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Sufficient Dimensionality Reduction

Definition (Cook 2005)
A sufficient dimension reduction Γ (Γ ∈ Rp×d, ΓTΓ = Id) refers to
the setting that the conditional distribution of Y |X is the same as the
distribution of Y |ΓTX for all X, i.e.

P(Y |X) = P(Y |ΓTX).

I Example: in regression Y = f(X, ε), for some unknown function f ,
sufficient dimensionality reduction implies that Y = f(ΓTX, ε).

I Can you find Γ without knowing f?

I Yes! Consider the inverse problem, with conditional distribution
P(X|Y ).
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An Inverse Model

Example (Inverse model)
For each value in response variable y,

Xy = µ+ Γνy + ε (1)

where

I Xy ∈ Rp,

I νy ∈ Rd, d < p,

I Γ ∈ Rp×d such that ΓTΓ = Id,

I ε ∼ Np(0, σ2Ip),

I assume
∑
y νy = 0 for removing the degree of freedom in translation.
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Sufficient Dimensionality Reduction

Lemma (Cook 2005)
Under the inverse model, P(Y |X) = P(Y |ΓTX), i.e. Γ is a sufficient
dimensionality reduction.
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Proof

I First, X|(Y = y) ∼ Np(µ+ Γνy, σ
2Ip).

I By Bayesian formula, we have for any f

fY |X(y|x) ∝ fX|Y (x|y)fY (y)

∝ exp

(
− 1

2σ2
‖x− µ− Γνy‖2

)
fY (y)

∝ exp

(
− 1

2σ2
(νTy νy − 2νTy ΓT (x− µ)

)
fY (y)

where the last line is given by the orthogonality ΓTΓ = I.
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Proof (continued)

I Similarly, since ΓTX|(Y = y) ∼ Nd(ΓTµ+ νy, σ
2Id), we have

fY |ΓTX(y|ΓTx) ∝ fΓTX|Y (ΓTx|y)fY (y)

∝ exp

(
− 1

2σ2
‖ΓTx− ΓTµ− νy‖2

)
fY (y)

∝ exp

(
− 1

2σ2
(νTy νy − 2νTy ΓT (x− µ)

)
fY (y)

by the orthogonality ΓTΓ = I.

I Therefore, P(Y |X) = P(Y |ΓTX) of the same density kernels.
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Estimate of Γ

I Can we estimate Γ from finite sample without knowing f?

I PCA gives the Maximum Likelihood Estimate of Γ
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Maximum Likelihood Estimate

I Under the inverse model, the conditional likelihood function

f(Xy|µ,Γ, νy) =
1

σp
√

(2π)p
exp

[
− 1

2σ2
(Xy − µ− Γνy)T (Xy − µ− Γνy)

]
,

I MLE
max
µ,Γ,νy

∏
y

f(Xy|µ,Γ, νy)

⇔ max
µ,Γ,νy

− 1

2σ2

∑
y

‖Xy − µ− Γνy‖2 −
∑
y

p log σ + C.

Sufficient Dimensionality Reduction 9



Maximum Likelihood Estimate (continued)

I MLE solution

Γ̂ = arg min
ΓT Γ=I

∑
y

‖Xy − µ̂− PΓ(Xy − µ̂)‖2, PΓ = ΓΓT . (2)

where µ̂ = 1
n

∑
yXy, νy = Γ̂T (Xy − µ̂).

I If y is of distinct values (e.g. the unknown f is injective), PCA (top

d eigen-decomposition of Σ̂) gives Γ̂.

I If y is of discrete values (e.g. classification), discriminant analysis

(eigen-decomposition of Σ̂B = 1
K

∑K
y=1(µ̂y − µ̂)(µ̂y − µ̂)T ) gives Γ̂.
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Maximum Likelihood Estimate (continued)

I In general
Xy = µ+ Γνy + ε (3)

where ε ∼ Np(0,Σ), µ̂y = Ê[Xy|y].

I Rescale Zy = Σ−1/2Xy.

I Eigen-decomposition of Σ−1/2Σ̂BΣ−1/2 (with Σ̂ for the estimate of

Σ) meets Fisher’s Linear Discriminant Analysis for Γ̂.

I Therefore PCA/LDA can be also derived as a sufficient
dimensionality reduction in supervised learning, even the function f
is unknown here.
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Linear Discriminant Analysis

I Data: {Xi, yi}Ni=1 where yi is discrete in {1, 2, . . . ,K} but not
ordered

I Compute sample mean and within class means

µ̂ =
1

N

N∑
i=1

Xi, µ̂k =
1

Nk

∑
yi=k

Xi;

I Compute Between class covariance matrix

Σ̂p×pB =
1

K

K∑
k=1

(µ̂k − µ̂)(µ̂k − µ̂)T ;

I Compute Within class covariance matrix

Σ̂p×pW =
1

N −K

K∑
k=1

∑
yi=k

(Xi − µ̂k)(Xi − µ̂k)T ;
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Fisher’s Linear Discriminant Analysis

We choose the k-th class such that the following linear score function is
the largest:

δ̂k(x) = µ̂Tk Σ̂−1x− 1

2
µ̂Tk Σ̂−1µ̂k + log π̂k, (4)

where given data (xi, yi), i = 1, ..., n,

I π̂k = nk/n is the sample proportion of class k where nk is the
number of subjects in class k

I µ̂k is the sample mean of class k

µ̂k =
1

nk

∑
i:yi=k

xi;

I Σ̂ is the pooled (overall) sample covariance

Σ̂ = Σ̂B + Σ̂W =
1

n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)(xi − µ̂k)T ,
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Fisher’s LDA

I Fisher’s LDA (1920s) aims to capture dominant variations between
different classes of data:

– Compute generalized Eigen-decomposition Σ̂B = Σ̂UΛUT with
Λ = diag(λ1, λ2, ...λn) where λ1 ≥ λ2 ≥ ... ≥ λn;

– Choose top-d generalized eigenvectors corresponding to top d ≤ K
nonzero eigenvalues,

Ud = [u1, . . . , ud], uj ∈ Rp.
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Sliced Inverse Rgression

I Data: {Xi, yi}Ni=1, where Xi ∈ Rp, yi ∈ R is continuous (or ordered
discrete)

I Divide the range of yi into S non-overlapping slices
Hs(s = 1, ..., S). Ns is the number of observations within each slice.

I Compute the sample mean and total covariance matrix

µ̂ =
1

N

N∑
i=1

Xi, Σ̂p×p =
1

N

N∑
i=1

(Xi − µ̂)(Xi − µ̂)T ;

I Compute the mean of Xi over all slices and Between slices
covariance matrix

µ̂k =
1

Ns

∑
yi∈Hs

Xi, Σ̂p×pB =
1

K

K∑
k=1

(µ̂k − µ̂)(µ̂k − µ̂)T ;
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Li’s SIR

I K.-C. Li’s Slice Inverse Regression (1991) aims to capture dominant
variations between different slices of data:

– Compute Generalized Eigen-decomposition Σ̂B = Σ̂UΛUT with
Λ = diag(λ1, λ2, ...λn) where λ1 ≥ λ2 ≥ ... ≥ λn;

– Choose top-d generalized eigenvectors corresponding to top d ≤ K
nonzero eigenvalues,

Γd = [u1, . . . , ud], uk ∈ Rp.
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Localized Sliced Inverse Rgression

I Data: {Xi, yi}Ni=1, where Xi ∈ Rp, yi ∈ R is continuous (or ordered
discrete)

I Divide the range of yi into S non-overlapping slices
Hs(s = 1, ..., S). Ns is the number of observations within each slice.

I Compute the sample mean (̂µ) and total covariance Σ̂ as in SIR

I Compute the localized mean of Xi over all slices and localized
Between-slice covariance matrix

µ̂i,loc =
1

|si|
∑
j∈si

Xj , Σ̂locB =
1

N

∑
i

(µ̂i,loc − µ̂)(µ̂i,loc − µ̂)T ;

where si = {j : xj belongs to the k nearest neighbours of xi in Hs}
and s indexes the slice Hs to which i belongs.
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LSIR

I Wu-Liang-Mukherjee Localized Slice Inverse Regression (2009) aims
to capture nonlinear variations between different slices of data:

– Compute Generalized Eigen-decomposition Σ̂locB = Σ̂UΛUT with
Λ = diag(λ1, λ2, ...λn) where λ1 ≥ λ2 ≥ ... ≥ λn;

– Choose top-d generalized eigenvectors corresponding to top d ≤ K
nonzero eigenvalues,

Γd = [u1, . . . , ud], uk ∈ Rp.
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