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Locality or Sparsity of Computation

Minsky and Papert, 1969

Perceptron can’t do XOR classification
Perceptron needs infinite global
information to compute connectivity

Expanded Edition
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Perceptrons

Locality or Sparsity is important:
Locality in time?

Locality in space?

Marvin Minsky

\\

Seymour Papert

Marvin 1.. Minsky
Seymour A. Papert




Connectivity is of infinite order

» Which one of these two figures is connected?

Figure 5.1

Theorem (Minsky-Papert'1969)

The decision function that f(X) = [X is connected| for X C RP is not of any
finite order, i.e. for any k < oo, there does not exist a (possibly of infinite
members) family of {¢a(X) : supp(¢a) < k} whose supports are at most k,
such that

(03

fF(X) = [Z%(X) 20] (21)




Multilayer Perceptrons (MLP) and
Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)
Learning representations by back-propagating
errors, Nature, 323(?): 533-536

BP algorithms as stochastic gradient descent
algorithms (Robbins—-Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

MLP classifies XOR, but the global hurdle on
topology (connectivity) computation still exists

NATURE VOL. 323 9 OCTOBER 1986
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Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

+ Department of Computer Science, Carnegic-Mellon University,
Pitisburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of like units. The adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustnients, internal ‘*hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from eaclier, simpler methods such as
the perceptron-convergence procedure’.

There have been many attempts to design self-organizing
neural networks, The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specificd by giving the
desired state vector of the output units for each state vector of
the input units, If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

+Ta whom correspondence should be addressed

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
iate internal i

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in paraliel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined

The total input, X;, to unit j is a linear function of the outputs,
y, of the AT THAATE conaaeied to 1 and of The Werghtsw,

on these connections

%=Ly [¢V]

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other weights.

A unit has a real-valued awm:u

function of its total input
=

1
1+e

(&)




Topology can be learned with finite
InNformation if the manifold is stable
(finife condifion number)

Blum-Shub-Smale models of Real Computation




A Model of Real Computation

» Starting from Blum, Shub, Smale (1989)

® [t admits inputs and operations
(addition, substraction, multiplication,
and (in the case of fields) division) of
real (complex) numbers with infinite
precision

» “The key importance of the condition
number, which measures the closeness
of a problem instance to the manifold
of ill-posed instances, is clearly
developed.” — Richard Karp

Peter Biirgisser
Felipe Cucker

Condition

The Geometry of Numerical Algorithms

&) Springer



The Condition Number of a Manifold

Throughout our discussion, we associate to M a condition number (1/7) where T
is defined as the largest number having the property: The open normal bundle about
M of radius r is embedded in R”Y for every r < t. Its image Tub, is a tubular

neighborhood of M with its canonical projection map

o . Tub;y — M.

Smallest Local Feature Size

G = {x € R" such that 3 distinct p, g € M where d(x, M) = ||x — p|| = |x — ql|},

where d(x, M) = infycpq|lx — y|| is the distance of x to M. The closure of G is
called the medial axis and for any point p € M the local feature size o (p) is the
distance of p to the medial axis. Then it is easy to check that

T = 1Inf o(p).
Ry (p)




-iInd Homology with Finite Samples
:Niyogi, Smale, Weinberger (2008)]

Theorem 3.1 Let M be a compact submanifold of RN with condition number t.
Let x = {x1,...,Xx,} be a set of n points drawn in i.i.d. fashion according to the

uniform probability measure on M. Let 0 <€ < 1/2. Let U = | J, .z Be(x) be a
correspondingly random open subset of RY . Then for all

1
n> p (10g(,32) + log(g)),

the homology of U equals the homology of M with high confidence (probability
>1 — ).

vol(M) and vol(M)

Pr= (cost (@1)vol(BE ) P2 = (cos* (02))vol(BE )

' Here k is the dimension of the manifold M and vol(Bé‘) denotes the k-dimensional
lyogi@Chiccago, volume of the standard k-dimensional ball of radius €. Finally, 01 = arcsin(e /87) and
6> = arcsin(e/167).



Curse of Dimensionality and
“Quantum Algorithms”

To construct a Rips-complex of dimension of n points: O(2") number of
simplices is needed in the worst case => O(poly(n)) in Quantum Algorithms

nature -

COMMUNICATIONS

ARTICLE
Received 17 Sep 2014 | Accepted 9 Nov 2015 | Published 25 Jan 2016 DOI: 10.1038/ncomms10138 [l =Y

Quantum algorithms for topological and geometric
analysis of data

Seth Lloyd', Silvano Garnerone? & Paolo Zanardi3
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FIG. 2. Quantum circuit for quantum TDA. (a) Outline of

the original guantum circuit.  (b) A scatterplot including three
data poants.  (c) Graph representation of the l.simplices state

213" = |110) for 3 < ¢) < 4. The first and second data points are
connected by an edge. (d) Graph representation of 1-simplices state
213 = (1110} + |101))/V2 for 4 < ¢2 < 5. The first data point is

connected to the second and third paints by two edges. (¢) Optimized
circuat with 5 gqubsts. The blocks with different colors represent the
four basic stages.

A Proof of Concept Demonstration by é6-photon Quantum
Computer [Huang et al. 2018, arXiv:1801.06316]
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FIG. 4. Final experimental results. The output is determined by
measuring the eigenvalue register in the Pauli-Z basis. Measured
expectation values (blue bars) and theoretically predicted values
(gray bars) are shown for two different 1-simplices state inputs: (a)
)t = [110), (b) |@)5> = (]110) + |101))/+/2. Error bars repre-
sent one standard deviation, deduced from propagated Poissonian
counting statistics of the raw detection events. (c) The barcode for
0 < e < 5. Since no k-dimensional holes for k& > 1 exist at these
scales, only the O-th Betti barcode is given here. For 0 < ¢ < 3,
there is no connection between each point, so the 0-th Betti num-
ber is equal to the number of points. That is, there are three bars at
0 <e<3. Atscalesof 3 < €1 <4and4 < ez < 5, the 0-th Betti
number are 2 and 1.



Transfer Learning: Fine Tuning




Deep Neural Network

TrO n Sfe r I—e O rn i n g 8 l Feature representation I:")l Classification l

.

@ Filters learned in first layers of a network are transferable
from one task to another

@ When solving another problem, no need to retrain the
lower layers, just fine tune upper ones

@ |s this simply due to the large amount of images in
ImageNet?

@ Does solving many classification problems simultaneously
result in features that are more easily transferable?

@ Does this imply filters can be learned in unsupervised
manner?

@ Can we characterize filters mathematically?




Transfer Learning with CNNs

1. Train on Imagenet

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

2. Small Dataset (C classes)

FC-C

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

‘\\

Reinitialize
this and train

> Freeze these

J

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

3. Bigger dataset

Train these

\

With bigger
dataset, train
more layers

> Freeze these

|
Lower learning rate
when finetuning;
1/10 of original LR
is good starting
__Conv-64 ) p Oi nt



FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

More specific

More generic

/

very similar very different
dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number
of layers




Example Demo

» Jupyter notebook with pytorch




Visualizing Convolutional Networks




Understanding infermediate neuronse

This image is CCO public domain

:><: " Class Scores:
1000 numbers

=
N
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Input Image:
3 x 224 x 224

What are the intermediate features looking for?



Visualizing CNN Features: Gradient Ascent

» Gradient ascent: Generate a synthetic image that maximally activates @
neuron

* = arg max, [{(I)| +|R(I)

_— \

Neuron value Natural image regularizer




Visualizing CNN Features: Gradient
Ascent

arg max[S,(1)]~ A[7]3

score for class ¢ (before Softmax)
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1. Initialize image to zeros

zero image s b

eeeeeeee

pooling

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels

4. Make a small update to the image




Visualizing CNN Features: Gradient Ascent

argmax S, (I) — A| 1|13

Better regularizer: Penalize L2 norm of
image; also during optimization
periodically

(1) G ) blur i Hartebeest Billiard Table
aussian bDiur image : -

(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014. Statlon Wagon B |aCk Swan

Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission




Visualizing CNN Features: Gradient Ascent

Use the same approach to visualize intermediate features

Layer 5

Layer 4

Layer 3

# e I ‘
. I Ae

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.

Layer 2




It's easy to visualize early layers

First Layer: Visualize Filters T
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= ﬂ\li N B = ResNet-18: ResNet-101: DenseNet-121:
— — 64 x3X7x7 64 x3X7x7 64 x3 X7 X7

AlexNet: : Jol L)

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017




Last layers are hard to visualize

Last Layer: Dimensionality Reduction
7Y

2
’N/'g‘ y ) 2.,
WG ", ’yﬁ‘ k]
i
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Visualize the “space” of FC7
feature vectors by reducing
dimensionality of vectors from
4096 to 2 dimensions

344 7
1 ny
I S T
£ !&'ﬁr 1 iy

Simple algorithm: Principle
Component Analysis (PCA)

1000

048

N
legse|

More complex: t-SNE

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.
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Saliency Maps

How to tell which pixels matter for classification?
>

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.




Guided BP

Intermediate features via (guided) backprop

RelLU

Forward pass

—>

ag \dense
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E2Y vt
128 2
\ [\
o Backward pass:
13 dense’| |dense)

backpropagation
0 0]-1|3 2|-1)3

128 Max ol L_J
pooling “

; 128
pooling pooling

Backward pass:
“deconvnet”

Pick a single intermediate neuron, e.g. one ABE 2[1]3
value in 128 x 13 x 13 conv5 feature map

Backward pass: 0 BE © 2 e -1
. . guided 6J]ojJo| «<— |6]-3]1
Compute gradient of neuron value with respect backpropagation [ o |3 =

to image pixels il
Images come out nicer if you only

backprop positive gradients through
each RelLU (guided backprop)

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014 Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 Brox, Martin Riedmiller, 2015; reproduced with permission.




Intermediate features via Guided BP

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.




DeepDream: amplitying features

Choose an image and a layer in a CNN; repeat:
1.

2.
3.
4

Rather than synthesizing an image to maximize a specific neuron, instead
try to amplify the neuron activations at some layer in the network

2

pooling

Forward: compute activations at chosen layer Equivalent to:

Set gradient of chosen layer equal to its activation . I* = arg max, Zi fi(I)Z
Backward: Compute gradient on image
Update image



Example: DeepDream of Sky

"Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"




More Examples

[ Py o ¥ % -

Image is licensed under CC-BY 4.0




Python Notelbooks

» An interesting Pytorch Implementation of these visualizatoin methods

» Nhitps://qithub.com/utkuozbulak/pytorch-cnn-visualizations

®» Some examples demo




Neural Style




Example: The Noname Lake in PKU




Left: Vincent Van Gogh, Starry Night
Right: Claude Monet, Twilight Venice
Bottom: William Turner, Ship Wreck




Application of Deep Learning:
Content-Style synthetic
pictures

By “neural-style”
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Neural Style

» | C Johnson's Website: https://qithub.com/jcjohnson/neural-style

» A torch implementation of the paper
» A Neural Algorithm of Artistic Style,

» by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
» hitp://arxiv.org/abs/1508.06576




Style-Content Feature Extraction

Style Reconstructions Lo

Input image L>

¢%ﬁ/o/

Convolutional Neural Network

Content
Representations

Content Reconstructions




Style Features as Second Order Stafistics

Gram matrixes

64x64 128x128 256%256 512x512 512x512

} } } } }

Style Feature e -t PP PP P PP L g




Neural Texture Synthesis

Max 128 Max
pooling pooling

This image is in the public domain.

Each layer of CNN gives C x H x W tensor of
features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors
gives C x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving
Gram matrix of shape C x C

Efficient to compute; reshape features from
CxHxWto =C x HW

then compute G = FFT



Neural Texture Synthesis  &-mpy(e-6)  cei=3un

distance between Gram matrices
7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTOS5

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN, P — = .
record activations on every layer; layer i " Frooms 3321 > GH. [6F S ¥ P
gives feature map of shape C. x H x W. - 9Ey OE,
3. Ateach layer compute the Gram matrix sz, ) oFt i ﬁ T
giving outer product of features: i = conv4_3, = = i ‘\_j FL-1 J
=Y FixFjk (shape C. x C) Y - i ) | ﬁ T
" T | = |
4. Initialize generated image from random .@
noise 1 ﬁ T
5. Pass generated image through CNN, [’ —om om m +J - > | -
compute Gram matrix on each layer ﬁ
6. Compute loss: weighted sum of L2 1'§|';'__ £— o

g6
07

Gradient
descent




Neural Texture Synthesis

Reconstructing texture from
higher layers recovers
larger features from the
input texture

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.




Neural Texture Synthesis: Gram
Reconstruction

relu3_3
N “__;.!’g"'\ o

relu4_3

Texture synthesis
(Gram
reconstruction)




Feature Inversion

Given a CNN feature vector for an image, find a new image that:
- Matches the given feature vector

- “looks natural” (image prior regularization)

» Given feature vector
*

x* = argmin £(®(x),Py) + AR(X)

xE]RHxWxC ~—

» Features of new image

U(2(x), Do) = [|2(x) — Poll”

Rys(x) =) ((Cﬂz’,j+1 — 245)" + (a1 — %’)2)

i \ Total Variation regularizer
’ (encourages spatial smoothness)

(N]ged)

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015




Feature Inversion

Reconstructing from different layers of VGG-16

_3

relu2_2 re1u4 relub_1 relub_3

.

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.




Neural Style Transfer: Feature + Gram

re1u1 2 re1u2 2 re1u3 3 relu4_3

Texture synthesis
(Gram
reconstruction)

relub_3

Feature
reconstruction

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual
Losses for Real-Time Style Transfer and

Super-Resolution”, ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.




Combined Loss for both Content (15" order
statistics) and Style (2n9 order statistics: Gram)

ﬁcontent(ﬁ f l) = 5 Z (Flj . Plj)2
0]
L
'Cstyle(a:, f) — Z lel
=0




Neural Style Transfer

Content Image Style Image | Style Transfer!

Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with
permission.

This image is licensed under CC-BY 3.0




CNN learns texture features, not
shapes!

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HVLBMhCJQ<2tocitem=46
1:16:47




Examples

» Jupyter Notebook Demo




Adversarial Examples and
Robusthess




Deep Learning may be fragile:
adversarial examples

+.007 x =
* sign(Ve J(9, . y)) esign(VgJ (0, x,vy))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

[Goodfellow et al., 2014]

@ Small but malicious perturbations can result in severe
misclassification

@ Malicious examples generalize across different
architectures

@ What is source of instability?

@ Can we robustify network?



Adversarial Examples: Fooling Images

» Start from an arbitrary image
» Pick an arbitrary class
» Modify the image to maximize the class

» Repeat until network is fooled




Fooling Images/Adversarial Examples

African elephant koala Difference 10x Difference

Difference

)




Convolutional Networks lack Robustness

;(’fa'; f,-g% % v ﬂ;g”

+.007 x

“black hole” “donut”
87.7% confidence 99.3% confidence

Courtesy of Dr. Hongyang ZHANG.




Adversarial Robust T

e Traditional training:

mein In(0,z2 = (xi, yi)iz1)

e.g. square or cross-entropy loss as negative log-likelihood of logit
models

e Robust optimization (Madry et al. ICLR'2018):
min max J,(0,z = (x;i +€;, yi) i
in max Ja ( Yi)i=1)

robust to any distributions, yet computationally hard

Extended by Hongyang ZHANG et al. by TRADES, 2019.




Thank you!




