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Recall: Laplacian Eigenmap and Diffusion Map

I Given a graph G(V,E) with weight matrix W and D = diag(Dii)
with Dii =

∑
j wij .

I Define unnormalized Laplacian L = D −W

I Define the normalized Laplacian L = D−1/2LD−1/2

I Define the row Markov matrix P = D−1W
– eigenvectors of L or L;
– generalized eigenvectors of L

Lv = λDv

– or equivalently, right eigenvectors of P

Pv = (1− λ)v

I Which eigenvectors shall we choose as embeddings?
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Random Walk (Markov Chain) on Graphs

I Perron-Frobenius Vector and Google’s PageRank: this is about
primary eigenvectors, as stationary distributions of Markov chains;
application examples include Google’s PageRank.

I Fiedler Vector, Cheeger’s Inequality, and Spectral Bipartition: this is
about the second eigenvector of graph Laplacians, characterizing the
topological connected components and the basis for spectral
clustering.

I Lumpability/Metastability: this is about multiple piecewise constant
right eigenvectors of Markov matrices, widely used for diffusion map,
Laplacian eigenmap, and Multiple spectral clustering (“MNcut” by
Maila-Shi, 2001), etc.

I Mean first passage time, commute time distance: a connection with
diffusion distances.
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Random Walk (Markov Chain) on Graphs

I Transition Path Theory: this is about starting from a source set
toward a target set, the stochastic transition paths on the graph

I Semi-supervised learning: this is about with partially labeled nodes
on a graph, inferring the information on unlabeled points

I They are equivalent in the sense that they satisfy the same
unnormalized Laplacian equations with Dirichelet boundary
condition.
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Nonnegative Matrix

I Given An×n, we define

A > 0⇔ A is positive matrix ⇔ Aij > 0 ∀i, j

A ≥ 0⇔ A is nonnegative matrix ⇔ Aij ≥ 0 ∀i, j.

I Note that this definition is different from positive definiteness:

A � 0⇔ A is positive-definite ⇔ xTAx > 0 ∀x 6= 0

A � 0⇔ A is semi-positive-definite ⇔ xTAx ≥ 0 ∀x 6= 0
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Perron Vector of Positive Matrix

Theorem (Perron Theorem for Positive Matrix)
Assume that A > 0, i.e.a positive matrix. Then

(1) ∃λ∗ > 0, ν > 0, ‖ν‖2 = 1, s.t. Aν = λ∗ν, ν is a right eigenvector
(∃λ∗ > 0, ω > 0, ‖ω‖2 = 1, s.t. (ωT )A = λ∗ωT , left eigenvector)

(2) ∀ other eigenvalue λ of A, |λ| < λ∗

(3) ν is unique up to rescaling or λ∗ is simple

(4) Collatz-Wielandt Formula

λ∗ = max
x≥0,x6=0

min
i:xi 6=0

[Ax]i
xi

= min
x>0

max
i

[Ax]i
xi

.
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Remark

I Such eigenvectors (ν and ω) will be called Perron vectors.

I An extension to nonnegative matrices is given by Perron.
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Perron Vectors of Nonnegative Matrix

Theorem (Perron Theorem for Nonnegative Matrix)
Assume that A≥0, i.e. nonnegative. Then

(1’) ∃λ∗ > 0, ν≥0, ‖ν‖2 = 1, s.t. Aν = λ∗ν (similar to left eigenvector)

(2’) ∀ other eigenvalue λ of A, |λ|≤λ∗

(3’) ν is NOT unique

(4) Collatz-Wielandt Formula

λ∗ = max
x≥0,x 6=0

min
i:xi 6=0

[Ax]i
xi

= min
x>0

max
i

[Ax]i
xi
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Remark

Notice the changes in (1’), (2’), and (3’):

I Perron vectors are nonnegative rather than positive.

I In the nonnegative situation what we lose is the uniqueness in λ∗

(2’) and ν (3’).

I Can we add more conditions such that the loss can be remedied?

I The answer is yes, if we add the concepts of irreducible and
primitive matrices.
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Irreducible Matrix

Definition (Irreducible)
The following definitions are equivalent:

(1) For any 1 ≤ i, j ≤ n, there is an integer k ∈ Z, s.t. Ak(i, j) > 0. ⇔

(2) Graph G = (V,E) (V = {1, . . . , n} and (i, j) ∈ E iff Aij > 0) is
(path-)connected, i.e. ∀{i, j} ⊆ V , there is a path

(x0, x1, . . . , xt) ∈ V n+1,where x0 = i, xt = j and (xk, xk+1) ∈ E,

that connects i and j.
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Remark

I Irreducibility exactly describes the case that the induced graph from
A is connected, i.e. every pair of nodes are connected by a path of
arbitrary length.

I However primitivity strengthens this condition to k-connected,
i.e. every pair of nodes are connected by a path of length k.
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Primitive Matrix

Definition (Primitive)
The following characterizations hold:

1. There is an integer k ∈ Z, such that ∀i, j, Akij > 0; ⇔

2. Any node pair {i, j} ∈ E are connected with a path of length no
more than k; ⇔

3. A has unique λ∗ = max |λ|; ⇐

4. A is irreducible and Aii > 0, for some i.
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Remark

I Note that condition (4) is sufficient for primitivity but not necessary.

I All the first three conditions are necessary and sufficient for
primitivity.

I Primitive matrices ensure the uniqueness of eigenvalue in module
λ∗.

I In comparison, irreducible matrices have a simple primary eigenvalue
λ∗ and 1-dimensional primary (left and right) eigenspace, with
unique left and right eigenvectors up to a sign. However, there
might be other eigenvalues whose absolute values (module) equal to
the primary eigenvalue, i.e. λ∗ · eiω.
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Remark

I When A is a primitive matrix, Ak becomes a positive matrix for
some k, then we can recover (1), (2) and (3) for positivity and
uniqueness.

I This leads to the following Perron-Frobenius theorem.
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Perron-Frobenius Theory of Primitive Matrix

Theorem (Nonnegative Matrix, Perron-Frobenius)
Assume that A ≥ 0 and A is primitive. Then

1. ∃λ∗ > 0, ν > 0, ‖ν‖2 = 1, s.t. Aν = λ∗ν (right eigenvector)
and ∃ω > 0, ‖ω‖2 = 1, s.t. ωTA = λ∗ωT (left eigenvector)

2. ∀ other eigenvalue λ of A, |λ| < λ∗

3. ν is unique

4. Collatz-Wielandt Formula

λ∗ = max
x>0

min
i

[Ax]i
xi

= min
x>0

max
i

[Ax]i
xi

Such eigenvectors and eigenvalue will be called as Perron-Frobenius or
primary eigenvectors/eigenvalue.
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Example: Markov Chain on Graph

I Given a graph G = (V,E), consider a random walk on G with
transition probability Pij = Prob(xt+1 = j|xt = i) ≥ 0, a
nonnegative matrix. Thus P is a row-stochastic or row-Markov
matrix i.e. P · 1 = 1 where 1 ∈ RV is the vector with all elements
being 1.

I From Perron theorem for nonnegative matrices, we know

– ν∗ =
−→
1 > 0 is a right Perron eigenvector of P ;

– λ∗ = 1 is a Perron eigenvalue and all other eigenvalues |λ| ≤ 1 = λ∗;

– ∃ left P-eigenvector π such that πTP = πT where π ≥ 0, 1Tπ = 1;
such π is called an invariant/equilibrium distribution;

– P is irreducible (G is connected) ⇒ π unique;
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Example: Markov Chain on Graph

From Perron-Frobenious theorem for primitive matrices, we know

I P is primitive (G connected by paths of length ≤ k) ⇒ |λ| = 1
unique,

⇒ lim
k→∞

πT0 P
k → πT ∀π0 ≥ 0, 1Tπ0 = 1

I This means when we take powers of P , i.e. P k, all rows of P k will
converge to the stationary distribution πT .

I Such a convergence only holds when P is primitive. If P is not
primitive, e.g. P = [0, 1; 1, 0] (whose eigenvalues are 1 and −1), P k

always oscillates and never converges.
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Example: Markov Chain on Graph

What’s the rate of the convergence?

I Let πTt = πT0 P
t and

γ = max{|λ2|, · · · , |λn|}, λ1 = 1,

I Roughly speaking we have

‖πt − π‖1 ∼ O(e−γt).

This type of rates will be seen in various mixing time estimations.
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Example: PageRank

Figure: An illustration of weblink driven random walks and pagerank.
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Example: PageRank

I Consider a directed weighted graph G = (V,E,W ) whose weight
matrix decodes the webpage link structure:

wij =

{
#{link : i 7→ j}, (i, j) ∈ E
0, otherwise

I Define an out-degree vector doi =
∑n
j=1 wij , which measures the

number of out-links from i. A diagonal matrix D = diag(doi ) and a
row Markov matrix P1 = D−1W , assumed for simplicity that all
nodes have non-empty out-degree.

I This P1 accounts for a random walk according to the link structure
of webpages. One would expect that stationary distributions of such
random walks will disclose the importance of webpages: the more
visits, the more important.
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Example: PageRank

I However Perron-Frobenius above tells us that to obtain a unique
stationary distribution, we need a primitive Markov matrix!

I Google’s PageRank does the following trick. Let

Pα = αP1 + (1− α)E,

where E = 1
n1 · 1T is a random surfer model, i.e. one can jump to

any other webpage uniformly.

I So in the model Pα, a browser will play a dice: he will jump
according to link structure with probability α or randomly surf with
probability 1− α. For 1 > α > 0, Pα is a positive matrix, hence
primitive (there exists a unique π: πTPα = πT ).

I Google choose α = 0.85 and in this case π gives PageRank scores..
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Cheating the PageRank

I If there are many cross links between a small set of nodes (for
example, Wikipedia), those nodes must appear to be high in
PageRank.

I Now you probably can figure out how to cheat PageRank. This
phenomenon actually has been exploited by spam webpages, and
even scholar citations. After learning the nature of PageRank, we
should be aware of such mis-behaviors.

I Above we just consider out-degree d(o). How about in-degree

d
(i)
k =

∑
j wjk?
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Kleinberg’s HITS algorithm

I High out-degree webpages can be regarded as hubs, as they provide
more links to others. On the other hand, high in-degree webpages
are regarded as authorities, as they were cited by others intensively.
Basically in/out-degrees can be used to rank webpages, which gives
relative ranking as authorities/hubs.

– d(o)(i) =
∑

k wik

– d(i)(j) =
∑

k wkj

I Finally we discussed a bit on Jon Kleinberg’s HITS algorithm, which
is based on singular value decomposition (SVD) of link matrix W . It
turns out Kleinberg’s HITS algorithm gives pretty similar results to
in/out-degree ranking.
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HITS-Authority Algorithm

Definition (HITS-authority)
We use primary right singular vector of W as scores to give the
ranking. To understand this, define La = WTW .

I Primary right singular vector of W is just a primary eigenvector of
nonnegative symmetric matrix La.

I Since La(i, j) =
∑
kWkiWkj , thus it counts the number of

references which cites both i and j, i.e.
∑
k #{i← k → j}. The

higher value of La(i, j) the more references received on the pair of
nodes. Therefore Perron vector tend to rank the webpages according
to authority.
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HITS-Hub Algorithm

Definition (HITS-hub)
We use primary left singular vector of W as scores to give the ranking.

I Define Lh = WWT , where primary left singular vector of W is just
a primary eigenvector of nonnegative symmetric matrix Lh.

I Similarly Lh(i, j) =
∑
kWikWjk, which counts the number of links

from both i and j, hitting the same target, i.e.
∑
k #{i→ k ← j}.

Therefore the Perron vector Lh gives hub-ranking.
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Simple Graph

I Let G = (V,E) be an undirected, unweighted simple graph (simple
graph means for every pair of nodes there are at most one edge
associated with it; and there is no self loop on each node).

I We use i ∼ j to denote that node i ∈ V is a neighbor of node
j ∈ V , i.e. (i, j) ∈ E.
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Adjacency Matrix

Definition (Adjacency Matrix)

Aij =

{
1 i ∼ j
0 otherwise.

I We can use the weight of edge i ∼ j to define Aij = Wij if the
graph is weighted. That indicates Aij ∈ R+.

I We can also extend Aij to R which involves both positive and
negative weights, like correlation graphs. But the theory below can
not be applied to such weights being positive and negative.

I Define a diagonal matrix D = diag(di), where di is the degree of
node i: di =

∑n
j=1Aij .
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Unnormalized Graph Laplacians

Definition (Graph Laplacian)

Lij := D −A =

 di i = j,
−1 i ∼ j
0 otherwise

I We often called it unnormalized graph Laplacian, as a distinction
from the normalized graph Laplacian below.

I For weighted graphs, L = D −W .
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Example: Linear Chain Graph

Example
V = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}, {3, 4}}. This is a linear chain with
four nodes.

L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 .
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Example: Complete Graph

Example
A complete graph of n nodes, Kn. V = {1, 2, 3...n}, every two points
are connected, as the figure above with n = 5.

L =


n− 1 −1 −1 ... −1
−1 n− 1 −1 ... −1
−1 ... −1 n− 1 −1
−1 ... −1 −1 n− 1

 .

Fiedler Vector of Unnormalized Laplacians 32



Spectrum of L

I L is symmetric, so has an orthonormal eigen-system.

I L is positive semi-definite (L � 0), since

vTLv =
∑
i

∑
j:j∼i

vi(vi − vj) =
∑
i

div2
i −

∑
j:j∼i

vivj


=

∑
i∼j

(vi − vj)2 ≥ 0, ∀v ∈ Rn.

so L has nonnegative eigenvalues.
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A Square Root of L: Boundary Map

I L � 0⇒ L = BBT for some B.

I In fact, one can choose B ∈ R|V |×|E|:

B(i, (j, k)) =

 1, i = j (start) ,
−1, i = k (end) ,
0, otherwise

I B is called incidence matrix between a vertex i ∈ V and an oriented
edge (j, k) = −(k, j) ∈ E (or boundary map in algebraic topology):

– if the boundary vertex i meets the start of an edge, then returns 1;
– if boundary vertex i meets the end of an edge, then −1;
– otherwise the vertex is not on the boundary of the edge, 0.
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Fiedler Theorem

Theorem (Fiedler)
Let L has n eigenvectors

Lvi = λivi, vi 6= 0, i = 0, . . . , n− 1

where 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. For the second smallest eigenvector
v1, define

N− = {i : v1(i) < 0},

N+ = {i : v1(i) > 0},

N0 = V −N− −N+.

We have the following results:

1. #{i, λi = 0} = #{connected components of G};
2. If G is connected, then both N− and N+ are connected. N− ∪N0

and N+ ∪N0 might be disconnected if N0 6= ∅.
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Algebraic Connectivity

I Fiedler Theorem tells us that the second smallest eigenvalue can be
used to tell us if the graph is topologically connected, i.e. G is
connected if and only λ1 6= 0. In other words,

A. λ1 = 0⇔ there are at least two connected components;

B. λ1 > 0⇔ the graph is connected;

I When N0 = ∅, the second smallest eigenvector can be used to
bipartite the graph into two connected components by taking N−
and N+.

I The second smallest eigenvalue λ1 is often called as Fiedler value, or
the algebraic connectivity; v1 is called Fiedler vector.
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A Sketchy Proof of the First Claim

Proof of Part I.
Let (λ, v) be a pair of eigenvalue-eigenvector, i.e. Lv = λv and

λ =
vTLv

vT v
=

∑
i∼j

(vi − vj)2∑
i

vi2
.

Since L1 = 0, so the constant vector 1 ∈ Rn is always the eigenvector
associated with λ0 = 0. Moreover,

0 = λ1 ⇔ vi = vj (for j is path connected with i).

Therefore v is a piecewise constant function on connected components of
G. If G has k components, then there are k independent piecewise
constant vectors in the span of characteristic functions on those
components, which can be used as 0-eigenvectors of L.
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Normalized Graph Laplacian

Definition (Normalized Graph Laplacian)

Lij = D−1/2LD−1/2 =


1 i = j,

− 1√
didj

i ∼ j,

0 otherwise.

I L = D−1/2LD−1/2 = D−1/2(D −A)D−1/2 = I −D−1/2AD−1/2.

I For eigenvectors Lv = λv, we have

(D−1/2LD−1/2)v = λv ⇔ Lu = λDu, u = D−1/2v.

Hence eigenvectors of L, v, after rescaling by D−1/2v, become
generalized eigenvectors of L.
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Algebraic Connectivity

Similar to Fiedler value,

#{λi(L) = 0} = #{connected components of G}.

I Using the Rayleigh Quotient,

λ =
vTLv
vT v

=
vTD−

1
2 (D −A)D−

1
2 v

vv

=
uTLu

uTDu

=

∑
i∼j

(ui − uj)2∑
j

uj2dj
.
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Spectrum of Random Walks: Eigenvalues

(A) I − L is similar to the transition matrix of random walks:

P = D−1A = D−1/2(I − L)D1/2.

(B) Therefore, their eigenvalues satisfy λi(P ) = 1− λi(L).
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Spectrum of Random Walks: Eigenvectors

(C) Consider the left eigenvector φ and right eigenvector ψ of P .

φTP = λφT ,

Pψ = λψ.

Then

– φ = D1/2v,
– ψ = D−1/2v,

where v is eigenvector of I − L, Lv = (1− λ)v. In fact,

φTP = λφT ⇔ (φTD−1/2)(D−1/2(I − L)D−1/2) = λ(φTD−1/2)

Pψ = λψ ⇔ D−1/2(I − L)D−1/2(D1/2ψ) = λD1/2ψ.
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Connections

If P is primitive,

I ∃! λ∗(P ) = 1

I φ∗ ∼ π(i) = di/
∑
i di

I πiPij = Aij/c = Aji/c = πjPji, so P is reversible

I ψ∗ ∼ 1

I λ0(L) = 0

I v0 = v∗(i) ∼
√
di

I Eigenvectors of L are orthonormal: vTi vj = δij

I Left/right eigenvectors of P are bi-orthonormal: φTi ψj = δij
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Normalized Cut

Let G be a graph, G = (V,E) and S is a subset of V whose complement
is S̄ = V − S. We define V ol(S), CUT (S) and NCUT (S) as below.

V ol(S) =
∑
i∈S

di.

CUT (S) =
∑

i∈S,j∈S̄

Aij .

NCUT (S) =
CUT (S)

min(V ol(S), V ol(S̄))
.

NCUT (S) is called normalized-cut.
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Cheeger Constant

I We define the Cheeger constant

hG = min
S
NCUT (S).

Finding minimal normalized graph cut is NP-hard.

I It is often defined that

Cheeger ratio (expander): hS :=
CUT (S)

V ol(S)

and
Cheeger constant: hG := min

S
max {hS , hS̄} .
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Cheeger Inequality

Theorem (Cheeger Inequality)
For every undirected graph G,

h2
G

2
≤ λ1(L) ≤ 2hG.

I Cheeger Inequality says the second smallest eigenvalue provides both
upper and lower bounds on the minimal normalized graph cut. Its
proof gives us a constructive polynomial algorithm to achieve such
bounds.
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Proof of Upper Bound

I Assume the function f realizes the optimal normalized cut,

f(i) =

{
1

V ol(S) i ∈ S,
−1

V ol(S̄)
i ∈ S̄,

Using the Rayleigh Quotient, we get

λ1 = inf
g⊥D1/2e

gTLg
gT g

≤
∑
i∼j(fi − fj)2∑

f2
i di

=
( 1
V ol(S) + 1

V ol(S̄)
)2CUT (S)

V ol(S) 1
V ol(S)2 + V ol(S̄) 1

V ol(S̄)2

= (
1

V ol(S)
+

1

V ol(S̄)
)CUT (S)

≤ 2CUT (S)

min(V ol(S), V ol(S̄))
=: 2hG.
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Proof of Lower Bound (Fan Chung 2014)

[Short Proof of Lower Bound]

I The proof is based on the fact that

hG = inf
f 6=0

sup
c∈R

∑
x∼y |f(x)− f(y)|∑
x |f(x)− c|dx

where the supreme over c is reached at c∗ = median(f(x) : x ∈ V ).
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Proof of Lower Bound (Fan Chung 2014) ?

λ1 = R(f)|f=ν1 = sup
c

∑
x∼y(f(x)− f(y))2∑
x(f(x)− c)2dx

,

≥
∑
x∼y(g(x)− g(y))2∑

x g(x)2dx
, g(x) = f(x)− c

=
(
∑
x∼y(g(x)− g(y))2)(

∑
x∼y(g(x) + g(y))2)

(
∑
x∈V g

2(x)dx)(
∑
x∼y(g(x) + g(y))2)

≥
(
∑
x∼y |g2(x)− g2(y)|)2

(
∑
x∈V g

2(x)dx)(
∑
x∼y(g(x) + g(y))2)

, Cauchy-Schwartz

≥
(
∑
x∼y |g2(x)− g2(y)|)2

2(
∑
x∈V g

2(x)dx)2
, (g(x) + g(y))2 ≤ 2(g2(x) + g2(y))

≥ h2
G

2
.

This ends the proof of lower bound (HW: check it?).
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Approximate NCut

In fact,
h2
G

2
≤
h2
v1

2
≤ λ1(L) ≤ 2hG.

I hv1 : the minimum Cheeger ratio determined by a sweep of the
second smallest eigenvector v1

– order the nodes: v1(#1) ≥ v1(#2) . . . vn(#n)

– Si := {v1(#1, . . . , v1(#i)}

– hv1 := mini hSi

I This gives a constructive approximate NCut algorithm, as spectral
bi-clustering.
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Extensions

I Cheeger Inequality for directed graph: Chung-Lu (2005)

I High Order Cheeger Inequality for Multiple Eigenvectors of Graph
Laplacians: James R. Lee, Shayan Oveis Gharan, Luca Trevisan
(2011)

I High Order Cheeger Inequality for Connection Laplacians: Afonso S.
Bandeira and Amit Singer (2012)

I High Order Cheeger Inequality on Simplicial Complexes: John
Steenbergen, Caroline Klivans, Sayan Mukherjee (2012).
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Coarse Grained Markov Chains

I Let P be the transition matrix of a Markov chain on graph
G = (V,E) with V = {1, 2, · · · , n}, i.e.
Pij = Pr{xt = j : xt−1 = i}.

I Assume that V admits a partition Ω:

V = ∪ki=1Ωi, Ωi ∩ Ωj = ∅, i 6= j.

Ω = {Ωs : s = 1, · · · , k}.

I Observe a sequence{x0, x1, · · · , xt} sampled from the Markov chain
with initial distribution π0. Relabel xt 7→ yt ∈ {1, · · · , k} by

yt =

k∑
s=1

sχΩs
(xt),

where χ is the characteristic function. Thus we obtain a sequence
(yt) which is a coarse-grained representation of original sequence.
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Lumpability

I Question: is the coarse-grained sequence yt still Markovian?

Definition (Lumpability, Kemeny-Snell 1976)
P is lumpable with respect to partition Ω if the sequence {yt} is
Markovian. In other words, the transition probabilities do not depend on
the choice of initial distribution π0 and history, i.e.

Probπ0
{xt ∈ Ωkt : xt−1 ∈ Ωkt−1

, · · · , x0 ∈ Ωk0}
= Prob{xt ∈ Ωkt : xt−1 ∈ Ωkt−1

}.

The lumpability condition above can be rewritten as

Probπ0{yt = kt : yt−1 = kt−1, · · · , y0 = k0} = Prob{yt = kt : yt−1 = kt−1}.
(1)
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Criteria for Lumpability

I. (Kemeny-Snell 1976) P is lumpable with respect to partition Ω
⇔ ∀Ωs,Ωt ∈ Ω, ∀i, j ∈ Ωs, P̂iΩt

= P̂jΩt
, where P̂iΩt

=
∑
j∈Ωt

Pij .

Figure: Lumpability condition P̂iΩt = P̂jΩt
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Spectral Criteria for Lumpability

II. (Meila-Shi 2001) P is lumpable with respect to partition Ω and P̂
(p̂st =

∑
i∈Ωs,j∈Ωt

pij) is nonsingular ⇔ P has k independent
piecewise constant right eigenvectors in span{χΩs

: s = 1, · · · , k}.

I So k-dimensional diffusion map (right eigenvectors of P ) maps
lumpable states into a simplex.
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Example

I Consider a linear chain with 2n nodes whose adjacency matrix and
degree matrix are given by

A =


0 1
1 0 1

. . .
. . .

. . .

1 0 1
1 0

 , D = diag{1, 2, · · · , 2, 1}

Figure: A linear chain of 2n nodes with a random walk.
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Example

I So the transition matrix P = D−1A illustrated in Figure has a
spectrum including two eigenvalues of magnitude 1, i.e. λ0 = 1 and
λn−1 = −1. P is lumpable with respect to partition that Ω1 = {odd
nodes}, Ω2 = {even nodes}. We can check that I and II are
satisfied.

I To see I, note that for any two even nodes, say i = 2 and j = 4,
P̂iΩ2 = P̂jΩ2 = 1 as their neighbors are all odd nodes, hence I is
satisfied.

I To see II, note that φ0 (associated with λ0 = 1) is a constant vector
while φ1 (associated with λn−1 = −1) is constant on even nodes
and odd nodes respectively. Figure 4 shows the lumpable states
when n = 4 in the left.
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Lumpable 6= Optimal NCut

Figure: Left: two lumpable states; Right: optimal-bipartition of Ncut.

I Note that lumpable states might not be optimal bi-partitions in
NCUT = Cut(S)/min(vol(S), vol(S̄)).

I In this example, the optimal bi-partition by Ncut is given by
S = {1, . . . , n}, shown in the right of Figure. In fact the second
largest eigenvalue λ1 = 0.9010 whose eigenvector

v1 = [0.4714, 0.4247, 0.2939, 0.1049,−0.1049,−0.2939,−0.4247,−0.4714],

gives the optimal bi-partition.
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Example: Uncoupled Markov Chains

I Uncoupled Markov chains are lumpable, e.g.

P0 =

 Ω1

Ω2

Ω3

 , P̂it = P̂jt = 0.
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Example: Nearly Uncoupled Markov Chains

I A markov chain P̃ = P0 +O(ε) is called nearly uncoupled Markov
chain. Such Markov chains can be approximately represented as
uncoupled Markov chains with metastable states, {Ωs}, where within
metastable state transitions are fast while cross metastable states
transitions are slow. Such a separation of scale in dynamics often
appears in many phenomena in real lives, such as protein folding,

Figure: Nearly uncoupled Markov Chain for six metastable states in
Alanine-dipeptide.
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Illustration

I One’s life transitions among metastable states:
primary schools 7→ middle schools 7→ high schools 7→
college/university 7→ work unit, etc.

Figure: Metastable states of life transitions.
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Application: MNcut

Meila-Shi (2001) calls the following algorithm as MNcut, standing for
modified Ncut. Due to the theory above, perhaps we’d better to call it
multiple spectral clustering.

1) Find top k right eigenvectors,

Pψi = λiψi, i = 1, · · · , k, λi = 1− o(ε).

2) Embedding Y n×k = [ψ1, · · · , ψk].

3) k-means (or other suitable clustering methods) on Y to k-clusters.

I Note: k lumpable states are mapped to a k-simplex.
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Example: Spectral Clustering

Figure: Spectral clustering of point cloud data in 2-D plane
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Proof of Theorem

I Before the proof of the theorem, we note that condition I is in fact
equivalent to

V UPV = PV, (2)

where U is a k-by-n matrix where each row is a uniform probability
that

Uk×nis =
1

|Ωs|
χΩs(i), i ∈ V, s ∈ Ω,

and V is a n-by-k matrix where each column is a characteristic
function on Ωs,

V n×ksj = χΩs
(j).

I With this we have P̂ = UPV and UV = I. Such a matrix
representation will be useful in the derivation of condition II. Now
we give the proof of the main theorem.
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Proof of Claim I

I I. “⇒” To see the necessity, P is lumpable w.r.t. partition Ω, then it
is necessary that

Prob
π0

{x1 ∈ Ωt : x0 ∈ Ωs} = Prob
π0

{y1 = t : y0 = s} = p̂st

which does not depend on π0. Now assume there are two different

initial distribution such that π
(1)
0 (i) = 1 and π

(2)
0 (j) = 1 for

∀i, j ∈ Ωs. Thus

p̂iΩt = Prob
π
(1)
0

{x1 ∈ Ωt : x0 ∈ Ωs}

= p̂st = Prob
π
(2)
0

{x1 ∈ Ωt : x0 ∈ Ωs} = p̂jΩt
.
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Proof of Claim I

I “⇐” To show the sufficiency, we are going to show that if the
condition is satisfied, then the probability

Prob
π0

{yt = t : yt−1 = s, · · · , y0 = k0}

depends only on Ωs,Ωt ∈ Ω. Probability above can be written as
Probπt−1(yt = t) where πt−1 is a distribution with support only on
Ωs which depends on π0 and history up to t− 1. But since
Probi(yt = t) = p̂iΩt

≡ p̂st for all i ∈ Ωs, then
Probπt−1

(yt = t) =
∑
i∈Ωs

πt−1p̂iΩt
= p̂st which only depends on

Ωs and Ωt.
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Proof of Claim II

I II. “⇒”: Since P̂ is nonsingular, let {ψi, i = 1, · · · , k} are
independent right eigenvectors of P̂ , i.e. P̂ψi = λiψi. Define
φi = V ψi, then φi are independent piecewise constant vectors in
span{χΩi

, i = 1, · · · , k}. We have

Pφi = PV ψi = V UPV ψi = V P̂ψi = λiV ψi = λiφi,

i.e. φi are right eigenvectors of P .
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Proof of Claim II

I II. “⇐”: Let {φi, i = 1, · · · , k} be k independent piecewise constant
right eigenvectors of P in span{χΩi , i = 1, · · · , k}. There must be
k independent vectors ψi ∈ Rk that satisfied φi = V ψi. Then

Pφi = λiφi ⇒ PV ψi = λiV ψi,

Multiplying V U to the left on both sides of the equation, we have

V UPV ψi = λiV UV ψi = λiV ψi = PV ψi, (UV = I),

which implies

(V UPV − PV )Ψ = 0, Ψ = [ψ1, . . . , ψk].

Since Ψ is nonsingular due to independence of ψi, whence we must
have V UPV = PV .
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Mean First Passage Time

I Consider a Markov chain P on graph G = (V,E). In this section we
study the mean first passage time between vertices, which exploits
the unnormalized graph Laplacian and will be useful for commute
time map against diffusion map.
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Definitions

Definition.

1. First passage time (or hitting time): τij := inf(t ≥ 0|xt = j, x0 = i);

2. Mean First Passage Time: Tij = Eiτij ;

3. τ+
ij := inf(t > 0|xt = j, x0 = i), where τ+

ii is also called first return
time;

4. T+
ij = Eiτ

+
ij , where T+

ii is also called mean first return time.

Here Ei denotes the conditional expectation with fixed initial condition
x0 = i.
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Unnormalized Graph Laplacian

Theorem
Assume that P is irreducible. Let L = D −W be the unnormalized
graph Laplacian with Moore-Penrose inverse L†, where D = diag(di)
with di =

∑
j:j∼iWij being the degree of node i. Then

1. Mean First Passage Time is given by

Tii = 0,

Tij =
∑
k

L†ikdk − L
†
ijvol(G) + L†jjvol(G)−

∑
k

L†jkdk, i 6= j.

2. Mean First Return Time is given by

T+
ii =

1

πi
, T+

ij = Tij .
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Commute Time Distance

I As L† is a positive semi-definite matrix, this leads to the following
corollary.

Corollary

Tij + Tji = vol(G)(L†ii + L†jj − 2L†ij). (3)

Therefore the average commute time between i and j leads to an
Euclidean distance metric

dc(xi, xj) :=
√
Tij + Tji

often called commute time distance.
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Commute Time Embedding

I Assume the eigen-decomposition of L is Lνi = λiνi where
0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1.

I Define the commute time map by

Ψ(x) =

(
1√
λ1

ν1(x), · · · , 1√
λn−1

νn−1(x)

)T
∈ Rn−1.

I Then L+
ii + L+

jj − 2L+
ij = ||Ψ(xi)−Ψ(xj))||2l2 , and we call

dr(xi, xj) =
√
L+
ii + L+

jj − 2L+
ij the resistance distance. So we have

dc(xi, xj) =
√
Tij + Tji =

√
vol(G)dr(xi, xj).
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Diffusion Map vs. Commute Time Map

Table: Comparisons between diffusion map and commute time map. Here x ∼ y
means that x and y are in the same cluster and x � y for different clusters.

Diffusion Map Commute Time Map
P ’s right eigenvectors L’s eigenvectors

scale parameters: α, ε, and t scale: Gaussian ε
∃t s.t. x ∼ y, dt(x, y)→ 0 *
and x � y, dt(x, y)→∞ *

(*) Recently, Radl, von Luxburg and Hein showed that commute time
distance between two points may not reflect the clustering
information of these points, but just local densities at these points.
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Setting

I The transition path theory was originally introduced in the context
of continuous-time Markov process on continuous state space by
Weinan E and Eric Vanden-Eijnden (2006) and later for discrete
state space by Philipp Metzner, Christof Schütte, and Eric
Vanden-Eijnden (2009). An application of discrete transition path
theory for molecular dynamics is by Frank Noè et al. (2009). See E
and Vanden-Eijnden (2010) for a review.

I The following material is adapted to the setting of discrete time
Markov chain with transition probability matrix P in E, Lu, and Yao
(2012). We assume reversibility in the following presentation, which
can be extended to non-reversible Markov chains.
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Setting

I Assume that an irreducible Markov Chain on graph G = (V,E)

admits the following decomposition P = D−1W =

(
Pll Plu
Pul Puu

)
.

Here Vl = V0 ∪ V1 denotes the labeled vertices with source set V0

(e.g. reaction state in chemistry) and sink set V1 (e.g. product state
in chemistry), and Vu is the unlabeled vertex set (intermediate
states). That is,

– V0 = {i ∈ Vl : fi = f(xi) = 0}
– V1 = {i ∈ Vl : fi = f(xi) = 1}
– V = V0 ∪ V1 ∪ Vu where Vl = V0 ∪ V1
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Remarks

I Given two sets V0 and V1 in the state space V , the transition path
theory tells how these transitions between the two sets happen
(mechanism, rates, etc.).

I If we view V0 as a reactant state and V1 as a product state, then
one transition from V0 to V1 is a reaction event. The reactve
trajectories are those part of the equilibrium trajectory that the
system is going from V0 to V1.

I Let the hitting time of Vl be

τki = inf{t ≥ 0 : x(0) = i, x(t) ∈ Vk}, k = 0, 1.
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Committor Function

I The central object in transition path theory is the committor
function. Its value at i ∈ Vu gives the probability that a trajectory
starting from i will hit the set V1 first than V0, i.e., the success rate
of the transition at i.

Proposition
For ∀i ∈ Vu, define the committor function

qi := Prob(τ1
i < τ0

i ) = Prob(trajectory starting from i ∈ V hit V1 before V0)

which satisfies Laplacian equation with Dirichlet boundary conditions

(Lq)(i) = [(I − P )q](i) = 0, i ∈ Vu

q(V0)|i∈V0
= 0, q(V1)|i∈V1

= 1.

The solution is
qu = (Du −Wuu)−1Wulql. (4)
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Remark

I The committor function provides natural decomposition of the
graph. If q(x) is less than 0.5, i is more likely to reach V0 first than
V1; so that {i | q(x) < 0.5} gives the set of points that are more
attached to set V0.

I Once the committor function is given, the statistical properties of the
reaction trajectories between V0 and V1 can be quantified. We state
several results characterizing transition mechanism from V0 to V1.
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Remark

I By a reaction (transition) trajectory, we mean a sequence of
transitions from V0 to V1, i.e. (xt1 , xt1+1, . . . , xt2) such that
xt1 ∈ V0, xt2 ∈ V1, and xtk ∈ V − (V0 ∪ V1) for t1 < tk < t2.

I Denote by R the set of such reaction trajectories.

Transition Path Theory and Semisupervised Learning 83



Proposition

Proposition (Probability distribution of reactive trajectories)
The probability distribution of reactive trajectories

πR(x) = P(Xn = x, n ∈ R) (5)

is given by
πR(x) = π(x)q(x)(1− q(x)). (6)

I The distribution πR gives the equilibrium probability that a reactive
trajectory visits x. It provides information about the proportion of
time the reactive trajectories spend in state x along the way from V0

to V1.
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Proposition (Reactive current from V0 to V1)
The reactive current from A = V0 to B = V1, defined by

J(xy) = P(Xn = x,Xn+1 = y, {n, n+ 1} ⊂ R), (7)

is given by

J(xy) =

{
π(x)(1− q(x))Pxyq(y), x 6= y;

0, otherwise.
(8)

I The reactive current J(xy) gives the average rate the reactive
trajectories jump from state x to y. From the reactive current, we
may define the effective reactive current on an edge and transition
current through a node which characterizes the importance of an
edge and a node in the transition from A to B, respectively.
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Effective Reactive Current

Definition
The effective current of an edge xy is defined as

J+(xy) = max(J(xy)− J(yx), 0). (9)

The transition current through a node x ∈ V is defined as

T (x) =


∑
y∈V J

+(xy), x ∈ A = V0∑
y∈V J

+(yx), x ∈ B = V1∑
y∈V J

+(xy) =
∑
y∈V J

+(yx), x 6∈ A ∪B
(10)

I The effective reactive current on an edge and transition current
through a node characterize the importance of an edge and a node
in the transition from A to B, respectively.
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Effective Reactive Current

I In applications one often examines partial transition current through
a node connecting two communities V − = {x : q(x) < 0.5} and
V + = {x : q(x) ≥ 0.5}, e.g.

∑
y∈V + J+(xy) for x ∈ V −, which

shows relative importance of the node in bridging communities.
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Reaction Rate

Proposition (Reaction rate)
The reaction rate from A = V0 to B = V1 is given by

ν =
∑

x∈A,y∈V
J(xy) =

∑
x∈V,y∈B

J(xy). (11)

I The reaction rate ν, defined as the number of transitions from V0 to
V1 happened in a unit time interval, can be obtained from adding up
the probability current flowing out of the reactant state. This is
stated by the next proposition.
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Time Portion from A and B

I Finally, the committor functions also give information about the
time proportion that an equilibrium trajectory comes from A = V0

(the trajectory hits A last rather than B = V1).

Proposition
The proportion of time that the trajectory comes from A = V0

(resp. from B = V1) is given by

ρA =
∑
x∈V

π(x)q(x), ρB =
∑
x∈V

π(x)(1− q(x)). (12)
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Example: Karate Club network
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Figure: Effective Transition Current
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Semi-supervised Learning

I Problem: x1, x2, ..., xl ∈ Vl are labeled data, that is data with the
value f(xi), f ∈ V → R observed. xl+1, xl+2, ..., xl+u ∈ Vu are
unlabeled. Our question is how to fully exploit the information
provided in the labeled and unlabeled data to find the unobserved
labels.

Transition Path Theory and Semisupervised Learning 91



Semi-supervised Learning as Harmonic Extension

I Suppose the whole graph is G = (V,E,W ), where V = Vl ∪ Vu and

weight matrix is partitioned into blocks W =

(
Wll Wlu

Wul Wuu

)
. As

before, we define D = diag(d1, d2, ..., dn) = diag(Dl, Du), di =∑n
j=1Wij , L = D −W .

I The goal is to find fu = (fl+1, ..., fl+u)T such that

min fTLf

s.t. f(Vl) = fl

where f =

(
fl
fu

)
. This is a Laplacian equation with Dirichlet

boundary condition.
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Semi-supervised Learning and Committor Function

I Note that

fTLf = (fTl , f
T
u )L

(
fl
fu

)
= fTu Luufu + fTl Lllfl + 2fTu Lulfl

So we have:

∂fTLf

∂fu
= 0⇒ 2Luufu + 2Llufu = 0

⇒ fu = −L−1
uuLulfl = (Du −Wuu)−1Wulfl

I This is the same equation as committor function (4) without
probability constraints on f .
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Summary

I We have introduced random walk on graphs with spectral
characterization:

– Perron-Frobenius Theory for primary eigenvector: e.g. PageRank

– Fiedler Theory for Unnormalized Laplacian: e.g. algebraic
connectivity and spectral partition

– Cheeger Inequality for Normalized Laplacian: e.g. Approximate
Normalized Cut and spectral clustering

– Lumpability of Markov Chains: e.g. multiple spectral clustering
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Summary

I More:

– Mean First Passage Time and Commute Time Distance: e.g.
pseudo-inverse of unnormalized Laplacian

– Transition Path Theory: Dirichlet boundary problem for
unnormalized Laplacian equations, e.g. semi-supervised learning
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