manifold.

Throughout our discussion, we associate to M a condition number (1/τ ) where τ

is defined as the largest number having the property: The open normal bundle about
M of radius r is embedded in RN for every r < τ . Its image Tubτ is a tubular
neighborhood of M with its canonical projection map

π0 : Tubτ → M.

Note that τ encodes both local curvature considerations as well as global ones: If M
is a union of several components, then τ bounds their separation. For example, if M
is a sphere, then τ is equal to its radius. If M is an annulus, then τ is the separation
of its components. In Sect. 6 we relate the condition number 1/τ to classical notions
of curvature in differential geometry via the second fundamental form.

Finally, it is also useful to relate τ to the notions of medial axis and local feature
size that have been developed in the computational geometry community. Given M,
one may define the set

G =
{
x ∈ RN such that ∃ distinct p,q ∈M where d(x,M) = ∥x − p∥ = ∥x − q∥

}
,

where d(x,M) = infy∈M∥x − y∥ is the distance of x to M. The closure of G is
called the medial axis and for any point p ∈ M the local feature size σ (p) is the
distance of p to the medial axis. Then it is easy to check that

τ = inf
p∈M

σ (p).

3 An Outline of Our Main Results

Ultimately we wish to compute the homology of the manifold M ⊂ RN from the
randomly sampled datapoints x̄ = {x1, . . . , xn} ⊂ M. We first begin by considering
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Find Homology with Finite Samples
[Niyogi, Smale, Weinberger (2008)]

422 Discrete Comput Geom (2008) 39: 419–441

Euclidean balls (in the ambient space RN ) of radius ϵ and center xi . We denote these
balls as Bϵ(xi). We can now define the open set U ⊂ RN given by

U =
⋃

x∈x̄

Bϵ(x).

Our first proposition states that if x̄ = {x1, . . . , xn} is ϵ/2 dense in M, then M is a
deformation retract of U .

Proposition 3.1 Let x̄ be any finite collection of points x1, . . . , xn ∈ RN such that it is
(ϵ/2) dense in M, i.e., for every p ∈M, there exists an x ∈ x̄ such that ∥p−x∥RN <

ϵ/2. Then for any ϵ <
√

3
5τ , we have that U deformation retracts to M. Therefore

the homology of U equals the homology of M.

We prove this proposition in Sect. 4. Subsequent to our work, the authors of [7]
presented a different type of calculation of the homology of M based on their homol-
ogy approximation theorem together with the method of computing persistent homol-
ogy (e.g., [20]). Their method does not give the homotopy type of M. On the other
hand, it does apply to a class of metric spaces more general than well-conditioned
manifolds. A related approach appears in [5].

In the case under consideration here, the points x1, . . . , xn are sampled in i.i.d.
fashion from the uniform probability distribution on M. By probabilistic considera-
tions, we will then prove (in Sect. 5) the following proposition.

Proposition 3.2 Let x̄ be drawn by sampling M in i.i.d. fashion according to the
uniform probability measure on M. Then with probability greater than 1 − δ, we
have that x̄ is (ϵ/2)-dense (ϵ < τ/2) in M provided

|x̄| > β1

(
log(β2) + log

(
1
δ

))
,

where

β1 = vol(M)

(cosk(θ1))vol(Bk
ϵ/4)

and β2 = vol(M)

(cosk(θ2))vol(Bk
ϵ/8)

.

Here k is the dimension of the manifold M and vol(Bk
ϵ ) denotes the k-dimensional

volume of the standard k-dimensional ball of radius ϵ. Finally, θ1 = arcsin(ϵ/8τ ) and
θ2 = arcsin(ϵ/16τ ).

Putting these two propositions together, we see that we are able to provide a finite
sample estimate for how many times we need to sample M so that we are guaranteed
with high confidence that the homology of the random set U equals the homology
of M. Thus our main theorem is

Theorem 3.1 Let M be a compact submanifold of RN with condition number τ .
Let x̄ = {x1, . . . , xn} be a set of n points drawn in i.i.d. fashion according to the
Discrete Comput Geom (2008) 39: 419–441 423

uniform probability measure on M. Let 0 < ϵ < τ/2. Let U = ⋃
x∈x̄ Bϵ(x) be a

correspondingly random open subset of RN . Then for all

n > β1

(
log(β2) + log

(
1
δ

))
,

the homology of U equals the homology of M with high confidence (probability
>1 − δ).

Remark Note that no version of our main theorem exists in the literature so far. How-
ever, versions of our Proposition 3.1 do exist. We have characterized Proposition 3.1
in terms of τ but one may obtain an alternate characterization in terms of the medial
axis and the local feature size. In fact, if one considers the union of balls centered
at the data points given by U = ⋃

x∈x̄ Bϵx (x) where ϵx = rσ (x), then it is possible
to show that the homology of U coincides with that of M if x̄ is (ϵx/2)-dense in
M and for all r < 0.21. For the case of surfaces in R3, a similar result is obtained
by Amenta et al. [2] for r < 0.06. The set x̄ is said to be (ϵx/2)-dense if for every
p ∈ M there exists some x ∈ x̄ such that ∥p − x∥ < ϵx/2. We will prove this in a
later paper. It is not obvious, however, how to obtain a version of our main theorem
in terms of the local feature size. Finally, we recall the recent results of [7] that we
have already alluded to.

3.1 Computing the Homology of U

One now needs to consider algorithms to compute the homology of U . Noting that
the Bϵ(xi)’s form a cover of U , one can construct the nerve of the cover. The nerve
is an abstract simplicial complex constructed as follows: One puts in a k-simplex for
every (k + 1)-tuple of intersecting elements of the cover. The Nerve Lemma (see [4])
applies in our case, as balls are convex, to show that the homology of U is the same as
the homology of this complex. The algorithm consists of the following components:

1. Given an ϵ, and a set of points x̄ = {x1, . . . , xn} in RN , each j -simplex is given by
a subset of the n points that have non-zero intersection. Thus we may define Lj to
be the collection of all j -simplices. Each simplex σ ∈ Lj is associated with a set
of j + 1 points (p0(σ ), . . . , pj (σ ) ∈ x̄) such that

j⋂

i=0

Bϵ(pi(σ )) ̸= ∅.

An orientation for the simplex is chosen by picking an ordering and we denote the
oriented simplex by |p0(σ ), . . . , pj (σ )|.

2. A very crude upper bound on the size of Lj (denoted by |Lj |) is given by
( n
j+1

)
.

However, it is clear that if two points xm and xl are more than 2ϵ apart, they cannot
be associated to a simplex. Therefore, there is a locality condition that the pi(σ )’s
must obey, which results in |Lj | being much smaller than this crude number. The
simplicial complex Kj = ⋃j

i=0 Lj together with face relations. The simplicial
complex corresponding to the nerve of U is K = KN .
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Curse of Dimensionality and 
“Quantum Algorithms”
To construct a Rips-complex of dimension of n points: O(2n) number of 
simplices is needed in the worst case => O(poly(n)) in Quantum Algorithms

Today’s	Talk	is	about	yet	another	Big	Quantum	Data	approach:

The Bad The Good The Ugly

Today’s	Talk	is	about	yet	another	Big	Quantum	Data	approach:

The Bad The Good The Ugly

Today’s	Talk	is	about	yet	another	Big	Quantum	Data	approach:

The Bad The Good The Ugly

Today’s	Talk	is	about	yet	another	Big	Quantum	Data	approach:

The Bad The Good The Ugly



A Proof of Concept Demonstration by 6-photon Quantum 
Computer [Huang et al. 2018, arXiv:1801.06316]
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FIG. 4. Final experimental results. The output is determined by
measuring the eigenvalue register in the Pauli-Z basis. Measured
expectation values (blue bars) and theoretically predicted values
(gray bars) are shown for two different 1-simplices state inputs: (a)
|'i✏11 = |110i, (b) |'i✏21 = (|110i+ |101i)/

p
2. Error bars repre-

sent one standard deviation, deduced from propagated Poissonian
counting statistics of the raw detection events. (c) The barcode for
0 < ✏ < 5. Since no k-dimensional holes for k � 1 exist at these
scales, only the 0-th Betti barcode is given here. For 0 < ✏ < 3,
there is no connection between each point, so the 0-th Betti num-
ber is equal to the number of points. That is, there are three bars at
0 < ✏ < 3. At scales of 3 < ✏1 < 4 and 4 < ✏2 < 5 , the 0-th Betti
number are 2 and 1.

data in Fig. 4 shows the results as �✏1 = 0.955(3) and
�✏2 = 0.962(2), indicating near perfect experimental accu-
racy, confirming that the algorithm is successful.

We note that for the quantum TDA algorithm, the results are
read out by measuring the eigenvalues. In general, the eigen-
value register requires only a few qubits for the quantum TDA
algorithm (1 qubit in the current work), since we only care
about the proportion of |0i in the eigenvalue register, rather
than the exact value of all eigenvalues. Thus, a small amount
of measurements are sufficient for obtaining reliable results,
an important feature for the scalability of the algorithm.

In addition, theoretically, for the quantum TDA algorithm,
only the qubits in the eigenvalue register need to be measured,
rather than having to measure all qubits. In our experiment,
since the photons generated by spontaneous parametric down
conversion are probabilistic, to ensure that all qubits in the cir-
cuit have been generated, and the quantum circuits have been
fully implemented, we need to measure 6-fold coincidence
events. In fact, this is a common problem encountered in the
current linear optical quantum computing. Fortunately, with
the development of deterministic quantum dot single photon
source [46], and other techniques [47], we believe this prob-

lem can eventually be overcome. We anticipate that with more
qubits (more photons [42, 48] or higher dimensional states
[49, 50]), our proposal could be extended to the analysis of
much larger datasets in the future.

In summary, we have presented the first proof-of-principle
demonstration of quantum TDA on a small-scale photonic
quantum processor. The topological features of a dataset com-
prising three data points is revealed and tracked at two differ-
ent topological scales, fully reproducing the Betti numbers as-
sociated with the topology of the data. Future advances in the
field could open up new frontiers in data analysis for quantum
computing, including signal and image analysis, astronomy,
network and social media analysis, behavioral dynamics, bio-
physics, oncology and neuroscience.

Acknowledgements: We thank R.-Z. Liu, Michele
Cirafici, T. L. for enlightening discussions. This work was
supported by the National Natural Science Foundation of
China, the Chinese Academy of Sciences, and the National
Fundamental Research Program. P.P.R. is funded by an ARC
Future Fellowship (project FT160100397).

See Supplement 1 for supporting content.

SUPPLEMENTAL MATERIAL

I. BACKGROUND AND PRACTICAL APPLICATIONS OF
BETTI NUMBER AND TDA
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FIG. 5. Several examples for the explanation of Betti numbers,
demonstrating their ability to capture structural information even in
the presence of local deformations.

Betti numbers are a way to describe the connectivity within
a topological space. In simplest terms, the k-th Betti number
�k counts the the number of k-dimensional holes in a topo-
logical space, for example,

- �0 is the number of connected components;
- �1 is the number of planar holes (1-dimensional holes);
- �2 is the number of two-dimensional voids (2-dimensional

holes);
- ...
Betti numbers are topological invariants. If two Betti num-

bers are the same for two different spaces then the spaces are
homotopy equivalent [1]. To demonstrate Betti numbers more



Transfer Learning: Fine Tuning



Transfer Learning?
Background Info

Transfer learning

Filters learned in first layers of a network are transferable
from one task to another
When solving another problem, no need to retrain the
lower layers, just fine tune upper ones
Is this simply due to the large amount of images in
ImageNet?
Does solving many classification problems simultaneously
result in features that are more easily transferable?
Does this imply filters can be learned in unsupervised
manner?
Can we characterize filters mathematically?

42 / 50

Deep Learning revolution: success and challenges

Training Deep Convolutional Networks

Training Deep Convolutional Networks

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 18 / 85
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer

You’re in 
trouble… Try 
linear classifier 
from different 
stages

quite a lot of 
data

Finetune a 
few layers

Finetune a 
larger number 
of layers



Example Demo

´ Jupyter notebook with pytorch



Visualizing Convolutional Networks



Understanding intermediate neurons?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20174

This image is CC0 public domain

Class Scores: 
1000 numbers

What’s going on inside ConvNets?

Input Image:
3 x 224 x 224

What are the intermediate features looking for?
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.



Visualizing CNN Features: Gradient Ascent

´ Gradient ascent: Generate a synthetic image that maximally activates a 
neuron 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201721

Visualizing CNN features: Gradient Ascent

(Guided) backprop:
Find the part of an 
image that a neuron 
responds to

Gradient ascent:
Generate a synthetic 
image that maximally 
activates a neuron

I* = arg maxI f(I) + R(I)

Neuron value Natural image regularizer



Visualizing CNN Features: Gradient 
Ascent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201722

Visualizing CNN features: Gradient Ascent

score for class c (before Softmax)

zero image

1. Initialize image to zeros

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels
4. Make a small update to the image



Visualizing CNN Features: Gradient Ascent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201728

Visualizing CNN features: Gradient Ascent

Better regularizer: Penalize L2 norm of 
image; also during optimization 
periodically

(1) Gaussian blur image
(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.



Visualizing CNN Features: Gradient Ascent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201729

Visualizing CNN features: Gradient Ascent
Use the same approach to visualize intermediate features

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.



It’s easy to visualize early layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20175

First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

ResNet-18:
64 x 3 x 7 x 7

ResNet-101:
64 x 3 x 7 x 7

DenseNet-121:
64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017



Last layers are hard to visualize

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20179

Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Visualize the “space” of FC7 
feature vectors by reducing 
dimensionality of vectors from 
4096 to 2 dimensions

Simple algorithm: Principle 
Component Analysis (PCA)

More complex: t-SNE
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Saliency Maps

Dog

How to tell which pixels matter for classification?

Compute gradient of (unnormalized) class 
score with respect to image pixels, take 
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.



Guided BP
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Intermediate features via (guided) backprop

Pick a single intermediate neuron, e.g. one 
value in 128 x 13 x 13 conv5 feature map

Compute gradient of neuron value with respect 
to image pixels

Images come out nicer if you only 
backprop positive gradients through 
each ReLU (guided backprop)

ReLU

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas 
Brox, Martin Riedmiller, 2015; reproduced with permission.



Intermediate features via Guided BP
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Intermediate features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.



DeepDream: amplifying features
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DeepDream: Amplify existing features
Rather than synthesizing an image to maximize a specific neuron, instead 
try to amplify the neuron activations at some layer in the network

Equivalent to:
I* = arg maxI ∑i fi(I)

2

Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural 
Networks”, Google Research Blog. Images are licensed under CC-BY 
4.0

Choose an image and a layer in a CNN; repeat:
1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation
3. Backward: Compute gradient on image
4. Update image



Example: DeepDream of Sky

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201743
Sky image is licensed under CC-BY SA 3.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201744
Image is licensed under CC-BY 4.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201745
Image is licensed under CC-BY 4.0



More Examples
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Image is licensed under CC-BY 4.0



Python Notebooks

´ An interesting Pytorch Implementation of these visualizatoin methods
´ https://github.com/utkuozbulak/pytorch-cnn-visualizations

´ Some examples demo



Neural Style



Example: The Noname Lake in PKU



Left: Vincent Van Gogh, Starry Night
Right: Claude Monet, Twilight Venice
Bottom: William Turner, Ship Wreck



Application of Deep Learning: 
Content-Style synthetic 
pictures 
By “neural-style”





Neural Style

´ J C Johnson’s Website: https://github.com/jcjohnson/neural-style

´ A torch implementation of the paper 
´ A Neural Algorithm of Artistic Style, 

´ by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

´ http://arxiv.org/abs/1508.06576



Style-Content Feature Extraction



Style Features as Second Order Statistics

Figure 4: Best performance of different classic model
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Figure 5: Process to extract style features

Experiments Then we apply K-Nearest Neighours (KNN), Support Vector Machine (SVM) and114

Decision Tree classifiers with leave-one-out validation. Due to memory constraint, we resize the115

picture to 256/512/1024 pixels. We divide the picture into 16 patches in KNN classifier to augment116

training data. The result is shown in Table 2. We find that since the dimension is too high (above117

100,000), SVM is not applicable. KNN performs better on features got from low-definition pictures118

with 16 seperated patches and Decision Tree performs better on features got from low-definition119

pictures.120

Table 2: Leave-one-out result with style features
Feature Extraction Model TPR TNR Classification Accuracy

Style Features-256
KNN 0.833 0.889 0.857

SVM 1.000 0.000 0.571
Decision Tree 0.667 0.556 0.619

Style Features-512
KNN 1 0.333 0.714
SVM 1.000 0.000 0.571

Decision Tree 0.833 0.889 0.857

Style Features-1024
KNN 0.667 0.444 0.571
SVM 1.000 0.000 0.571

Decision Tree 0.833 0.889 0.857

Predictions Upon our style-features models, we give our prediction to the 7 pictures remain121

disputed (Pic1/7/10/20/23/25/26). We pick three Models performed best in validation. We predict122

5



Neural Texture Synthesis
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Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of 
features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors 
gives C x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving 
Gram matrix of shape C x C

This image is in the public domain.

w

H

C
C

C

Efficient to compute; reshape features from
 
C x H x W to  =C x HW

then compute G = FFT
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Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Neural Texture Synthesis
1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN, 

record activations on every layer; layer i 
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix 
giving outer product of features:

                    (shape Ci × Ci)

4. Initialize generated image from random 
noise

5. Pass generated image through CNN, 
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5
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Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Reconstructing texture from 
higher layers recovers 
larger features from the 
input texture



Neural Texture Synthesis: Gram
Reconstruction
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Neural Texture Synthesis: Texture = Artwork

Texture synthesis 
(Gram 
reconstruction)

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual 
Losses for Real-Time Style Transfer and 
Super-Resolution”, ECCV 2016. Copyright Springer, 2016. 
Reproduced for educational purposes.



Feature Inversion
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Feature Inversion
Given a CNN feature vector for an image, find a new image that:

- Matches the given feature vector
- “looks natural” (image prior regularization) 

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Given feature vector

Features of new image

Total Variation regularizer 
(encourages spatial smoothness)



Feature Inversion
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Feature Inversion
Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016. 
Reproduced for educational purposes.
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Neural Style Transfer: Feature + Gram 
Reconstruction

Feature 
reconstruction

Texture synthesis 
(Gram 
reconstruction)

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual 
Losses for Real-Time Style Transfer and 
Super-Resolution”, ECCV 2016. Copyright Springer, 2016. 
Reproduced for educational purposes.



Combined Loss for both Content (1st order 
statistics) and Style (2nd order statistics: Gram)

Generally each layer in the network defines a non-linear filter bank whose complexity in-

creases with the position of the layer in the network. Hence a given input image ~x is encoded

in each layer of the CNN by the filter responses to that image. A layer with Nl distinct filters

has Nl feature maps each of size Ml, where Ml is the height times the width of the feature map.

So the responses in a layer l can be stored in a matrix F l 2 RNl⇥Ml where F l
ij is the activation

of the ith filter at position j in layer l. To visualise the image information that is encoded at

different layers of the hierarchy (Fig 1, content reconstructions) we perform gradient descent

on a white noise image to find another image that matches the feature responses of the original

image. So let ~p and ~x be the original image and the image that is generated and P l and F l their

respective feature representation in layer l. We then define the squared-error loss between the

two feature representations

Lcontent(~p, ~x, l) =
1

2

X

i,j

�
F l
ij � P l

ij

�2 . (1)

The derivative of this loss with respect to the activations in layer l equals

@Lcontent

@F l
ij

=

(�
F l � P l

�
ij

if F l
ij > 0

0 if F l
ij < 0 .

(2)

from which the gradient with respect to the image ~x can be computed using standard error

back-propagation. Thus we can change the initially random image ~x until it generates the same

response in a certain layer of the CNN as the original image ~p. The five content reconstructions

in Fig 1 are from layers ‘conv1 1’ (a), ‘conv2 1’ (b), ‘conv3 1’ (c), ‘conv4 1’ (d) and ‘conv5 1’

(e) of the original VGG-Network.

On top of the CNN responses in each layer of the network we built a style representation

that computes the correlations between the different filter responses, where the expectation is

taken over the spatial extend of the input image. These feature correlations are given by the

Gram matrix Gl 2 RNl⇥Nl , where Gl
ij is the inner product between the vectorised feature map

10

i and j in layer l:

Gl
ij =

X

k

F l
ikF

l
jk. (3)

To generate a texture that matches the style of a given image (Fig 1, style reconstructions),

we use gradient descent from a white noise image to find another image that matches the style

representation of the original image. This is done by minimising the mean-squared distance

between the entries of the Gram matrix from the original image and the Gram matrix of the

image to be generated. So let ~a and ~x be the original image and the image that is generated and

Al and Gl their respective style representations in layer l. The contribution of that layer to the

total loss is then

El =
1

4N2
l M

2
l

X

i,j

�
Gl

ij � Al
ij

�2 (4)

and the total loss is

Lstyle(~a, ~x) =
LX

l=0

wlEl (5)

where wl are weighting factors of the contribution of each layer to the total loss (see below for

specific values of wl in our results). The derivative of El with respect to the activations in layer

l can be computed analytically:

@El

@F l
ij

=

(
1

N2
l M

2
l

�
(F l)T

�
Gl � Al

��
ji

if F l
ij > 0

0 if F l
ij < 0 .

(6)

The gradients of El with respect to the activations in lower layers of the network can be readily

computed using standard error back-propagation. The five style reconstructions in Fig 1 were

generated by matching the style representations on layer ‘conv1 1’ (a), ‘conv1 1’ and ‘conv2 1’

(b), ‘conv1 1’, ‘conv2 1’ and ‘conv3 1’ (c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d),

‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ (e).

To generate the images that mix the content of a photograph with the style of a painting

(Fig 2) we jointly minimise the distance of a white noise image from the content representation
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Neural Style Transfer
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Neural Style Transfer

Content Image Style Image Style Transfer!

+ =

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with 
permission.

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016



CNN learns texture features, not 
shapes!

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HvLBMhCJQ?tocitem=46

Published as a conference paper at ICLR 2019

IMAGENET-TRAINED CNNS ARE BIASED TOWARDS
TEXTURE; INCREASING SHAPE BIAS IMPROVES
ACCURACY AND ROBUSTNESS

Robert Geirhos

University of Tübingen & IMPRS-IS
robert.geirhos@bethgelab.org

Patricia Rubisch

University of Tübingen & U. of Edinburgh
p.rubisch@sms.ed.ac.uk

Claudio Michaelis

University of Tübingen & IMPRS-IS
claudio.michaelis@bethgelab.org

Matthias Bethge
⇤

University of Tübingen
matthias.bethge@bethgelab.org

Felix A. Wichmann
⇤

University of Tübingen
felix.wichmann@uni-tuebingen.de

Wieland Brendel
⇤

University of Tübingen
wieland.brendel@bethgelab.org

ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

⇤Joint senior authors
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Examples

´ Jupyter Notebook Demo



Adversarial Examples and 
Robustness



Deep Learning may be fragile: 
adversarial examples

Background Info

Adversarial examples

[Goodfellow et al., 2014]

Small but malicious perturbations can result in severe
misclassification
Malicious examples generalize across different
architectures
What is source of instability?
Can we robustify network?

43 / 50



Adversarial Examples: Fooling Images

´ Start from an arbitrary image 

´ Pick an arbitrary class 

´ Modify the image to maximize the class 

´ Repeat until network is fooled 



Fooling Images/Adversarial Examples

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201735

Fooling Images / Adversarial Examples

Boat image is CC0 public domain
Elephant image is CC0 public domain



Convolutional Networks lack Robustness
Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

Courtesy of Dr. Hongyang ZHANG.



Adversarial Robust Training
Robust Optimization

Figure 7: The choice of attack method - FGSM (red) vs. PGD (blue) matters.

Figure 8: Values of the local maxima given by the cross-entropy loss for five examples from the MNIST
and CIFAR10 evaluation datasets. For each example, PGD is started uniformly at random around the
example and iterated until the loss plateaus.The blue histogram corresponds to the loss on a naturally
trained network, while the red histogram corresponds to the adversarially trained counterpart. The
loss is significantly smaller for the adversarially trained networks, and the final loss values are very
concentrated without any outliers.

Figure 9: Natural classification (left) vs. adversarial boundaries (right) corresponding to `1 ball around
training points.

alone increases accuracy. When adversaries like PGD are added, for small capacity networks PGD fails
to learn a meaningful decision boundary and performance is sacrificed for robustness. On the other
hand, for large capacity networks a robust and accurate solution can be achieved with PGD adversary.

The PGD adversary was trained for both MNIST and CIFAR10 and it has been shown that there
is a steady decrease in the training loss of adversarial examples (Figure 11) showing an indication that
the original adversarial training optimization problem is indeed being solved during training.

7

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model

Adversarial and Huber’s Agnostic Contamination Model

Robust Optimization

• Traditional training:

min
✓

Jn(✓, z = (xi , yi )
n
i=1)

• e.g. square or cross-entropy loss as negative log-likelihood of logit

models

• Robust optimization (Madry et al. ICLR’2018):

min
✓

max
k✏ik�

Jn(✓, z = (xi + ✏i , yi )
n
i=1)

• robust to any distributions, yet computationally hard

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

Yuan Yao Breiman-Huber

Extended by Hongyang ZHANG et al. by TRADES, 2019.



Thank you!


