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Generative Models

16

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution
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Generative Models

17

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Addresses density estimation, a core problem in unsupervised learning
Several flavors: 

- Explicit density estimation: explicitly define and solve for pmodel(x) 
- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it 



´ We are going to focus on:
´ Variational AutoEncoder (VAE)
´ Generative Adversarial Network (GAN)
´ Denoising Diffusion Models (DDM)
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Taxonomy of Generative Models

19

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
Denoising Diffusion Models



Variational Autoencoders (VAE)
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Some background first: Autoencoders

37

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

e.g. PCA, Manifold 
Learning, Dictionary 
Learning
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Some background first: Autoencoders

42

Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

e.g. PCA, Manifold Learning, 
Dictionary Learning, Matrix 
Factorization: D = E’



Deep Autoencoder
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Some background first: Autoencoders

40

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?

A: Want features to 
capture meaningful 
factors of variation in 
data



Deep Learning for decoders
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Some background first: Autoencoders

43

Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)



L2 Loss functions

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Some background first: Autoencoders

46

Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Doesn’t use labels!
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Some background first: Autoencoders

47

Encoder

Input data

Features

Decoder

Reconstructed 
input data

After training, 
throw away decoder



Autoencoders for Transfer Learning
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Some background first: Autoencoders

48

Encoder

Input data

Features

Classifier

Predicted Label

Fine-tune
encoder
jointly with
classifier

Loss function 
(Softmax, etc)

Encoder can be 
used to initialize a 
supervised model

plane
dog deer

bird
truck

Train for final task 
(sometimes with 

small data)
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Some background first: Autoencoders

49

Encoder

Input data

Features

Decoder

Reconstructed 
input data

Autoencoders can reconstruct 
data, and can learn features to 
initialize a supervised model

Features capture factors of 
variation in training data. Can we 
generate new images from an 
autoencoder?
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from underlying unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional

Intuition (remember from autoencoders!): 
x is an image, z is latent factors used to 
generate x: attributes, orientation, etc. 

ICLR 2024 Test of Time Award [ https://arxiv.org/abs/1312.6114 ]
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian. Reasonable for latent attributes, 
e.g. pose, how much smile.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian.

Conditional p(x|z) is complex (generates 
image) => represent with neural network

 

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

 

How to train the model?

Remember strategy for training generative 
models from FVBNs. Learn model parameters         
to maximize likelihood of training data

Now with latent z

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

 

How to train the model?

Remember strategy for training generative 
models from FVBNs. Learn model parameters         
to maximize likelihood of training data

Q: What is the problem with this?

Intractable!

Decoder 
network



Variational Autoencoders: Intractability
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractible to compute 
p(x|z) for every z!

ʰ ✔ ✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
ʰ

✔

✔

Posterior density also intractable:
ʰ✔

✔

Intractable data likelihood



Variational Lower Bounds
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
ʰ

✔

✔

Posterior density also intractable:
ʰ✔

✔

Solution: In addition to decoder network modeling pθ(x|z), define additional 
encoder network qɸ(z|x) that approximates pθ(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that is 
tractable, which we can optimize
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Variational Autoencoders

71

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Encoder network

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Decoder network

(parameters ɸ) (parameters θ)

Sample z from Sample x|z from

Encoder and decoder networks also called 
“recognition”/“inference” and “generation” networks

Project 2 7

http://dx.doi.org/10.1016/j.acha.2015.11.005

In project 1, some explorations can be found here for your reference:

1) Jianhui ZHANG, Hongming ZHANG,Weizhi ZHU, and Min FAN: https://deeplearning-math.
github.io/slides/Project1_ZhangZhangZhuFan.pdf,

2) Wei HU, Yuqi ZHAO, Rougang YE, and Ruijian HAN: https://deeplearning-math.

github.io/slides/Project1_HuZhaoYeHan.pdf.

Moreover, the following report by Shun ZHANG from Fudan University presents a comparison
with Neural Style features:

3) https://www.dropbox.com/s/ccver43xxvo14is/ZHANG.Shun_essay.pdf?dl=0.

Appendix

`(w) = �
X

i2Mw

yi hw,xii , Mw = {i : yi hxi, wi < 0, yi 2 {�1, 1}}.

wt+1 = wt � ⌘tri`(w)

=

⇢
wt � ⌘tyixi, if yiwT

t xi < 0,
wt, otherwise.

ti = yi

Max-Margin:

min kwk2

s.t. yix
T
i w � 1, 8i

f(x) = W2�(W1x)

where �(u) = max(0, u) is ReLU, W1 2 Rd⇥q, and W2 2 Rq⇥1

Margin

� := min
i

yif(xi)

Normalized Margin

�n :=
�

Q2
i=1 kWik

Assume that ⌃x|z and ⌃z|x are both diagonal, i.e. conditional independence.
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling. (Sampling differentiable 
through reparam. trick, see paper.)Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201777

Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)

Also known as Evidence 
Lower BOund (ELBO):
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Variational lower bound (“ELBO”) Training: Maximize lower bound

Reconstruct
the input data

Make approximate 
posterior distribution 
close to prior



Stage I: Encoder
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Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior



Stage II: Decoder.
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Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Maximize 
likelihood of 
original input 
being 
reconstructed

For every minibatch of input 
data: compute this forward 
pass, and then backprop!



VAE: generating data
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior! Data manifold for 2-d z

Vary z1

Vary z2Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



VAE: generating data

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201795

Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z 
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Also good feature representation that 
can be computed using qɸ(z|x)! 

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



VAE: Generating Data
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Variational Autoencoders: Generating Data!

32x32 CIFAR-10
Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission. 



Variational Autoencoders

´ Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound 

´ Pros: 
´ Principled approach to generative models 
´ Allows inference of q(z|x), can be useful feature representation for other tasks 

´ Cons: 
´ Maximizes lower bound of likelihood
´ Samples blurrier and lower quality compared to state-of-the-art (e.g. GANs, DDMs) 

´ Active areas of research: 
´ More flexible approximations, e.g. richer approximate posterior instead of diagonal 

Gaussian 
´ Incorporating structure in latent variables 



Generative Adversarial Networks 
(GAN)
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So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

10
1

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don’t work with any explicit density function!
Instead, take game-theoretic approach: learn to generate from training distribution 
through 2-player game
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Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution, e.g. random noise.  Learn transformation to 
training distribution.

   

Generative Adversarial Networks

10
3

zInput: Random noise

Generator 
Network

Output: Sample from 
training distribution 

Q: What can we use to 
represent this complex 
transformation?

A: A neural network!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

10
5

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.



Training GANs: Minimax Game
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Training GANs: Two-player game

10
6

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

 

Train jointly in minimax game

Minimax objective function:

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014



Training GANs: Minimax Game
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Training GANs: Two-player game

10
8

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

 

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and 
D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1 
(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014



Training GANs
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Training GANs: Two-player game

10
9

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014



The Issue in Training GANs
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Training GANs: Two-player game

11
0

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

In practice, optimizing this generator objective 
does not work well!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

When sample is likely 
fake, want to learn 
from it to improve 
generator. But 
gradient in this region 
is relatively flat!

Gradient signal 
dominated by region 
where sample is 
already good



The Log D trick
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Training GANs: Two-player game

11
1

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Instead: Gradient ascent on generator, different 
objective

Instead of minimizing likelihood of discriminator being correct, now 
maximize likelihood of discriminator being wrong. 
Same objective of fooling discriminator, but now higher gradient 
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

High gradient signal 

Low gradient signal 
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Training GANs: Two-player game

11
3

Putting it together: GAN training algorithm

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Other Losses (Wasserstein Distance, KL-divergence) are better in stability! 



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Training GANs: Two-player game

11
5

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

After training, use generator network to 
generate new images 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Generative Adversarial Nets

11
6

Nearest neighbor from training set

Generated samples

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets

11
7

Nearest neighbor from training set

Generated samples (CIFAR-10)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets: Convolutional Architectures

11
8

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network
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Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator

Generative Adversarial Nets: Convolutional Architectures
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Smiling woman Neutral woman Neutral man

Smiling ManSamples 
from the 
model

Average Z 
vectors, do 
arithmetic

Radford et al, ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math
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CycleGAN. Zhu et al. 2017.

2017: Year of the GAN
Better training and generation

LSGAN. Mao et al. 2017.

BEGAN. Bertholet et al. 2017.

Source->Target domain transfer

Many GAN applications

Pix2pix. Isola 2017. Many examples at 
https://phillipi.github.io/pix2pix/

Reed et al. 2017.

Text -> Image Synthesis 
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Reference of GANs

´ The GAN zoo: https://github.com/hindupuravinash/the-gan-zoo

´ See also: https://github.com/soumith/ganhacks for tips and tricks for 
trainings GANs 



GANs

´ Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution 
through 2-player minimax zero-sum game 

´ Pros:
´ Beautiful, state-of-the-art samples! 

´ Cons: 
´ Trickier / more unstable to train 
´ Can’t solve inference queries such as p(x), p(z|x) 

´ Active areas of research: 
´ Better loss functions, more stable training (Wasserstein GAN, LSGAN, etc.) 
´ Conditional GANs, GANs for all kinds of applications 



Denoising Diffusion Models



´We introduce an inference model q(z|x)

´ This allows us to efficiently optimize the 
log-likelihood, through the evidence 
lower bound (ELBO).

´We optimize q(z|x) and p(x,z) jointly w.r.t.
ELBO

´Bound is tight with the right q(z|x)=p(z|x)

Recall: Variational Autoencoders (VAEs)

x

z3

x

z3

Inference model
q(z|x)

Generative model
p(x,z)

[Kingma and Welling, 2013]slide by Durk Kingma



Hierarchical VAEs

[Kingma and Welling, 2017]

x

z1

z2

z3

x

z1

z2

z3

Inference model
q(z|x)

Generative model
p(x,z)=p(x|z)p(z)

´ “Flat” VAEs suffer from simple priors

´Better likelihoods are achieved with 
hierarchies of latent variables

slide by Durk Kingma



´Optimization can be difficult for large models

´ The ELBO enforces an information bottleneck 
(through its loss function) at the latent 
variables 'z', which are also typically low-
dimensional, making VAE optimization prone 
to bad local minima.

´Posterior collapse is a dreaded bad local 
minimum where the latents do not transmit 
any information.

VAEs: challenges

x

z1

z2

z3

x

z1

z2

z3

Inference model
q(z|x)

Generative model
p(x,z)

Bottleneck

Bottleneck

Bottleneck

[Kingma and Welling, 2013]slide by Durk Kingma



Denoising Diffusion Models

Denoising diffusion models consist of two processes:

• Forward diffusion process that gradually adds noise to input

• Reverse denoising process that learns to generate data by denoising 

Learning to generate by denoising

Data Noise

Reverse denoising process (generative)

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015
Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

A high-level description of di↵usion models
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noise forward process reverse process

1

• forward process: (progressively) di↵use data into noise

• reverse process: convert pure noise into data-like distributions
5

Forward diffusion process (fixed)

A high-level description of di↵usion models

X1 X2 X3 X4 XT�1 XT
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noise
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1

X1 X2 X3 X4 XT�1 XT

Y1 Y2 Y3 Y4 YT�1 YT

1

X1 X2 X3 X4 XT�1 XT

Y1 Y2 Y3 Y4 YT�1 YT

1

X1 X2 X3 X4 XT�1 XT
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Y1 Y2 Y3 Y4 YT�1 YT
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noise forward process reverse process

1

• forward process: (progressively) di↵use data into noise

• reverse process: convert pure noise into data-like distributions
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Score is all you need!Score is all you need

• score functions of marginals of forward process: r log pXt(X)| {z }
w.r.t. X

X0 X1 X2 X3 X4 XT�1 XT

Y0 Y1 Y2 Y3 Y4 YT�1 YT

noise forward process reverse process

s1(·) s2(·) sT (·)

learn st(·) ⇡ rpXt(·) �t

score learning data generation

X st(X) ⇡ rpXt(X)

1

X1 X2 X3 X4 XT�1 XT

Y1 Y2 Y3 Y4 YT�1 YT

1

X1 X2 X3 X4 XT�1 XT

Y1 Y2 Y3 Y4 YT�1 YT

1

X1 X2 X3 X4 XT�1 XT

Y1 Y2 Y3 Y4 YT�1 YT

1

X0 X1 X2 X3 X4 XT�1 XT

Y0 Y1 Y2 Y3 Y4 YT�1 YT

noise forward process reverse process

1

X0 X1 X2 X3 X4 XT�1 XT

Y0 Y1 Y2 Y3 Y4 YT�1 YT

noise forward process reverse process

s1(·) s2(·) sT (·)

1

X0 X1 X2 X3 X4 XT�1 XT

Y0 Y1 Y2 Y3 Y4 YT�1 YT

noise forward process reverse process

s1(·) s2(·) sT (·)

1

DDPM-type stochastic sampler

Yt�1 =
1p

1 � �t

✓
Yt +

�t

2
r log qt(Yt)

◆

=� dYt =

✓
��(t)Yt � 1

2
�(t)r log qt(Yt)

◆
dt (reversed)

deterministic sampler (probability flow ODE)
(time-reversed SDE, Anderson ’82)

(marginal: qt := pXt)

marginals

discrete-time diffusion process
continuous-time limits via SDE toolbox (e.g., Girsanov thm)

control discretization error
Generative adversarial networks (GAN) Diffusion models

Generative modeling

st(·) = r log pXt(·)

2

1. score learning/matching: learn estimates st(·) for r log pXt(·)

2. data generation: sampling w/ the aid of score estimates {st(·)}

7



Tweedie’s Formula

´ Recall homework 3:

´ Tweedie’s formula shows that the posterior mean does not depend on prior, but 
only depends on the score function as gradient of log marginal distribution p(x).

Score matching via denoising

X0 ⇠ pdata, Xt =
p

↵̄tX0 +
p

1 � ↵̄t N (0, Id)

Tweedie’s formula (Hyvarinen, 2005; Vincent, 2011):

s
?
t (x) = � 1p

1 � ↵̄t
Ex0⇠pdata, ✏t⇠N (0,Id)

⇥
✏t |

p
↵̄tx0 +

p
1 � ↵̄t✏t = x

⇤
| {z }

MMSE denoising

.

8

Homework 3. MLE and James-Stein Estimator 4

(a) (James-Stein) Consider the following two-level Gaussian sampling process: let µi ⇠
N (M,A) (i = 1, . . . , n), and for each i, xi ⇠ N (µi, 1). In other words, µi is sampled
from a Gaussian prior p(✓) = N (M,A) with unknown A,M and data xi is further
sampled from Gaussian distribution p(x|✓) = N (µi, 1). Show that

[i.] the marginal p(x) = N (M,A+ 1);

[ii.] the posterior p(✓|x) = N (M+B(x�M), B) whereB = A
A+1 , x = (x1, . . . , xn)T

and M = (M, . . . ,M)T as vector;

[iii.] the posterior mean gives, for each i = 1, . . . , n

bµBayes
i = E[✓|xi] = M +B(xi �M)

where the unbiased estimates of M and B give cM = x̄ = 1
n

Pn
i=1 xi,

bB = 1� (n� 3)/S
with S =

Pn
i=1 x

2
i . This leads to the James-Stein estimator in the form

bµJS
i = x̄+

✓
1� n� 3

S

◆
(xi � x̄).

[iv.] the mean square error (risk):

EkbµBayes � µk2 = nB

EkbµMLE � µk2 = n, bµMLE = x

where the Bayes estimate is only B portion risk of that of MLE, which can be small if
A is small.

(b) (Tweedie Formula) Consider a general prior ✓ ⇠ p(✓) and the Gaussian likelihood
p(x|✓) = N (✓,�2). Show that the posterior mean must be

E[✓|x] = x+ �2r log p(x) = x+ �2s(x), s(x) := r log p(x) (1)

which does NOT depends on the prior distribution p(✓), but just the gradient of score
function of marginal (log p(x))! This generalization of James-Stein estimator is called
Tweedie Formula, which was recently found useful in denoising di↵usion models and
transformers.



Forward Diffusion Process

The formal definition of the forward process in T steps:

Data Noise

Forward diffusion process (fixed)

x0 x1 x2 x3 x4 … xT

(joint)

Similar to the inference model in hierarchical VAEs.
slide from https://cvpr2022-tutorial-diffusion-models.github.io/



Data Noise

Forward diffusion process (fixed)

x0 x1 x2 x3 x4 … xT

values schedule (i.e., the noise schedule) is designed such that                 and     

For sampling:

Define (Diffusion Kernel)

where

slide from https://cvpr2022-tutorial-diffusion-models.github.io/

Diffusion Kernel



Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that 

Generation:

Sample

Iteratively sample

In general,                                                      is intractable. 

Can we approximate                  ? Yes, we can use a Normal distribution if     is small in each forward diffusion step.

xt

q(x0) q(x1) q(x2) q(x3) q(xT)

Diffused Data Distributions

…

True Denoising Dist.

q(x0|x1) q(x1|x2) q(x2|x3) q(x3|x4) q(xT-1|xT)

slide from https://cvpr2022-tutorial-diffusion-models.github.io/



Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Data Noise

Reverse denoising process (generative)

Trainable network
(U-net, Denoising Autoencoder)

x0 x1
x
2

x3 x4 … xT

Similar to the generative model in hierarchical VAEs.
slide from https://cvpr2022-tutorial-diffusion-models.github.io/



For training, we can form variational upper bound (negative ELBO) that is commonly used for training variational 
autoencoders:

Sohl-Dickstein et al. ICML 2015 and Ho et al. NeurIPS 2020 show that:

where                 is the tractable posterior distribution:

Learning Denoising Model
Variational upper bound

slide from https://cvpr2022-tutorial-diffusion-models.github.io/



Parameterizing the Denoising Model

Since both                        and                    are Normal distributions, the KL divergence has a simple form:

Recall that                                             . Ho et al. NeurIPS 2020 observe that: 

They propose to represent the mean of the denoising model using a noise-prediction network:

With this parameterization 

slide from https://cvpr2022-tutorial-diffusion-models.github.io/



Training Objective Weighting

The time dependent     ensures that the training objective is weighted properly for the maximum data likelihood training. 

However, this weight is often very large for small t’s.

Ho et al. NeurIPS 2020 observe that simply setting            improves sample quality. So, they propose to use:

Trading likelihood for perceptual quality

slide from https://cvpr2022-tutorial-diffusion-models.github.io/



Summary
Training and Sample Generation

slide from https://cvpr2022-tutorial-diffusion-models.github.io/



Implementation Considerations

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent

Time representation: sinusoidal positional embeddings or random Fourier features. 

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization 
layers. (see Dharivwal and Nichol, NeurIPS 2021)

Network Architectures

Time Representation
Fully-connected

Layers

slide from https://cvpr2022-tutorial-diffusion-models.github.io/



Connection to VAEs

Diffusion models can be considered as a special form of hierarchical 
VAEs.

However, in diffusion models:

• The inference model is fixed: easier to optimize

• The latent variables have the same dimension as the data.

• The ELBO is decomposed to each time step: fast to train
• Can be made extremely deep (even infinitely deep)

• The model is trained with some reweighting of the ELBO.

Vahdat and Kautz, NVAE: A Deep Hierarchical Variational Autoencoder, NeurIPS 2020 
Sønderby, et al.. Ladder variational autoencoders, NeurIPS 2016.

x

z1

z2

z3

x

z1

z2

z3

Inference model
q(z|x)

Generative model
p(x,z)



Thank you!


