
Statistical Machine
Learning

Yuan YAO

HKUST

1

Course Infomation

´ Course web:
´ https://yao-lab.github.io/course/statml/2022/

´ Time and Venure:
´ Lecture: MonWed, 10:30-11:50am

´ Zoom Meetings from CANVAS

´ Or Rm 2503, Lift 25-26 (87)

´ Instructor:
´ Yuan Yao <yuany@ust.hk> (https://yao-lab.github.io/)

´ Teaching Assistant:
´ ???

2

Course Content

´ Supervised Learning:
´ working knowledge about linear regression, classification, logistic regression,

decision trees (CART), boosting, random forests, support vector machines, neural
networks, etc.

´ Unsupervised and Self-supervised Learning:
´ PCA, Generative Models, Generative Adversarial Networks
´ Self-supervision, e.g. masked language models etc.

´ Reinforcement Learning:
´ Markov Decision Process and online learning, etc.

´ No exams. Project-based evaluation.

A Brief History of AI, Machine
Learning, and Deep Learning

Artificial Intelligence, Machine Learning,
and Deep Learning
´ AI is born in 1950s,

when a handful of
pioneers from the
nascent field of
computer science
started asking
whether computers
could be made to
“think”—a question
whose ramifications
we’re still exploring
today.

5

4 CHAPTER 1 What is deep learning?

1.1 Artificial intelligence, machine learning,
and deep learning
First, we need to define clearly what we’re talking about when we mention AI. What
are artificial intelligence, machine learning, and deep learning (see figure 1.1)? How
do they relate to each other?

1.1.1 Artificial intelligence

Artificial intelligence was born in the 1950s, when a handful of pioneers from the
nascent field of computer science started asking whether computers could be made to
“think”—a question whose ramifications we’re still exploring today. A concise defini-
tion of the field would be as follows: the effort to automate intellectual tasks normally per-
formed by humans. As such, AI is a general field that encompasses machine learning and
deep learning, but that also includes many more approaches that don’t involve any
learning. Early chess programs, for instance, only involved hardcoded rules crafted by
programmers, and didn’t qualify as machine learning. For a fairly long time, many
experts believed that human-level artificial intelligence could be achieved by having
programmers handcraft a sufficiently large set of explicit rules for manipulating
knowledge. This approach is known as symbolic AI, and it was the dominant paradigm
in AI from the 1950s to the late 1980s. It reached its peak popularity during the expert
systems boom of the 1980s.

 Although symbolic AI proved suitable to solve well-defined, logical problems, such as
playing chess, it turned out to be intractable to figure out explicit rules for solving more
complex, fuzzy problems, such as image classification, speech recognition, and lan-
guage translation. A new approach arose to take symbolic AI’s place: machine learning.

1.1.2 Machine learning

In Victorian England, Lady Ada Lovelace was a friend and collaborator of Charles
Babbage, the inventor of the Analytical Engine: the first-known general-purpose,
mechanical computer. Although visionary and far ahead of its time, the Analytical

Artificial
intelligence

Machine
learning

Deep
learning

Figure 1.1 Artificial intelligence,
machine learning, and deep learning

Licensed to <null>

A brief history of AI
´ 1943: McCulloch & Pits proposed a boolean circuit model of neurons
´ 1949: Donald Hebb proposed Hebbian learning rule.
´ 1950: Alan Turing published "Computing Machinery and Intelligence" with

Turing test.
´ 1956: John McCarthy at the Dartmouth Conference coined terminology

"Artificial Intelligence”
´ 1957: Rosenblatt invented Perceptron
´ 1960s: golden years till 1969 Minsky-Papert’s critical book Perceptron
´ 1970s: the first AI winter
´ 1980s: boom of AI with Expert System
´ 1990s: the second AI winter, rise of statistical machine learning
´ 1997: IBM Deep Blue beats world chess champion Kasparov
´ 2012: return of neural networks as deep learning (speech, ImageNet in

computer vision, NLP, …)
´ 2016-2017: Google AlphaGo “Lee” and Zero
´ 2020: Google AlphaFold
´ …

History of A.I.

7

1956 1980 2000 2010

Source: Dr. Lee Kai-Fu • Sinovation Ventures and 2018 Conference on Neural Information Processing Systems

Expert System

Neural Networks
Statistical Machine Learning

“Deep Learning”
“In the first wave of AI you had to be
a programmer. In the second wave
of AI you have to be a data scientist.
The third wave of AI — the more
moral you are, the better.”

AI, Perceptron

Statistical Machine Learning is a new
paradigm of computer programming

´ During 1950s-1980s, two
competitive ideas of realizing
AI exist
´ Rule based inference, or

called Expert System

´ Statistics based inference, or
called Machine Learning

´ 1990s- Machine Learning
becomes dominant

8

5Artificial intelligence, machine learning, and deep learning

Engine wasn’t meant as a general-purpose computer when it was designed in the
1830s and 1840s, because the concept of general-purpose computation was yet to be
invented. It was merely meant as a way to use mechanical operations to automate cer-
tain computations from the field of mathematical analysis—hence, the name Analyti-
cal Engine. In 1843, Ada Lovelace remarked on the invention, “The Analytical Engine
has no pretensions whatever to originate anything. It can do whatever we know how to
order it to perform.… Its province is to assist us in making available what we’re
already acquainted with.”

 This remark was later quoted by AI pioneer Alan Turing as “Lady Lovelace’s objec-
tion” in his landmark 1950 paper “Computing Machinery and Intelligence,”1 which
introduced the Turing test as well as key concepts that would come to shape AI. Turing
was quoting Ada Lovelace while pondering whether general-purpose computers could
be capable of learning and originality, and he came to the conclusion that they could.

 Machine learning arises from this question: could a computer go beyond “what we
know how to order it to perform” and learn on its own how to perform a specified task?
Could a computer surprise us? Rather than programmers crafting data-processing
rules by hand, could a computer automatically learn these rules by looking at data?

 This question opens the door to a new programming paradigm. In classical pro-
gramming, the paradigm of symbolic AI, humans input rules (a program) and data to
be processed according to these rules, and out come answers (see figure 1.2). With
machine learning, humans input data as well as the answers expected from the data,
and out come the rules. These rules can then be applied to new data to produce orig-
inal answers.

A machine-learning system is trained rather than explicitly programmed. It’s presented
with many examples relevant to a task, and it finds statistical structure in these exam-
ples that eventually allows the system to come up with rules for automating the task.
For instance, if you wished to automate the task of tagging your vacation pictures, you
could present a machine-learning system with many examples of pictures already
tagged by humans, and the system would learn statistical rules for associating specific
pictures to specific tags.

1 A. M. Turing, “Computing Machinery and Intelligence,” Mind 59, no. 236 (1950): 433-460.

Answers
Rules

Data
Classical

programming

Rules
Data

Answers
Machine
learning

Figure 1.2 Machine learning:
a new programming paradigm

Licensed to <null>

The 1st machine learning method:
Least Squares

´ Invention:
´ Carl Friederich Gauss (~1795/1809/1810),

´ Adrien-Marie Legendre (1805)

´ Robert Adrain (1808)

´ Application:
´ Prediction of the location of asteroid Ceres after it

emerged from behind the sun (Franz Xaver von Zach
1801)

´ Orbits of planets, Newton Laws

´ Statistics,

´ …

9

Fisher’s Maximum Likelihood Principle
(1912-1922)

´ The least square method is the maximum likelihood estimate (most probable
values of the unknown parameters) when the noise is Gaussian.

´ Fisher, R. A. (1912) On an absolute criterion for fitting frequency curves.
Messenger of Mathematics 41:155-160.

´ Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics.
Philos. Trans. Roy. Soc. London Ser. A 222:309-368.

´ Aldrich, John (1997). R. A. Fisher and the Making of Maximum Likelihood 1912
-- 1922. Statistical Science, 12(3):162-176.

The 1st neural network: Perceptron
Background Info

Perceptron, the basic block

Invented by Frank Rosenblatt (1957)

z = −→w · −→x + b

x1

x2

xd

···

b

f(z)

w1
w2

wd

15 / 50

“The theory reported here clearly demonstrates the feasibility and fruitfulness of a
quantitative statistical approach to the organization of cognitive systems. By the study of
systems such as the perceptron, it is hoped that those fundamental laws of organization
which are common to all information handling systems, machines and men included, may
eventually be understood.” -- Frank Rosenblatt

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. In,
Psychological Review, Vol. 65, No. 6, pp. 386-408, November, 1958.

Cybernetics/neural networks

Norbert Wiener Warren McCulloch & Walter Pitts Frank Rosenblatt

The Perceptron Algorithm
for classification

Project 2 7

http://dx.doi.org/10.1016/j.acha.2015.11.005

In project 1, some explorations can be found here for your reference:

1) Jianhui ZHANG, Hongming ZHANG,Weizhi ZHU, and Min FAN: https://deeplearning-math.
github.io/slides/Project1_ZhangZhangZhuFan.pdf,

2) Wei HU, Yuqi ZHAO, Rougang YE, and Ruijian HAN: https://deeplearning-math.

github.io/slides/Project1_HuZhaoYeHan.pdf.

Moreover, the following report by Shun ZHANG from Fudan University presents a comparison
with Neural Style features:

3) https://www.dropbox.com/s/ccver43xxvo14is/ZHANG.Shun_essay.pdf?dl=0.

Appendix

`(w) = �
X

i2Mw

yi hw,xii , Mw = {i : yi hxi, wi < 0, yi 2 {�1, 1}}.

wt+1 = wt � ⌘tri`(w)

=

⇢
wt � ⌘tyixi, if yiwT

t xi < 0,
wt, otherwise.

ti = yi

Max-Margin:

min kwk2

s.t. yix
T
i w � 1, 8i

f(x) = W2�(W1x)

where �(u) = max(0, u) is ReLU, W1 2 Rd⇥q, and W2 2 Rq⇥1

Margin

� := min
i

yif(xi)

Normalized Margin

�n :=
�

Q2
i=1 kWik

The Perceptron Algorithm is a Stochastic Gradient Descent method
(Robbins-Monro 1951, Ann. Math. Statist. 22(3): 400-407):

Project 2 7

http://dx.doi.org/10.1016/j.acha.2015.11.005

In project 1, some explorations can be found here for your reference:

1) Jianhui ZHANG, Hongming ZHANG,Weizhi ZHU, and Min FAN: https://deeplearning-math.
github.io/slides/Project1_ZhangZhangZhuFan.pdf,

2) Wei HU, Yuqi ZHAO, Rougang YE, and Ruijian HAN: https://deeplearning-math.

github.io/slides/Project1_HuZhaoYeHan.pdf.

Moreover, the following report by Shun ZHANG from Fudan University presents a comparison
with Neural Style features:

3) https://www.dropbox.com/s/ccver43xxvo14is/ZHANG.Shun_essay.pdf?dl=0.

Appendix

`(w) = �
X

i2Mw

yi hw,xii , Mw = {i : yi hxi, wi < 0, yi 2 {�1, 1}}.

wt+1 = wt � ⌘tri`(w)

=

⇢
wt � ⌘tyixi, if yiwT

t xi < 0,
wt, otherwise.

ti = yi

Max-Margin:

min kwk2

s.t. yix
T
i w � 1, 8i

f(x) = W2�(W1x)

where �(u) = max(0, u) is ReLU, W1 2 Rd⇥q, and W2 2 Rq⇥1

Margin

� := min
i

yif(xi)

Normalized Margin

�n :=
�

Q2
i=1 kWik

Finiteness of Stopping Time and Margin

The Perceptron Algorithm

When talking about the functional margin, we are referring to the functional margin of
the entire dataset, defined as the minimum of all functional margins:

� =min
i

tiwTxi . (9)

With these definitions in place, we can now continue to prove the convergence theorem.
The perceptron convergence theoremwas proved by Block (1962) andNoviko↵ (1962).

The following version is based on that in Cristianini and Shawe-Taylor (2000).

Theorem 1 (Block, Noviko↵). Let the training set S = {(x1, t1), . . . , (xn, tn)} be contained in
a sphere of radius R about the origin. Assume the dataset to be linearly separable, and let
wopt , kwoptk = 1, define the hyperplane separating the samples, having functional margin
� > 0. We initialise the normal vector asw0 = 0. The number of updates, k, of the perceptron
algorithms is then bounded by

k

2R
�

!2
. (10)

Proof. Though the proof can be done using the augmented normal vector and samples
defined in the beginning, the notation will be a lot easier if we introduce a di↵erent
augmentation: ŵ = (wT, b/R)T = (w1, . . . ,wD,b/R)T and x̂ = (xT,R)T = (x1, . . . ,xD,R)T.
We first derive an upper bound on how fast the normal vector grows. As the hyper-

plane is unchanged if we multiply ŵ by a constant, we can set ⌘ = 1 without loss of
generality. Let ŵk+1 be the updated (augmented) normal vector after the kth error has
been observed.

kŵk+1k2 = (ŵk + ti x̂i)T(ŵk + ti x̂i) (11)

= ŵT
k ŵk + x̂Ti x̂i +2tiŵT

k x̂i (12)

= kŵkk2 + kx̂ik2 + 2tiŵT
k x̂i . (13)

Since an update was triggered, we know that tiŵT
k x̂i 0, thus

kŵkk2 + kx̂ik2 + 2tiŵT
k x̂i kŵkk2 + kx̂ik2 (14)

= kŵkk2 + (kxik2 +R2) (15)

 kŵkk2 + 2R2 . (16)

This implies that kŵkk2 2kR2, thus

kŵk+1k2 2(k +1)R2 . (17)

We then proceed to show how the inner product between an update of the normal
vector and ŵopt increase with each update:

ŵT
optŵk+1 = ŵT

optŵk + tiŵT
optx̂i (18)

� ŵT
optŵk +� (19)

� (k +1)� , (20)

since ŵT
optŵk � k� . We therefore have

k2�2 (ŵT
optŵk)2 kŵoptk2kŵkk2 2kR2kŵoptk2 , (21)

where we have made use of the Cauchy-Schwarz inequality. As k2�2 grows faster than
2kR2, Eq. (21) can hold if and only if

k 2kŵoptk2
R2

�2 . (22)

3

The Perceptron Algorithm

When talking about the functional margin, we are referring to the functional margin of
the entire dataset, defined as the minimum of all functional margins:

� =min
i

tiwTxi . (9)

With these definitions in place, we can now continue to prove the convergence theorem.
The perceptron convergence theoremwas proved by Block (1962) andNoviko↵ (1962).

The following version is based on that in Cristianini and Shawe-Taylor (2000).

Theorem 1 (Block, Noviko↵). Let the training set S = {(x1, t1), . . . , (xn, tn)} be contained in
a sphere of radius R about the origin. Assume the dataset to be linearly separable, and let
wopt , kwoptk = 1, define the hyperplane separating the samples, having functional margin
� > 0. We initialise the normal vector asw0 = 0. The number of updates, k, of the perceptron
algorithms is then bounded by

k

2R
�

!2
. (10)

Proof. Though the proof can be done using the augmented normal vector and samples
defined in the beginning, the notation will be a lot easier if we introduce a di↵erent
augmentation: ŵ = (wT, b/R)T = (w1, . . . ,wD,b/R)T and x̂ = (xT,R)T = (x1, . . . ,xD,R)T.
We first derive an upper bound on how fast the normal vector grows. As the hyper-

plane is unchanged if we multiply ŵ by a constant, we can set ⌘ = 1 without loss of
generality. Let ŵk+1 be the updated (augmented) normal vector after the kth error has
been observed.

kŵk+1k2 = (ŵk + ti x̂i)T(ŵk + ti x̂i) (11)

= ŵT
k ŵk + x̂Ti x̂i +2tiŵT

k x̂i (12)

= kŵkk2 + kx̂ik2 + 2tiŵT
k x̂i . (13)

Since an update was triggered, we know that tiŵT
k x̂i 0, thus

kŵkk2 + kx̂ik2 + 2tiŵT
k x̂i kŵkk2 + kx̂ik2 (14)

= kŵkk2 + (kxik2 +R2) (15)

 kŵkk2 + 2R2 . (16)

This implies that kŵkk2 2kR2, thus

kŵk+1k2 2(k +1)R2 . (17)

We then proceed to show how the inner product between an update of the normal
vector and ŵopt increase with each update:

ŵT
optŵk+1 = ŵT

optŵk + tiŵT
optx̂i (18)

� ŵT
optŵk +� (19)

� (k +1)� , (20)

since ŵT
optŵk � k� . We therefore have

k2�2 (ŵT
optŵk)2 kŵoptk2kŵkk2 2kR2kŵoptk2 , (21)

where we have made use of the Cauchy-Schwarz inequality. As k2�2 grows faster than
2kR2, Eq. (21) can hold if and only if

k 2kŵoptk2
R2

�2 . (22)

3

The Perceptron Algorithm

Figure 1 A dataset consisting of two classes separated by a hyperplane wTx + b = 0. The func-
tional margin � is the shortest distance from the hyperplane to any of the samples. The
distance from the hyperplane to the origin is b.

steps such that it, on average, moves closer to the minimum of Eq. (3). More formally,
we obtain the normal vector of iteration k +1 as follows:

wk+1 =wk +�w. (4)

The minimisation scheme we will use is known as stochastic gradient descent (SGD)
and updates the normal vector each time it encounters a misclassified point. In SGD
�w = �⌘rE(w), where ⌘ is the so-called learning rate parameter. Thus,

wk+1 =wk � ⌘rE(w) (5)
=wk + ⌘tixi . (6)

To update the normal vector, all we have to do is to add (or subtract) one of the mis-
classified samples.
This concludes the perceptron learning algorithm. To find a hyperplane separating

the classes of the training set, we continuously apply Eq. (6) until no misclassified
points are left. Note, however, that each time we update the normal vector, some of the
previously correctly classified samples may become misclassified, so the perceptron
learning algorithm (Eq. (6)) is not guaranteed to reduce the overall error with each
update. The perceptron convergence theorem, however, states that if it is possible to
separate the two classes of the dataset with a hyperplane, then the perceptron learning
algorithm is guaranteed to find it in a finite number of iterations.

The perceptron convergence theorem

To prove the perceptron convergence theorem, we need to introduce some definitions.
Fig. 1 illustrates the situation of a hyperplane separating a dataset consisting of two
classes. The first definition we will need is the concept of a containing sphere centred
at the origin. This sphere will have a radius R, such that

R =max
i
kxik . (7)

The second definition we will need is that of the functional margin. This is simply the
distance from the hyperplane to a sample xi ,

�i = tiwTxi . (8)

2

Project 2 7

http://dx.doi.org/10.1016/j.acha.2015.11.005

In project 1, some explorations can be found here for your reference:

1) Jianhui ZHANG, Hongming ZHANG,Weizhi ZHU, and Min FAN: https://deeplearning-math.
github.io/slides/Project1_ZhangZhangZhuFan.pdf,

2) Wei HU, Yuqi ZHAO, Rougang YE, and Ruijian HAN: https://deeplearning-math.

github.io/slides/Project1_HuZhaoYeHan.pdf.

Moreover, the following report by Shun ZHANG from Fudan University presents a comparison
with Neural Style features:

3) https://www.dropbox.com/s/ccver43xxvo14is/ZHANG.Shun_essay.pdf?dl=0.

Appendix

`(w) = �
X

i2Mw

yi hw,xii , Mw = {i : yi hxi, wi < 0, yi 2 {�1, 1}}.

wt+1 = wt � ⌘tri`(w)

=

⇢
wt � ⌘tyixi, if yiwT

t xi < 0,
wt, otherwise.

ti = yi

Max-Margin:

min kwk2

s.t. yix
T
i w � 1, 8i

f(x) = W2�(W1x)

where �(u) = max(0, u) is ReLU, W1 2 Rd⇥q, and W2 2 Rq⇥1

Margin

� := min
i

yif(xi)

Normalized Margin

�n :=
�

Q2
i=1 kWik

Input ball:

Margin:

The Perceptron Algorithm

Figure 1 A dataset consisting of two classes separated by a hyperplane wTx + b = 0. The func-
tional margin � is the shortest distance from the hyperplane to any of the samples. The
distance from the hyperplane to the origin is b.

steps such that it, on average, moves closer to the minimum of Eq. (3). More formally,
we obtain the normal vector of iteration k +1 as follows:

wk+1 =wk +�w. (4)

The minimisation scheme we will use is known as stochastic gradient descent (SGD)
and updates the normal vector each time it encounters a misclassified point. In SGD
�w = �⌘rE(w), where ⌘ is the so-called learning rate parameter. Thus,

wk+1 =wk � ⌘rE(w) (5)
=wk + ⌘tixi . (6)

To update the normal vector, all we have to do is to add (or subtract) one of the mis-
classified samples.
This concludes the perceptron learning algorithm. To find a hyperplane separating

the classes of the training set, we continuously apply Eq. (6) until no misclassified
points are left. Note, however, that each time we update the normal vector, some of the
previously correctly classified samples may become misclassified, so the perceptron
learning algorithm (Eq. (6)) is not guaranteed to reduce the overall error with each
update. The perceptron convergence theorem, however, states that if it is possible to
separate the two classes of the dataset with a hyperplane, then the perceptron learning
algorithm is guaranteed to find it in a finite number of iterations.

The perceptron convergence theorem

To prove the perceptron convergence theorem, we need to introduce some definitions.
Fig. 1 illustrates the situation of a hyperplane separating a dataset consisting of two
classes. The first definition we will need is the concept of a containing sphere centred
at the origin. This sphere will have a radius R, such that

R =max
i
kxik . (7)

The second definition we will need is that of the functional margin. This is simply the
distance from the hyperplane to a sample xi ,

�i = tiwTxi . (8)

2

14

15 Kolmogorov’s Superposition Theorem

If f is a multivariate continuous function, then f can be written as a superposition of composite
functions of mixtures of continuous functions of single variables:
finite composition of continuous functions of a single variable and the addition.

Theorem (A. Kolmogorov, 1956; V. Arnold, 1957)

Given n 2 Z+
, every f0 2 C ([0, 1]n) can be reprensented as

f0(x1, x2, · · · , xn) =
2n+1X

q=1

gq

0

@
nX

p=1

�pq(xp)

1

A ,

where �pq 2 C [0, 1] are increasing functions independent of f0 and

gq 2 C [0, 1] depend on f0.

Can choose gq to be all the same gq ⌘ g (Lorentz, 1966).

Can choose �pq to be Hölder or Lipschitz continuous, but not C 1

(Fridman, 1967).

Can choose �pq = �p�q where �1, · · · ,�n > 0 and
P

p �p = 1
(Sprecher, 1972).

Xiling Zhang PG Colloquium 06 Oct 2016 4 / 14

16 Kolmogorov’s Exact Representation is
not stable or smooth

´ [Girosi-Poggio’1989] Representation
Properties of Networks:
Kolmogorov’s Theorem Is Irrelevant,
https://www.mitpressjournals.org/d
oi/pdf/10.1162/neco.1989.1.4.465

´ Lacking smoothness in h and g
[Vitushkin’1964] fails to guarantee
the generalization ability (stability)
against noise and perturbations

´ The representation is not universal in
the sense that g and h both
depend on the function F to be
represented.

Universal Approximate Representation
[Cybenko’1989, Hornik et al. 1989, Poggio-Girosi’1989, ...]Cybenko’s Universal Approximation Theorem (1989)

For continuous f : [0, 1]N ! R and " > 0 there exists

F (x) = ↵
>
�(Wx + �)

=
X

i

↵i�

0

@
X

j

Wi,j xj + �i

1

A

such that for all x in [0, 1]N we have |F (x)� f (x)| < ".

11Complexity (regularity, smoothness) thereafter becomes the central pursuit in
Approximation Theory.

18 Locality or Sparsity of Computation

Why are compositional
functions important?

Which one of these reasons:
Physics?

Neuroscience? <===
Evolution?

What is special about
locality of computation?

Locality in “space”?

Locality in “time”?

Locality of Computation

Locality or Sparsity is important:
Locality in time?
Locality in space?

Minsky and Papert, 1969
Perceptron can’t do XOR classification
Perceptron needs infinite global

information to compute connectivity

ᐟᕪᗑᕶጱᒫӞེ٧

Marvin Minsky
(1927-2016)

Seymour Papert
(1928-)

1969ଙڊᇇ̽Perceptrons̾Ӟԡ҅ᦊԅՐᶌ
ੴ᮱ᬳളጱᐟᕪᗑᕶ෫ဩํපᦒᕞ
զ݊உग़ᤩݸጱᘏժզᦝփᦝጱᥡᅩ

19
Multilayer Perceptrons (MLP) and
Back-Propagation (BP) Algorithms

D.E. Rumelhart, G. Hinton, R.J. Williams (1986)
Learning representations by back-propagating

errors, Nature, 323(9): 533-536

BP algorithms as stochastic gradient descent
algorithms (Robbins–Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

Deep network may classify XOR. Yet topology?

Background Info

Multi-layer perceptron

17 / 50

We address complexity
and geometric invariant
properties first.

20
Multilayer Perceptrons (MLP) and
Back-Propagation (BP) Algorithms

D.E. Rumelhart, G. Hinton, R.J. Williams (1986)
Learning representations by back-propagating

errors, Nature, 323(9): 533-536

BP algorithms as stochastic gradient descent
algorithms (Robbins–Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

Deep network may classify XOR. Yet topology?

Background Info

Multi-layer perceptron

17 / 50

We address complexity
and geometric invariant
properties first.

Parallel Distributed Processing
by Rumelhart and McClelland, 1986

,,�ƻ ğË�ǐ3�3ǐþ�7ėÿµ�ĠÜı¶ǐ

�
���M ��M !2/[EA/	=$X/J[G/K+/HTLEA[%A%>YZ/,[)Y[�4BQ;Y[&C,[=âųôžƨtƻ f3ſůŎƻüŔƜłŕƐƝƞƋƃOǐ
*X[�
[çhǐ �5DS<Y['A-[��, �(H/MW�[�����[�%?*M6.1/�[���[��"[=ƀõ$$sƻ �FHXN713U[����[*Y[
��#[�O/RR�[/IP8DV/,[)X[H0M@9SS:EA��[

ˑ�ɻ&çRಳ�!�ಳ Û�ʯ*چ��&ಳ ̗!�єಇ&�&ಳ �Ǵಳ �Ή*ಳ ૃ�Φ�ా����!&ಳ �Ǵಳ �-*ಳ ���ܦ*ˬ���ಳ ���Ė
Ծ���A�!ɘಳ ZחǂÂ�*�ಳ %��Ήಳ &��*ಳ �Ǵಳ ƆŪ*ಳ ಳؿ�;�* ȦǂZZ*Ȧ&*Ȧಳ ĉ"ಳ ɒ�*ಳ Ŷ#ĉt�Zಳف& ʯ�ĉĖ
Z�&&�!Oಳ ���7��Z-ಳ Į�ƻ ��� �ǴZß�ʧಳ �!�*� � ßO*!Z*ۿಳ %�&ಳ *!��OBಳ ��ಳ &���*&�ಳ �ĉಳ �ಳ
t�7�*ಳ ɻǂ�#*�ಳ ĉǴಳ ¢���*�&ಳ �!ಳ 8�*ಳ 3�*t�ಳ ����ಳ ��*7*ಳ %�&ಳ !�ಳ "[�[A�ಳ � ಳ
ŏ*�Z*ŏ���!ܧt �ç*ಳ Z��ŏ[8����!�tಳ �*)�Z*&ಳ "�Aಳ �ɿ� �ɧZ��ȟಳ ֝!�*ȟ� �O*!Z*ಳ� �ಳZĉOĖ
!� � �)*ಳ �&RZʜ�ૄ�O̅فಳ Ġ-�ಳ ʯA�#t*�ಳ M&ಳ ʂ���ಳ �t͏Ή�ǂO�ಳ ˑ�!&çRಳ �!�ಳ Õ�ƒ�7�ಳ
%*A*ಳ ���Ǵ�Z��`ಳ Z���*Z�ಳ � ಳ �-*��ಳ ಳ܀&�&`��!� �-*ಳ �*&[��&ಳ ��ƒt�ಳ �!��ಳ ��ಳ ��*&*ಳ
&���t*ಳ ��R*7ಳܨ*!� ŏ*�Z*�Ɔ ��ɻ&ಳ �!�ಳ !��ಳ �ĉಳ ��*ಳ ȟ�γO*�ಳ �ŅB]]ƻ Výƻ#�\E�#&\Ű�ƺ
ȟƐç*ಳ ���*t& Ǆ ಳ ͮ!ಳ ���� �Zǂ���ಳ ƙ�&ಳ ː°!&��ಳ �!�ಳ Õ�ŏ*��ಳ �Z���ȟ�Rಳ Zĉ�Z*˙*�ƚ Ǫಳ � � ಳ
V�!ಳ ɣ*ಳ &��% ಳ Ðʜ̗Ðಳ �ಳ ��nؙ� t������ಳ �*7Z*נƆಳ��!ಳ &R&���òಳ �!Z�[�� Oಳ &*)*��ѓಳ
t���A&ಳ �Ǵಳ�A*��Z��*&ಳ #��%**!ಳ �-*ಳ �*�սĔ�ಳ �Ĕ�ಳ �-�ಳ �*Z�&�ĉ ಳا��O*òಳ Z� ಳ Z��Ȭ
ିǂ͏*ಳ Ǵǣ!Z؏ �ಳ�� &�Z�ಳ ��ಳ Â�7ն��òಳ �&� Oಳ ѷ*��ĉ!�f�*ಳ !��#*A&ಳ �ęಳ�!�͏&ಳ *�Z�ಳ
Z������!Oಳ �ಳ)*��ಳ t�V�ȟಳ ୀA*��Z��*ɞ ಳ ƙŰ**ಳ ÜB���*�&ಳ ʏಳ � �ಳ ƫಳ ǴĉŸಳ *ª��T�*&ಳ
ĉ"ಳ ��» � ���*�ಳ !*Ɔ%���&ಳ &čBƩƻ �Vŏ#Ʈ&�ƻ ƒ��ж �`ƚ ϲಳ Ű �ē� ���ȟ�òಳ � � ಳ �ͅಳ �ಳ ��ࣖĖ
�t�ಳࢍ ి�ಳ ��)*tĉÂಳ !*�%�ʳç�ಳ V�¯�#�*ಳ �ęಳ Ɗ"ŊƲĲŤĆƻ ˹ų�ಳ Z�!!����˙!*Ă&ಳ ƌƢǐ
ਉ!&G��ީ�[�&��*ಳ Â��#�*�Ǆಳ Ԍռ!�� ಳ �!�ಳ Ű*ŵ!�%&çրಳ -�)*ಳ �!���ಏ*�ಳ �ಳ)*̺ழ��Ƒಳ
�"ಳ�ǂZ�ಳ�ಳ !*@%ĉ�çಳ ƙ&**ಳÜ-�ƒƆ*�ಳȌϔ ϧಳ

ͫ&&*!�±�ׁ ��ಳ܁ Ɔʜ*! òಳ �nƆ�ĉñOʜಳࠧÖ!���ಳ�!�ಳԢ�ƒ*7�ಳ %*�*ಳ*ª�Z��`ಳZĉ��*Z�ಳ į�ƻ
ʜ*֜ಳ[ƻث �!�ƞ�&н&ಳ ĉ"ಳ ��*ಳ sl5
^�©5�° w0�'.z��um�° �¾*ಳ ��*��*��ಳ î"Tdƪƻ �ƒƒtǥಳ Ɔ�ಳ
&�&�*�&ಳ %-֝Z-ಳ ˗��ಳ*)* ಳ �ಳ t ˧ �ృȟ*ಳ Ѩ��*ಳZĉɶʮȟ*ª Ӗ ಳ ಳ ࠚ ��ZǒΥĢخĢgס ò ಳ к � ಳ˙�*�!ీڇಳ
�ƒסt`ಳ ��ಳૅ��Θ���*�ಳ&�&�*�&ಳ!��ಳ ��ಳ&`�»�ē&ಳ ˹'��ಳ�ё Ѡ�%ಳ࣌�*�f�Z�ಳ ֲ�"ƒ� ��

Ѓ�!&��ಳ �!˙ಳ Û��*À�ಳ ��O�*�ಳ ����ಳ �����ಳ %��t�ಳ ଢ��ಳ æ�ƻ ��Z�ಳ)�Ɂ��ಳ Ɔĉ ಳ
ưેÐ Ƿ �`*�ಳ Ȣ*��eσ7�!& Ɗಳ ȑ� A&�ӈಳ σ-*`ಳ ��O�*�ಳ ు-��ಳ ూ�*�*ಳ &�&ʈ*��ಳ ��*ಳ &�ࣗಫ
İ�*!�t`ಳ �!�*&͏À�Z�*Ʒಳ �&ಳ ��ಳ #*ಳ)�Z��ǂ&ϟಳ Ġ-�Rಳ 4ĉਊĔ���ಳ �ǒ�Ӊಳ "ĉ�ಳ 4��ػ�ȟ*܂ಳ
ɒ-��ಳ �ಳ ǂĔ�)*7&��ಳ Zĉ�ƒǂ�*Aಳ Z�<��ಳ #*ಳ ĵǂ̦ � � ಳ ��͊ಳ �Ǵಳ t Gˬ*βಳ ��ʲ�&-���ಳ ���ǁ& ƛ ಳ

�=?`)W��f	�W�I�4f

��(���� ��(�!#&#(ԑࠗ࠘ಳ

Ð�¸ƻ��°2�?�»Ñƻ?¿ƻ Ó42ƻ Å�Æƻ �ÇÈÌ9��4ƻ

Ã�Äƻ
:��1CK �A�K �::K���+K

%E8� ge8�V'�8p� l8v.8l�pgf�� Ġ՞�ಳ ��&Pಳ Z�ìì�Ĕn`ಳ -��A�ಳ �#ъ�ZP֛�Ĕಳ P�ಳ
ÕšǮಳ��Ų�Υ�ಳ ß&ಳ �ಳ)�Aß� Pಳ �"ಳP¸�ಳ Zn�ß�ಳ P¸�Pಳ ÛšÛಳ����n&ಳZ�Ɉ �Pಳ ��A"�A�ಳ
� `ಳ ßĔ P�À�&P ß!Oಳ ,��evP�Pß�Ĕ& ͧ ಳ ƋĔ�ಳ)�Ḁ�ѰPಳ O��&ಳ n շç�ಳ P-�&ߊಳ ٬Ţ��&�ಳ ÛšǮಳ
ì�
�n&ಳ &��
ಳ �ಳ ઼�Pಳ n ß ç�ಳ e�AZ��PA� &ಳ Ɔ�ಳ�ಳޟ� šЫ�ĔڅPಳ ˑ/Ĕ&ç`ಳ �Ĕ�ಳ Û���À�ಳ
&��%ಳ ����ಳ ¯�À�����!ə࠙�ç�ಳ ��
�ઽ&ಳ ���n�$ ϐPಳ ��ಳ �ŷ`P�� �ಳ Ƿ ĲP�À�&P/H٭ߣ�ಳ
Б�Ǝ & ಳ ,���� �ಳ À�ƒÀ�&� P&ಳ �ಳ �
ה�&/�;&���
�ŷ=ಳ �"ಳ %��Pಳ Ѓ��&я`ಳ �Ĕ�ಳ
PX¼lÇÔë �,636
ë ಳ*(� �ZP��n ķ`ಳ &-�%$Ӱಳ 9ë #À֜�"ಳ &ç�PZऊಳ E"ಳ P¸�ಳ Z�P�ªƆಳ ĭţƻ
%-�,�ಳ ˒�&я`ಳ � �ಳ Õ���;ءಳ %A�P�ಳ %/ќnಳ ��ા�ಳ Հn�Ѻ Ƿɦ`ಳ P��ಳ κت�ȩ�Pȝ�! ˆ ಳ ��ಳࡆڗ
Ü���P�Aಳ ʏಳ �Aಳ�ಳ࣊ &���%ऋ�Pಳ �_ƞ n�Àಳ�,Z�vଡసಳ �"ಳహ¸�&ಳऌ/&P�A` ˆ Ǩ ಳ

¬�ƻ ��ಳ n�Á�ಳ ̏ ɠʏů&ಳ�
ಳC�Aિ`ಳ ̏ӻǅů&ಳ P¸�A�ಳ ¢ġ&ಳ �ಳ ࣯À��Pಳ ���ׁಳ �" ಳ�"࣋�;Áಳ ਅɈಳ
P��ಳ ��ɕ�n���* ಳ �Ȗಳκ*nܤ��ÀO�$ ß͙ / �ಳ $�P%EAç&ಳ �$�ಳ &թ�цn�AಳǮšÛܥnΜçࢯಳZ�ìಪ
�vP�P�� �Ʉಳ ˘�)ß,�&ޠಳ Ġ՞�ಳ #�&Ɔಳ ç �%àಳ �"ಳ P��&�ಳ ¢�&ಳ P-�ಳ x.�&.x��tl°
��~�n���
ಳ #`ಳ ȑA� çಳ ǖ�&� #n�PPಳ ƙ&��ĭಳ "�Aಳ �ª���ƞۼ�ಳ Ԥ�&�Ĕ#n�Ð P ĭ ಳ ȳ ɠ3Ǭƚ .�
ʕ���Ǡ#̳���ಳ %�&ಳ)�À`ಳ �ĲP-�&̥�&P/Zಳ �#�vPಳ P-�ಳ ��̺Z��PA�Ĕಳ � �ಳ Ū�e�"vn ಳ P��Pಳ
ß P ಳ ,��n
ಳ ��(\�ಳ ��ಳ ���ಳ #�&ß&ಳ #�P-ಳ �"ಳ�À� �ȘZ/�nಳ /Ĕ P�nƞ ßO�ĔZ�ಳ �Ĕ�ಳ P-�ಳ ×���n Ė
�Ǡ�ಳ �3ಳ Ʋ��ಳ �À�ø ϴಳ ࠦȝ&�`ಳ �H
ಳ �ƒ�ÀP࠼ ƨಳ %ų�ಳ "�)�A�
ಳ �ಳ �1{F�Z° �̈ i!vV° z{s
%.��Ol;° A��(E���ƻ Ʋ�ಳ �ÀP ß"Ɛ,/�nಳ ȝ Ĳ��� n øO� Z�ƨಳ vH
�ÀP��çಳ �ಳ)�À�ಳ Z�À�"s̱ಳ
ׂ�P����Pø,�ƞಳ �Ĳ�ીR&ਆ&ಳ �"ಳ �̡�ಳ eŦx��r�̼��ಳ ß� ಳ ʇ�ŦßÀಳ ̏ӻǅɠಳ #���ಳ � �ßఽn۽࢛�ಳ
� 6�e̳� $��.{%.z��tl��°

Ġ��ಳ e�À,��PÀ�Ĕಳǆß &ç`ಳ�ˬ�ಳ Ǯ���ÀPಳ �$�ƞ`ಎ��ಳ�&ɏಳ Հn�&�Ǻ`ಳ Ƿ & ಳǷ Ǻ nş&PA�P��ಳ
ਇ ಳ ͬ�OvÀ�ಳ ಳޡ̏ Ű���ಳ ��Z�/ �&ಳ Z�Ĕ&ß&Áಳ �"ಳ¢��Pಳ ß& ಳ =�Ѭ�;�Ǻn` ಳZ�nુ��ಳ �ಳ �6�Pl��°
�Ĳಳ �((��ಳ �ȸಳ #ƐĲ�À`ಳ /Ĳ�şP&ಳ &���P/��&ಳ P�ç� ಳ P�ಳ #�ಳ �AA� O��ಳ ΛHಳ �ಳ Ɔ%�Ҟ

ȝ��H&��Ĳ�nಳ &e�Pß�nಳ n�`��Pߝಳ �ಳ &�Pಳ �"ಳx�3-Q"��.��° �ಳ &�Pಳ �"ಳ#/Ĕ�A`ಳ ��̼����Υ
ಳ
v ßP&ಳ%øS�ಳ Ș ª�Ųಳ �� Ĕ�ZP/� &ಳ P�ಳ �ಳ &�#&�Pಳ �"ಳv /P&ಳ ß ಳ P-�ಳ A�P/Ĕ�ಳ&v,�ಳ P���ಳ
��V'ಳ ���ŲDV�ν�ಳ ,����P�&ಳ &���ಳ n�,�nಳ "v ��/�Ĕಳ �~�Aಳ P��ಳǣǈ���ಳ �ȸಳה�ß P&ಳ P�ಳ
ƴ��F�ƻ İ�ƻ ��ƻ V� H�Vష�
ಳߛ � Ųಳ �H�ಳ�(ಳ��y�ಳ
�Z�&/�$ಳ ǂHß ಳ۾&� %ɰ�-ಳ ��ŲȽɧ�#Ʉ�ಳ
�� �,ń�� �ಳ Ʋ�ಳ Ʋ'Ŧಳ �À�Ųȝ��Ʋ�� /� ಳ&�ࡒ ����ȝ �ಳ ��&ಳ �ќ�ಳ �H�ಳ n�`�Àಳ �3ಳ
��
ƃࣣ�ԸJ�ಳ�ĝ �*��6ߜ���ಳ "�(ಳ P�/&ಳ ;*�&��ಳ%�ಳ%ßૂnಳ Z�n ƞ ಳ ˧Pಳ �ಳtl.
Z�¨3{° ��ļ,�eҞ
PÀ�Ϭಳ

Є˦Ǡ���ಳ ��Ųಳ Õ���(�ಳ &�Pಳ ��Áಳ Ɔ�ಳ &��%ಳ%˟ßZ˟ಳ "v ZP/�ˬ&ಳ ,�$ಳ �Ĕ
ಳ Z� !�Pಳ
Й�ಳŅ�g��ƲŦŲಳИ`ಳ &��خ ಳ̛n�&&ಳ �"ಳ���ΉßĲ�& ˊಳ ŢФ�`ಳ���� &PÀ�ɏ�
 ǩಳ ß ಳ e�ĻŮ֛,�Ė
n�Àƨಳ P���ಳ &�Zɩಳ ��À,���À�!&ಳ �À�ಳ v �#n�ಳ P�ಳ Z�n�ౚ��P�ಳ &vZ-ಳ ��P����P�Z�nಳ
ȸ�H�Ʋƃ�H�ಳ��ಳ e�Àȝ�` ಳ ϑ%��P��Àಳ� ಳ �Ų
ಳ�̼ಳ�)�Ĕಳ Ĕ��#�Àಳ�"ಳ��ß P&ಳ�A�ಳ � ಳ ȝ$ ಳ
�'� ಳ (�ƲD���� W�ƻ ��� ಳ P�ƒ���Oø,�nಳ "�H,P ø�Ĳಳ �" ಳ,� �,P�� �&&ಳ ƙ%���Ъ�Àಳ �JΥಳ
��D ɑ�ಳ �'�҇ಳ �g�ಳ � ಳ �̾�ಳ �� ��Ʋ�Ųಳ ��ಳ �n nಳ �P��Àಳ ��ß P&ಳ P��Pಳ �À�ಳ �Hಳ � ß ���Àಳ
I���F�Ň'ƻ !�ƻ Ƈ��ಳ !�Ď��ƻ �WıS��ƻ ����ƻ �À�ಳ �̱&�ಳ � ğಳ %ßP���Pಳ ���D�Ąƻ ���ಳ �3ಳ
�è&Ư�Iň'ƻ ŉã�ą�ƻ SưŐç���ƻ �3ಳ�̾�
���Ʋ��ϴಳ ɢ'�ಳ� �ķ`&�&ಳ 6 � ಳ*ªƲ̼*��J�ಳ�ķ����Ʋಳ
�
ಳ
�g���z���&ಳ P��ಳ ਈ�e�ÀP�Ĕ,�ಳ�ȸಳXë ������఼ßZ�nಳ ���A��Z�ಳ Ʋ�ಳ �Ǡ�+�ي
6 �ಳ V�Ʌ��Ʋ£ÁD���̳ಳ&'&P�{s�ăČ_śíƻ´C_öƁCņƻ

Parallel Distributed Processing
by Rumelhart and McClelland, 1986

,,�ƻ ğË�ǐ3�3ǐþ�7ėÿµ�ĠÜı¶ǐ

�
���M ��M !2/[EA/	=$X/J[G/K+/HTLEA[%A%>YZ/,[)Y[�4BQ;Y[&C,[=âųôžƨtƻ f3ſůŎƻüŔƜłŕƐƝƞƋƃOǐ
*X[�
[çhǐ �5DS<Y['A-[��, �(H/MW�[�����[�%?*M6.1/�[���[��"[=ƀõ$$sƻ �FHXN713U[����[*Y[
��#[�O/RR�[/IP8DV/,[)X[H0M@9SS:EA��[

ˑ�ɻ&çRಳ�!�ಳ Û�ʯ*چ��&ಳ ̗!�єಇ&�&ಳ �Ǵಳ �Ή*ಳ ૃ�Φ�ా����!&ಳ �Ǵಳ �-*ಳ ���ܦ*ˬ���ಳ ���Ė
Ծ���A�!ɘಳ ZחǂÂ�*�ಳ %��Ήಳ &��*ಳ �Ǵಳ ƆŪ*ಳ ಳؿ�;�* ȦǂZZ*Ȧ&*Ȧಳ ĉ"ಳ ɒ�*ಳ Ŷ#ĉt�Zಳف& ʯ�ĉĖ
Z�&&�!Oಳ ���7��Z-ಳ Į�ƻ ��� �ǴZß�ʧಳ �!�*� � ßO*!Z*ۿಳ %�&ಳ *!��OBಳ ��ಳ &���*&�ಳ �ĉಳ �ಳ
t�7�*ಳ ɻǂ�#*�ಳ ĉǴಳ ¢���*�&ಳ �!ಳ 8�*ಳ 3�*t�ಳ ����ಳ ��*7*ಳ %�&ಳ !�ಳ "[�[A�ಳ � ಳ
ŏ*�Z*ŏ���!ܧt �ç*ಳ Z��ŏ[8����!�tಳ �*)�Z*&ಳ "�Aಳ �ɿ� �ɧZ��ȟಳ ֝!�*ȟ� �O*!Z*ಳ� �ಳZĉOĖ
!� � �)*ಳ �&RZʜ�ૄ�O̅فಳ Ġ-�ಳ ʯA�#t*�ಳ M&ಳ ʂ���ಳ �t͏Ή�ǂO�ಳ ˑ�!&çRಳ �!�ಳ Õ�ƒ�7�ಳ
%*A*ಳ ���Ǵ�Z��`ಳ Z���*Z�ಳ � ಳ �-*��ಳ ಳ܀&�&`��!� �-*ಳ �*&[��&ಳ ��ƒt�ಳ �!��ಳ ��ಳ ��*&*ಳ
&���t*ಳ ��R*7ಳܨ*!� ŏ*�Z*�Ɔ ��ɻ&ಳ �!�ಳ !��ಳ �ĉಳ ��*ಳ ȟ�γO*�ಳ �ŅB]]ƻ Výƻ#�\E�#&\Ű�ƺ
ȟƐç*ಳ ���*t& Ǆ ಳ ͮ!ಳ ���� �Zǂ���ಳ ƙ�&ಳ ː°!&��ಳ �!�ಳ Õ�ŏ*��ಳ �Z���ȟ�Rಳ Zĉ�Z*˙*�ƚ Ǫಳ � � ಳ
V�!ಳ ɣ*ಳ &��% ಳ Ðʜ̗Ðಳ �ಳ ��nؙ� t������ಳ �*7Z*נƆಳ��!ಳ &R&���òಳ �!Z�[�� Oಳ &*)*��ѓಳ
t���A&ಳ �Ǵಳ�A*��Z��*&ಳ #��%**!ಳ �-*ಳ �*�սĔ�ಳ �Ĕ�ಳ �-�ಳ �*Z�&�ĉ ಳا��O*òಳ Z� ಳ Z��Ȭ
ିǂ͏*ಳ Ǵǣ!Z؏ �ಳ�� &�Z�ಳ ��ಳ Â�7ն��òಳ �&� Oಳ ѷ*��ĉ!�f�*ಳ !��#*A&ಳ �ęಳ�!�͏&ಳ *�Z�ಳ
Z������!Oಳ �ಳ)*��ಳ t�V�ȟಳ ୀA*��Z��*ɞ ಳ ƙŰ**ಳ ÜB���*�&ಳ ʏಳ � �ಳ ƫಳ ǴĉŸಳ *ª��T�*&ಳ
ĉ"ಳ ��» � ���*�ಳ !*Ɔ%���&ಳ &čBƩƻ �Vŏ#Ʈ&�ƻ ƒ��ж �`ƚ ϲಳ Ű �ē� ���ȟ�òಳ � � ಳ �ͅಳ �ಳ ��ࣖĖ
�t�ಳࢍ ి�ಳ ��)*tĉÂಳ !*�%�ʳç�ಳ V�¯�#�*ಳ �ęಳ Ɗ"ŊƲĲŤĆƻ ˹ų�ಳ Z�!!����˙!*Ă&ಳ ƌƢǐ
ਉ!&G��ީ�[�&��*ಳ Â��#�*�Ǆಳ Ԍռ!�� ಳ �!�ಳ Ű*ŵ!�%&çրಳ -�)*ಳ �!���ಏ*�ಳ �ಳ)*̺ழ��Ƒಳ
�"ಳ�ǂZ�ಳ�ಳ !*@%ĉ�çಳ ƙ&**ಳÜ-�ƒƆ*�ಳȌϔ ϧಳ

ͫ&&*!�±�ׁ ��ಳ܁ Ɔʜ*! òಳ �nƆ�ĉñOʜಳࠧÖ!���ಳ�!�ಳԢ�ƒ*7�ಳ %*�*ಳ*ª�Z��`ಳZĉ��*Z�ಳ į�ƻ
ʜ*֜ಳ[ƻث �!�ƞ�&н&ಳ ĉ"ಳ ��*ಳ sl5
^�©5�° w0�'.z��um�° �¾*ಳ ��*��*��ಳ î"Tdƪƻ �ƒƒtǥಳ Ɔ�ಳ
&�&�*�&ಳ %-֝Z-ಳ ˗��ಳ*)* ಳ �ಳ t ˧ �ృȟ*ಳ Ѩ��*ಳZĉɶʮȟ*ª Ӗ ಳ ಳ ࠚ ��ZǒΥĢخĢgס ò ಳ к � ಳ˙�*�!ీڇಳ
�ƒסt`ಳ ��ಳૅ��Θ���*�ಳ&�&�*�&ಳ!��ಳ ��ಳ&`�»�ē&ಳ ˹'��ಳ�ё Ѡ�%ಳ࣌�*�f�Z�ಳ ֲ�"ƒ� ��

Ѓ�!&��ಳ �!˙ಳ Û��*À�ಳ ��O�*�ಳ ����ಳ �����ಳ %��t�ಳ ଢ��ಳ æ�ƻ ��Z�ಳ)�Ɂ��ಳ Ɔĉ ಳ
ưેÐ Ƿ �`*�ಳ Ȣ*��eσ7�!& Ɗಳ ȑ� A&�ӈಳ σ-*`ಳ ��O�*�ಳ ు-��ಳ ూ�*�*ಳ &�&ʈ*��ಳ ��*ಳ &�ࣗಫ
İ�*!�t`ಳ �!�*&͏À�Z�*Ʒಳ �&ಳ ��ಳ #*ಳ)�Z��ǂ&ϟಳ Ġ-�Rಳ 4ĉਊĔ���ಳ �ǒ�Ӊಳ "ĉ�ಳ 4��ػ�ȟ*܂ಳ
ɒ-��ಳ �ಳ ǂĔ�)*7&��ಳ Zĉ�ƒǂ�*Aಳ Z�<��ಳ #*ಳ ĵǂ̦ � � ಳ ��͊ಳ �Ǵಳ t Gˬ*βಳ ��ʲ�&-���ಳ ���ǁ& ƛ ಳ

�=?`)W��f	�W�I�4f

��(���� ��(�!#&#(ԑࠗ࠘ಳ

Ð�¸ƻ��°2�?�»Ñƻ?¿ƻ Ó42ƻ Å�Æƻ �ÇÈÌ9��4ƻ

Ã�Äƻ
:��1CK �A�K �::K���+K

%E8� ge8�V'�8p� l8v.8l�pgf�� Ġ՞�ಳ ��&Pಳ Z�ìì�Ĕn`ಳ -��A�ಳ �#ъ�ZP֛�Ĕಳ P�ಳ
ÕšǮಳ��Ų�Υ�ಳ ß&ಳ �ಳ)�Aß� Pಳ �"ಳP¸�ಳ Zn�ß�ಳ P¸�Pಳ ÛšÛಳ����n&ಳZ�Ɉ �Pಳ ��A"�A�ಳ
� `ಳ ßĔ P�À�&P ß!Oಳ ,��evP�Pß�Ĕ& ͧ ಳ ƋĔ�ಳ)�Ḁ�ѰPಳ O��&ಳ n շç�ಳ P-�&ߊಳ ٬Ţ��&�ಳ ÛšǮಳ
ì�
�n&ಳ &��
ಳ �ಳ ઼�Pಳ n ß ç�ಳ e�AZ��PA� &ಳ Ɔ�ಳ�ಳޟ� šЫ�ĔڅPಳ ˑ/Ĕ&ç`ಳ �Ĕ�ಳ Û���À�ಳ
&��%ಳ ����ಳ ¯�À�����!ə࠙�ç�ಳ ��
�ઽ&ಳ ���n�$ ϐPಳ ��ಳ �ŷ`P�� �ಳ Ƿ ĲP�À�&P/H٭ߣ�ಳ
Б�Ǝ & ಳ ,���� �ಳ À�ƒÀ�&� P&ಳ �ಳ �
ה�&/�;&���
�ŷ=ಳ �"ಳ %��Pಳ Ѓ��&я`ಳ �Ĕ�ಳ
PX¼lÇÔë �,636
ë ಳ*(� �ZP��n ķ`ಳ &-�%$Ӱಳ 9ë #À֜�"ಳ &ç�PZऊಳ E"ಳ P¸�ಳ Z�P�ªƆಳ ĭţƻ
%-�,�ಳ ˒�&я`ಳ � �ಳ Õ���;ءಳ %A�P�ಳ %/ќnಳ ��ા�ಳ Հn�Ѻ Ƿɦ`ಳ P��ಳ κت�ȩ�Pȝ�! ˆ ಳ ��ಳࡆڗ
Ü���P�Aಳ ʏಳ �Aಳ�ಳ࣊ &���%ऋ�Pಳ �_ƞ n�Àಳ�,Z�vଡసಳ �"ಳహ¸�&ಳऌ/&P�A` ˆ Ǩ ಳ

¬�ƻ ��ಳ n�Á�ಳ ̏ ɠʏů&ಳ�
ಳC�Aિ`ಳ ̏ӻǅů&ಳ P¸�A�ಳ ¢ġ&ಳ �ಳ ࣯À��Pಳ ���ׁಳ �" ಳ�"࣋�;Áಳ ਅɈಳ
P��ಳ ��ɕ�n���* ಳ �Ȗಳκ*nܤ��ÀO�$ ß͙ / �ಳ $�P%EAç&ಳ �$�ಳ &թ�цn�AಳǮšÛܥnΜçࢯಳZ�ìಪ
�vP�P�� �Ʉಳ ˘�)ß,�&ޠಳ Ġ՞�ಳ #�&Ɔಳ ç �%àಳ �"ಳ P��&�ಳ ¢�&ಳ P-�ಳ x.�&.x��tl°
��~�n���
ಳ #`ಳ ȑA� çಳ ǖ�&� #n�PPಳ ƙ&��ĭಳ "�Aಳ �ª���ƞۼ�ಳ Ԥ�&�Ĕ#n�Ð P ĭ ಳ ȳ ɠ3Ǭƚ .�
ʕ���Ǡ#̳���ಳ %�&ಳ)�À`ಳ �ĲP-�&̥�&P/Zಳ �#�vPಳ P-�ಳ ��̺Z��PA�Ĕಳ � �ಳ Ū�e�"vn ಳ P��Pಳ
ß P ಳ ,��n
ಳ ��(\�ಳ ��ಳ ���ಳ #�&ß&ಳ #�P-ಳ �"ಳ�À� �ȘZ/�nಳ /Ĕ P�nƞ ßO�ĔZ�ಳ �Ĕ�ಳ P-�ಳ ×���n Ė
�Ǡ�ಳ �3ಳ Ʋ��ಳ �À�ø ϴಳ ࠦȝ&�`ಳ �H
ಳ �ƒ�ÀP࠼ ƨಳ %ų�ಳ "�)�A�
ಳ �ಳ �1{F�Z° �̈ i!vV° z{s
%.��Ol;° A��(E���ƻ Ʋ�ಳ �ÀP ß"Ɛ,/�nಳ ȝ Ĳ��� n øO� Z�ƨಳ vH
�ÀP��çಳ �ಳ)�À�ಳ Z�À�"s̱ಳ
ׂ�P����Pø,�ƞಳ �Ĳ�ીR&ਆ&ಳ �"ಳ �̡�ಳ eŦx��r�̼��ಳ ß� ಳ ʇ�ŦßÀಳ ̏ӻǅɠಳ #���ಳ � �ßఽn۽࢛�ಳ
� 6�e̳� $��.{%.z��tl��°

Ġ��ಳ e�À,��PÀ�Ĕಳǆß &ç`ಳ�ˬ�ಳ Ǯ���ÀPಳ �$�ƞ`ಎ��ಳ�&ɏಳ Հn�&�Ǻ`ಳ Ƿ & ಳǷ Ǻ nş&PA�P��ಳ
ਇ ಳ ͬ�OvÀ�ಳ ಳޡ̏ Ű���ಳ ��Z�/ �&ಳ Z�Ĕ&ß&Áಳ �"ಳ¢��Pಳ ß& ಳ =�Ѭ�;�Ǻn` ಳZ�nુ��ಳ �ಳ �6�Pl��°
�Ĳಳ �((��ಳ �ȸಳ #ƐĲ�À`ಳ /Ĳ�şP&ಳ &���P/��&ಳ P�ç� ಳ P�ಳ #�ಳ �AA� O��ಳ ΛHಳ �ಳ Ɔ%�Ҟ

ȝ��H&��Ĳ�nಳ &e�Pß�nಳ n�`��Pߝಳ �ಳ &�Pಳ �"ಳx�3-Q"��.��° �ಳ &�Pಳ �"ಳ#/Ĕ�A`ಳ ��̼����Υ
ಳ
v ßP&ಳ%øS�ಳ Ș ª�Ųಳ �� Ĕ�ZP/� &ಳ P�ಳ �ಳ &�#&�Pಳ �"ಳv /P&ಳ ß ಳ P-�ಳ A�P/Ĕ�ಳ&v,�ಳ P���ಳ
��V'ಳ ���ŲDV�ν�ಳ ,����P�&ಳ &���ಳ n�,�nಳ "v ��/�Ĕಳ �~�Aಳ P��ಳǣǈ���ಳ �ȸಳה�ß P&ಳ P�ಳ
ƴ��F�ƻ İ�ƻ ��ƻ V� H�Vష�
ಳߛ � Ųಳ �H�ಳ�(ಳ��y�ಳ
�Z�&/�$ಳ ǂHß ಳ۾&� %ɰ�-ಳ ��ŲȽɧ�#Ʉ�ಳ
�� �,ń�� �ಳ Ʋ�ಳ Ʋ'Ŧಳ �À�Ųȝ��Ʋ�� /� ಳ&�ࡒ ����ȝ �ಳ ��&ಳ �ќ�ಳ �H�ಳ n�`�Àಳ �3ಳ
��
ƃࣣ�ԸJ�ಳ�ĝ �*��6ߜ���ಳ "�(ಳ P�/&ಳ ;*�&��ಳ%�ಳ%ßૂnಳ Z�n ƞ ಳ ˧Pಳ �ಳtl.
Z�¨3{° ��ļ,�eҞ
PÀ�Ϭಳ

Є˦Ǡ���ಳ ��Ųಳ Õ���(�ಳ &�Pಳ ��Áಳ Ɔ�ಳ &��%ಳ%˟ßZ˟ಳ "v ZP/�ˬ&ಳ ,�$ಳ �Ĕ
ಳ Z� !�Pಳ
Й�ಳŅ�g��ƲŦŲಳИ`ಳ &��خ ಳ̛n�&&ಳ �"ಳ���ΉßĲ�& ˊಳ ŢФ�`ಳ���� &PÀ�ɏ�
 ǩಳ ß ಳ e�ĻŮ֛,�Ė
n�Àƨಳ P���ಳ &�Zɩಳ ��À,���À�!&ಳ �À�ಳ v �#n�ಳ P�ಳ Z�n�ౚ��P�ಳ &vZ-ಳ ��P����P�Z�nಳ
ȸ�H�Ʋƃ�H�ಳ��ಳ e�Àȝ�` ಳ ϑ%��P��Àಳ� ಳ �Ų
ಳ�̼ಳ�)�Ĕಳ Ĕ��#�Àಳ�"ಳ��ß P&ಳ�A�ಳ � ಳ ȝ$ ಳ
�'� ಳ (�ƲD���� W�ƻ ��� ಳ P�ƒ���Oø,�nಳ "�H,P ø�Ĳಳ �" ಳ,� �,P�� �&&ಳ ƙ%���Ъ�Àಳ �JΥಳ
��D ɑ�ಳ �'�҇ಳ �g�ಳ � ಳ �̾�ಳ �� ��Ʋ�Ųಳ ��ಳ �n nಳ �P��Àಳ ��ß P&ಳ P��Pಳ �À�ಳ �Hಳ � ß ���Àಳ
I���F�Ň'ƻ !�ƻ Ƈ��ಳ !�Ď��ƻ �WıS��ƻ ����ƻ �À�ಳ �̱&�ಳ � ğಳ %ßP���Pಳ ���D�Ąƻ ���ಳ �3ಳ
�è&Ư�Iň'ƻ ŉã�ą�ƻ SưŐç���ƻ �3ಳ�̾�
���Ʋ��ϴಳ ɢ'�ಳ� �ķ`&�&ಳ 6 � ಳ*ªƲ̼*��J�ಳ�ķ����Ʋಳ
�
ಳ
�g���z���&ಳ P��ಳ ਈ�e�ÀP�Ĕ,�ಳ�ȸಳXë ������఼ßZ�nಳ ���A��Z�ಳ Ʋ�ಳ �Ǡ�+�ي
6 �ಳ V�Ʌ��Ʋ£ÁD���̳ಳ&'&P�{s�ăČ_śíƻ´C_öƁCņƻ

21

Time series: Linear Dynamical Systems (1940s-)

´The hidden state has linear dynamics with
Gaussian noise and produces the observations
using a linear model with Gaussian noise.

´Kalman Filter: A linearly transformed Gaussian is a
Gaussian. So the distribution over the hidden
state given the data so far is Gaussian. It can be
computed using “Kalman filtering”.

´To predict the next output (so that we can shoot
down the missile) we need to infer the hidden
state.

driving
input

hidden

hidden

hidden

output

output

output
time à

driving
input

driving
input

Linear Dynamical System

I Hidden State Space:

ht = Whhht�1 +Whxxt + ✏
h
t

I Output:
yt = Wyhht +Wyxxt + ✏

y
t

Graph Realization: MDS with Uncertainty 62

Linear Dynamical System

I Hidden State Space:

ht = Whhht�1 +Whxxt + ✏
h
t

I Output:
yt = Wyhht +Wyxxt + ✏

y
t

Graph Realization: MDS with Uncertainty 62

Hidden Markov Models (1970s-)
´ Hidden Markov Models have a discrete one-of-N

hidden state. Transitions between states are
stochastic and controlled by a transition matrix.
The outputs produced by a state are stochastic.
´ We cannot be sure which state produced a

given output. So the state is “hidden”.
´ It is easy to represent a probability distribution

across N states with N numbers.
´ To predict the next output we need to infer the

probability distribution over hidden states.
´ HMMs have efficient algorithms (Baum-Welch

or EM Algorithm) for inference and learning.
´ Jim Simons hires Lenny Baum as the founding

member of Renaissance Technologies in 1979

output

output

output

time à

Lenny Baum became a devoted Go player despite his deteriorating eyesight.

Simons with his favorite lemur at a Stony Brook event.

Recurrent Neural Networks (1986-)

´ The issue of a hidden Markov model (HMM):
´ At each time step it must select one of its hidden states. So with N hidden states it

can only remember log(N) bits about what it generated so far.

´ RNNs are very powerful, because they combine two properties:
´ Distributed hidden state that allows them to store a lot of information about the

past efficiently.

´ Non-linear dynamics that allows them to update their hidden state in
complicated ways.

´ Rumelhart et al. enables training by BP algorithm

´ With enough neurons and time, RNNs can compute anything that can be
computed by your computer.

RNN

ht = �h(Whhht�1 +Whxxt) (1a)

yt = �y(Wyhht) (1b)

2

Vanilla Recurrent Neural Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201722

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

State Space equations in feedback dynamical systems

The basics of decision trees.

Regression trees

• Trees can be applied to both regression and classifcation.

• CART refers to classification and regression trees.

• We first consider regression trees through an example of predicting
Baseball players’ salaries.

yt = softmax(Whyht)

Yuan YAO (HKUST) March 22, 2018 6 / 67

Or,

Long-Short-Term-Memory (LSTM)

´ Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long short-term
memory". Neural Computation. 9 (8): 1735–1780.
(https://www.bioinf.jku.at/publications/older/2604.pdf)

´ Introduction of short path to learn deep networks without vanishing
gradient problem.

25

ct-1

ht-1

ct

ht

ft
it ot

ct

ct
~

Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

You can think of the LSTM equations visually like this:

Compute the
forget gate

Forget some
cell content

Compute the
input gate

Compute the
new cell content

Compute the
output gate

Write some new cell content

Output some cell content
to the hidden state

25

26 Max-Margin Classifier (SVM)
418 12. Flexible Discriminants

•

•

•

•

•

• •

•
•

•

•

•

•
•

•
•

•

•

•

•

margin

M = 1
∥β∥

M = 1
∥β∥

xTβ + β0 = 0

•

•

•

•

•

• •

•
•

•

•

•

•

•

•
•

•
•

•

•

•

••

margin

ξ∗1ξ
∗
1ξ
∗
1

ξ∗2ξ
∗
2ξ
∗
2

ξ∗3ξ
∗
3

ξ∗4ξ
∗
4ξ
∗
4 ξ∗5

M = 1
∥β∥

M = 1
∥β∥

xTβ + β0 = 0

FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/∥β∥. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗j are on the wrong side of their margin by
an amount ξ∗j = Mξj; points on the correct side have ξ∗j = 0. The margin is
maximized subject to a total budget

∑

ξi ≤ constant. Hence
∑

ξ∗j is the total
distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xTβ + β0 = 0}, (12.1)

where β is a unit vector: ∥β∥ = 1. A classification rule induced by f(x) is

G(x) = sign[xTβ + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xTβ+β0 = 0. Since the classes are separable, we can find a function
f(x) = xTβ + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,∥β∥=1

M

subject to yi(x
T
i β + β0) ≥M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

∥β∥

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

Appendix: Primal-Dual support vector classifiers

Appendix: Equivalent reformulation of
Hard Margin

maximize�0,�1,...,�pM

subject to
pX

j=1

�2
j = 1,

and yi(�0 + �1xi1 + ... + �pxip) � M for all i

,

minimize�0,�1,...,�pk�k2 :=
X

j

�2
j

subject to yi(�0 + �1xi1 + ... + �pxip) � 1 for all i ,

using M = 1/k�k.

Chapter 9 April 12, 2018 42 / 65

Vladmir Vapnik, 1994

27

2000-2010: The Era of SVM, Boosting, …
as nights of Neural Networks

Decision Trees and Boosting

´ Breiman, Friedman, Olshen, Stone, (1983): CART

´ ``The Boosting problem‘’ (M. Kearns & L. Valiant):
Can a set of weak learners create a single strong
learner? (三个臭皮匠顶个诸葛亮？)

´ Breiman (1996): Bagging

´ Freund, Schapire (1997): AdaBoost (“the best off-
the-shelf algorithm” by Breiman)

´ Breiman (2001): Random Forests

30

31

GPU + Big labeled data

"We’re at the beginning of a new day…
This is the beginning of the AI revolution.”
 — Jensen Huang, GTC Taiwan 2017

Reaching Human Performance Level in
Games

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning

What’s Driving the Tsunami?

Intellectual Significance

Human Impact

Reaching Human Level Performance

1997 2004

2017
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning

What’s Driving the Tsunami?

Intellectual Significance

Human Impact

Reaching Human Level Performance

1997 2004

2017
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?AlphaGo “LEE” 2016

AlphaGo ”ZERO” D Silver et al. Nature 550, 354–359 (2017) doi:10.1038/nature24270

Deep Blue in 1997

Natural Language Processing (NLP)
and Machine Translation

´ In 2013-2015, LSTMs started achieving state-of-the-art results
´ Successful tasks include: handwriting recognition, speech

´ recognition, machine translation, parsing, image captioning
´ LSTM became the dominant approach

´ In 2019, other approaches (e.g. Transformers) have become more dominant for certain
tasks.
´ For example in WMT (a MT conference + competition):

´ In WMT 2016, the summary report contains ”RNN” 44 times

´ In WMT 2018, the report contains “RNN” 9 times and “Transformer” 63 times

´ Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016,
http://www.statmt.org/wmt16/pdf/W16-2301.pdf

´ Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018,
http://www.statmt.org/wmt18/pdf/WMT028.pdf

Rapid Progress for NLP Pretraining
(GLUE Benchmark)
6. How’s the weather?
Rapid Progress from Pre-Training (GLUE benchmark)

90

60

ELMo

GPT
BERT-Base

BERT-Large
XLNet RoBERTa ALBERT

GloVeGL
UE

 S
co

re

Over 3x reduction in error in 2 years, “superhuman” performance

More compute, more better?
More compute, more better?

90

60

≈
ç

ELMo

GPT
BERT-Base
BERT-Large
XLNet

RoBERTa ALBERT

Pre-Train FLOPs

GloVeGL
UE

 S
co

re

≈
ç

ALBERT uses 10x more compute than RoBERTa

Protein Folding Structure Prediction

Nature | Vol 596 | 26 August 2021 | 583

Article

Highly accurate protein structure prediction
with AlphaFold

John Jumper1,4 ✉, Richard Evans1,4, Alexander Pritzel1,4, Tim Green1,4, Michael Figurnov1,4,
Olaf Ronneberger1,4, Kathryn Tunyasuvunakool1,4, Russ Bates1,4, Augustin Žídek1,4,
Anna Potapenko1,4, Alex Bridgland1,4, Clemens Meyer1,4, Simon A. A. Kohl1,4,
Andrew J. Ballard1,4, Andrew Cowie1,4, Bernardino Romera-Paredes1,4, Stanislav Nikolov1,4,
Rishub Jain1,4, Jonas Adler1, Trevor Back1, Stig Petersen1, David Reiman1, Ellen Clancy1,
Michal Zielinski1, Martin Steinegger2,3, Michalina Pacholska1, Tamas Berghammer1,
Sebastian Bodenstein1, David Silver1, Oriol Vinyals1, Andrew W. Senior1, Koray Kavukcuoglu1,
Pushmeet Kohli1 & Demis Hassabis1,4 ✉

Proteins are essential to life, and understanding their structure can facilitate a
mechanistic understanding of their function. Through an enormous experimental
effort1–4, the structures of around 100,000 unique proteins have been determined5, but
this represents a small fraction of the billions of known protein sequences6,7. Structural
coverage is bottlenecked by the months to years of painstaking effort required to
determine a single protein structure. Accurate computational approaches are needed
to address this gap and to enable large-scale structural bioinformatics. Predicting the
three-dimensional structure that a protein will adopt based solely on its amino acid
sequence—the structure prediction component of the ‘protein folding problem’8—has
been an important open research problem for more than 50 years9. Despite recent
progress10–14, existing methods fall far short of atomic accuracy, especially when no
homologous structure is available. Here we provide the first computational method
that can regularly predict protein structures with atomic accuracy even in cases in which
no similar structure is known. We validated an entirely redesigned version of our neural
network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein
Structure Prediction (CASP14)15, demonstrating accuracy competitive with
experimental structures in a majority of cases and greatly outperforming other
methods. Underpinning the latest version of AlphaFold is a novel machine learning
approach that incorporates physical and biological knowledge about protein structure,
leveraging multi-sequence alignments, into the design of the deep learning algorithm.

The development of computational methods to predict
three-dimensional (3D) protein structures from the protein sequence
has proceeded along two complementary paths that focus on either the
physical interactions or the evolutionary history. The physical interac-
tion programme heavily integrates our understanding of molecular
driving forces into either thermodynamic or kinetic simulation of pro-
tein physics16 or statistical approximations thereof17. Although theoreti-
cally very appealing, this approach has proved highly challenging for
even moderate-sized proteins due to the computational intractability
of molecular simulation, the context dependence of protein stability
and the difficulty of producing sufficiently accurate models of protein
physics. The evolutionary programme has provided an alternative in
recent years, in which the constraints on protein structure are derived
from bioinformatics analysis of the evolutionary history of proteins,
homology to solved structures18,19 and pairwise evolutionary correla-
tions20–24. This bioinformatics approach has benefited greatly from

the steady growth of experimental protein structures deposited in
the Protein Data Bank (PDB)5, the explosion of genomic sequencing
and the rapid development of deep learning techniques to interpret
these correlations. Despite these advances, contemporary physical
and evolutionary-history-based approaches produce predictions that
are far short of experimental accuracy in the majority of cases in which
a close homologue has not been solved experimentally and this has
limited their utility for many biological applications.

In this study, we develop the first, to our knowledge, computational
approach capable of predicting protein structures to near experimental
accuracy in a majority of cases. The neural network AlphaFold that we
developed was entered into the CASP14 assessment (May–July 2020;
entered under the team name ‘AlphaFold2’ and a completely different
model from our CASP13 AlphaFold system10). The CASP assessment is
carried out biennially using recently solved structures that have not
been deposited in the PDB or publicly disclosed so that it is a blind test

https://doi.org/10.1038/s41586-021-03819-2

Received: 11 May 2021

Accepted: 12 July 2021

Published online: 15 July 2021

Open access

 Check for updates

1DeepMind, London, UK. 2School of Biological Sciences, Seoul National University, Seoul, South Korea. 3Artificial Intelligence Institute, Seoul National University, Seoul, South Korea. 4These
authors contributed equally: John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Demis Hassabis.
✉e-mail: jumper@deepmind.com; dhcontact@deepmind.com

584 | Nature | Vol 596 | 26 August 2021

Article

for the participating methods, and has long served as the gold-standard
assessment for the accuracy of structure prediction25,26.

In CASP14, AlphaFold structures were vastly more accurate than
competing methods. AlphaFold structures had a median backbone
accuracy of 0.96 Å r.m.s.d.95 (Cα root-mean-square deviation at 95%
residue coverage) (95% confidence interval = 0.85–1.16 Å) whereas
the next best performing method had a median backbone accuracy
of 2.8 Å r.m.s.d.95 (95% confidence interval = 2.7–4.0 Å) (measured on
CASP domains; see Fig. 1a for backbone accuracy and Supplementary
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy,
the width of a carbon atom is approximately 1.4 Å. In addition to very
accurate domain structures (Fig. 1b), AlphaFold is able to produce
highly accurate side chains (Fig. 1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even
when strong templates are available. The all-atom accuracy of Alpha-
Fold was 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å) compared
with the 3.5 Å r.m.s.d.95 (95% confidence interval = 3.1–4.2 Å) of the best
alternative method. Our methods are scalable to very long proteins with
accurate domains and domain-packing (see Fig. 1d for the prediction
of a 2,180-residue protein with no structural homologues). Finally, the
model is able to provide precise, per-residue estimates of its reliability
that should enable the confident use of these predictions.

We demonstrate in Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to a large sample of recently released PDB

structures; in this dataset, all structures were deposited in the PDB after
our training data cut-off and are analysed as full chains (see Methods,
Supplementary Fig. 15 and Supplementary Table 6 for more details).
Furthermore, we observe high side-chain accuracy when the back-
bone prediction is accurate (Fig. 2b) and we show that our confidence
measure, the predicted local-distance difference test (pLDDT), reliably
predicts the Cα local-distance difference test (lDDT-Cα) accuracy of the
corresponding prediction (Fig. 2c). We also find that the global super-
position metric template modelling score (TM-score)27 can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high
accuracy and reliability of AlphaFold on CASP14 proteins also transfers
to an uncurated collection of recent PDB submissions, as would be
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11
for confirmation that this high accuracy extends to new folds).

The AlphaFold network
AlphaFold greatly improves the accuracy of structure prediction by
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints
of protein structures. In particular, we demonstrate a new architecture
to jointly embed multiple sequence alignments (MSAs) and pairwise
features, a new output representation and associated loss that enable
accurate end-to-end structure prediction, a new equivariant attention

a

G
42

7
A

lp
ha

Fo
ld

G
00

9
G

47
3

G
12

9
G

40
3

G
03

2
G

42
0

G
48

0
G

49
8

G
48

8
G

36
8

G
32

4
G

36
2

G
25

3
G

21
6

0

1

2

3

4

M
ed

ia
n

C
α

r.m
.s

.d
. 95

 (Å
)

b

C terminus

N terminus

AlphaFold Experiment
r.m.s.d.95 = 0.8 Å; TM-score = 0.93

c

AlphaFold Experiment
r.m.s.d. = 0.59 Å within 8 Å of Zn

d

AlphaFold Experiment
r.m.s.d.95 = 2.2 Å; TM-score = 0.96

MSA

3D structure

Low
confidence

High
confidence

Templates

Input sequence

MSA
representation

(s,r,c)

Evoformer
(48 blocks)

Structure
module

 (8 blocks)

+

+

← Recycling (three times)

Pairing
Pair

representation
(r,r,c)

Pair
representation

(r,r,c)

Genetic
database

search

Structure
database

search

e

Single repr. (r,c)

Fig. 1 | AlphaFold produces highly accurate structures. a, The performance
of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers
assigned to entrants by CASP. Data are median and the 95% confidence interval
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental)
structure (green). Four residues in the C terminus of the crystal structure are
B-factor outliers and are not depicted. c, CASP14 target T1056 (PDB 6YJ1).

An example of a well-predicted zinc-binding site (AlphaFold has accurate side
chains even though it does not explicitly predict the zinc ion). d, CASP target
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct
domain packing (the prediction was made after CASP using AlphaFold without
intervention). e, Model architecture. Arrows show the information flow among
the various components described in this paper. Array shapes are shown in
parentheses with s, number of sequences (Nseq in the main text); r, number of
residues (Nres in the main text); c, number of channels.

AlphaFold

Number of AI papers on arXiv, 2010-2019

Artificial Intelligence Index Report 2019
Chapter 1 Research & Development - Papers on arXiv

In recent years, AI researchers have adopted the
practice of publishing paper pre-prints (frequently
before peer-review) on arXiv, an online repository
of electronic preprints. The graph below shows the
number of AI papers on arXiv by each paper’s primary
subcategory (Figure 1.6).

The number of AI papers on arXiv is increasing
overall and in a number of subcategories, reflecting a
broader growth in AI researchers publishing preprints
of their research. Between 2010 and 2019, the total
number of AI papers on arXiv increased over twenty-
fold. Submissions to the Computation & Language
arXiv sub-category have grown almost sixty-fold
since 2010.

AI papers on arXiv
In terms of volume, Computer Vision (CV) and Pattern
Recognition had been the largest AI subcategory on
arXiv since 2014 but Machine Learning has become
the largest category of AI papers in 2019. In addition
to showing a growing interest in Computer Vision
and Machine Learning (and its general applied
applications), this chart also indicates growth in
other AI application areas, such as Robotics growing
over thirty-fold between 2010 and 2019. See
Technical Appendix for data and methodology.

[Research_Development_Technical_Appendix]
[Access_Data]

21

Fig. 1.6.

38

Growth of Deep Learning
‘Deep Learning’ is coined by Hinton et al. in their Restricted Boltzman Machine paper, Science 2006,
not yet popular until championing ImageNet competitions.

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning

What’s Driving the Tsunami?

Intellectual Significance

Human Impact

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

40

41

Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

42 CNN learns texture features, not
shapes

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HvLBMhCJQ?tocitem=46

Published as a conference paper at ICLR 2019

IMAGENET-TRAINED CNNS ARE BIASED TOWARDS
TEXTURE; INCREASING SHAPE BIAS IMPROVES
ACCURACY AND ROBUSTNESS

Robert Geirhos

University of Tübingen & IMPRS-IS
robert.geirhos@bethgelab.org

Patricia Rubisch

University of Tübingen & U. of Edinburgh
p.rubisch@sms.ed.ac.uk

Claudio Michaelis

University of Tübingen & IMPRS-IS
claudio.michaelis@bethgelab.org

Matthias Bethge
⇤

University of Tübingen
matthias.bethge@bethgelab.org

Felix A. Wichmann
⇤

University of Tübingen
felix.wichmann@uni-tuebingen.de

Wieland Brendel
⇤

University of Tübingen
wieland.brendel@bethgelab.org

ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

⇤Joint senior authors

1

ar
X

iv
:1

81
1.

12
23

1v
2

 [c
s.C

V
]

14
 Ja

n
20

19

1:16:47

Capture spurious correlations and can’t
do causal inference on counterfactuals

The statistical problem is only a proxy
Example: detection of the action “giving a phone call”

(Oquab et al., CVPR 2014)
~70% correct (SOTA in 2014)

Convnet
m

achinery

Bbox

Image

Action
labels

The statistical problem is only a proxy
Example: detection of the action “giving a phone call”

Not giving a phone call.

Giving a phone call ????

Leon Bottou, ICLR 2019
https://videoken.com/embed/8UxS4ls6g1g?tocitem=2

44 Overfitting causes privacy leakage

´ Model inversion attack leaks privacy
Break Privacy of the Face Recognition System

Figure: Recovered (Left), Original (Right)

We can recover the private training data by model-inversion attack.

Fredrikson et al., Proc. CCS, 2016

6 / 53

Fredrikson et al. Proc. CCS, 2016

45

46 “

”

Shall we see soon an
emergence
from Alchemy to Science
in deep leaning?

How can we teach our students in the next generation science rather than
alchemy?

Kaggle survey: Top Data Science Methods

Academic Industry

https://www.kaggle.com/surveys/2017

What type of data is used at work?
https://www.kaggle.com/surveys/2017

Academic Industry

All models are wrong, but some are
useful …

What is Statistical Learning?
Assessing Model Accuracy

The Bias-Variance Trade-O↵

Figure 7: George Box: “Essentially, all models are wrong, but some are useful.”

Yuan Yao Overview

In this class

´ Understand its principles: statistics, optimization

´ Analyze the real world data with the methods

´ Team-work in projects

