Lecture 2. Random Matrix Theory and Phase Transitions of PCA

Yuan Yao

HKUST

Outline

Recall: PCA and Horn's Parallel Analysis

Random Matrix Theory
 Marčenko-Pastur Distribution

```
Phase Transitions of PCA
    Rank-1 spike model
    Proof of phase transitions of PCA for rank-1 model
    Stieltjes Transform
```


How many components of PCA?

- Data matrix: $X=\left[x_{1}\left|x_{2}\right| \cdots \mid x_{n}\right] \in \mathbb{R}^{p \times n}$
- Centering data matrix: $Y=X H$ where

$$
H=I-\frac{1}{n} \mathbf{1} \cdot \mathbf{1}^{T}
$$

- PCA is given by top left singular vectors of $Y=U S V^{T}$ (called loading vectors) by projections to $\mathbb{R}^{p}, z_{j}=u_{j} Y$
- MDS is given by top right singular vectors of $Y=U S V^{T}$ as Euclidean embedding coordinates of n sample points
- But how many components shall we keep?

Recall: Horn's Parallel Analysis

- Data matrix: $X=\left[x_{1}\left|x_{2}\right| \cdots \mid x_{n}\right] \in \mathbb{R}^{p \times n}$

$$
X=\left[\begin{array}{cccc}
X_{1,1} & X_{1,2} & \cdots & X_{1, n} \\
X_{2,1} & X_{2,2} & \cdots & X_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
X_{p, 1} & X_{p, 2} & \cdots & X_{p, n}
\end{array}\right]
$$

- Compute its principal eigenvalues $\left\{\hat{\lambda}_{i}\right\}_{i=1, \ldots, p}$

Recall: Horn's Parallel Analysis

- Randomly take p permutations of n numbers $\pi_{1}, \ldots, \pi_{p} \in S_{n}$ (usually π_{1} is set as identity), noting that sample means are permutation invariant,

$$
X^{1}=\left[\begin{array}{cccc}
X_{1, \pi_{1}(1)} & X_{1, \pi_{1}(2)} & \cdots & X_{1, \pi_{1}(n)} \\
X_{2, \pi_{2}(1)} & X_{2, \pi_{2}(2)} & \cdots & X_{2, \pi_{2}(n)} \\
\vdots & \vdots & \ddots & \vdots \\
X_{p, \pi_{p}(1)} & X_{p, \pi_{p}(2)} & \cdots & X_{p, \pi_{p}(n)}
\end{array}\right]
$$

- Compute its principal eigenvalues $\left\{\hat{\lambda}_{i}^{1}\right\}_{i=1, \ldots, p}$.
- Repeat such procedure for r times, we can get r sets of principal eigenvalues. $\left\{\hat{\lambda}_{i}^{k}\right\}_{i=1, \ldots, p}$ for $k=1, \ldots, r$

Recall: Horn's Parallel Analysis (continued)

- For each $i=1$, define the i-th p-value as the percentage of random eigenvalues $\left\{\hat{\lambda}_{i}^{k}\right\}_{k=1, \ldots, r}$ that exceed the i-th principal eigenvalue $\hat{\lambda}_{i}$ of the original data X,

$$
\operatorname{pval}_{i}=\frac{1}{r} \#\left\{\hat{\lambda}_{i}^{k}>\hat{\lambda}_{i}: k=1, \ldots, r\right\}
$$

- Setup a threshold q, e.g. $q=0.05$, and only keep those principal eigenvalues $\hat{\lambda}_{i}$ such that $\operatorname{pval}_{i}<q$

Example

- Let's look at an example of Parallel Analysis
- R: https://github.com/yuany-pku/2017_CSIC5011/blob/ master/slides/paran.R
- Matlab: papca.m
- Python:

How does it work?

- We are going to introduce an analysis based on Random Matrix Theory for rank-one spike model

How does it work?

- We are going to introduce an analysis based on Random Matrix Theory for rank-one spike model
- There is a phase transition in principal component analysis

How does it work?

- We are going to introduce an analysis based on Random Matrix Theory for rank-one spike model
- There is a phase transition in principal component analysis
- If the signal is strong, principal eigenvalues are beyond the random spectrum and principal components are correlated with signal

How does it work?

- We are going to introduce an analysis based on Random Matrix Theory for rank-one spike model
- There is a phase transition in principal component analysis
- If the signal is strong, principal eigenvalues are beyond the random spectrum and principal components are correlated with signal
- If the signal is weak, all eigenvalues in PCA are due to random noise

Outline

Recall: PCA and Horn's Parallel Analysis

Random Matrix Theory
Marčenko-Pastur Distribution

```
Phase Transitions of PCA
    Rank-1 spike model
    Proof of phase transitions of PCA for rank-1 model
    Stieltjes Transform
```


Marčenko-Pastur Distribution of Noise Eigenvalues

- Let $x_{i} \sim \mathcal{N}\left(0, I_{p}\right)(i=1, \ldots, n)$ and $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right] \in \mathbb{R}^{p \times n}$.
- The sample covariance matrix

$$
\widehat{\Sigma}_{n}=\frac{1}{n} X X^{T} .
$$

is called Wishart (random) matrix.

- When both n and p grow at $\frac{p}{n} \rightarrow \gamma \neq 0$, the distribution of the eigenvalues of $\widehat{\Sigma}_{n}$ follows the Marčcenko-Pastur (MP) Law

$$
\mu^{M P}(t)=\left(1-\frac{1}{\gamma}\right) \delta(t) I(\gamma>1)+ \begin{cases}0 & t \notin[a, b], \\ \frac{\sqrt{(b-t)(t-a)}}{2 \pi \gamma t} d t & t \in[a, b],\end{cases}
$$

where $a=(1-\sqrt{\gamma})^{2}, b=(1+\sqrt{\gamma})^{2}$.

Illustration of MP Law

- If $\gamma \leq 1$, MP distribution has a support on $[a, b]$;
- if $\gamma>1$, it has an additional point mass $1-1 / \gamma$ at the origin.

Figure: Show by matlab: (a) Marčenko-Pastur distribution with $\gamma=2$. (b) Marčenko-Pastur distribution with $\gamma=0.5$.

Outline

Recall: PCA and Horn's Parallel Analysis

Random Matrix Theory Marčenko-Pastur Distribution

Phase Transitions of PCA
Rank-1 spike model
Proof of phase transitions of PCA for rank-1 model Stieltjes Transform

Rank-one Spike Model

Consider the following rank-1 signal-noise model

$$
Y=X+\varepsilon,
$$

where

- the signal lies in an one-dimensional subspace $X=\alpha u$ with $\alpha \sim \mathcal{N}\left(0, \sigma_{X}^{2}\right)$;
- the noise $\varepsilon \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2} \mathrm{I}_{\mathrm{p}}\right)$ is i.i.d. Gaussian.

Therefore $Y \sim \mathcal{N}(0, \Sigma)$ where the limiting covariance matrix Σ is rank-one added by a sparse matrix:

$$
\Sigma=\sigma_{X}^{2} u u^{T}+\sigma_{\varepsilon}^{2} I_{p}
$$

When does PCA work?

- Can we recover signal direction u from principal component analysis on noisy measurements Y ?
- It depends on the signal noise ratio, defined as

$$
S N R=R:=\frac{\sigma_{X}^{2}}{\sigma_{\varepsilon}^{2}}
$$

For simplicity we assume that $\sigma_{\varepsilon}^{2}=1$ without loss of generality.

Phase Transition of PCA

- Consider the scenario

$$
\begin{equation*}
\gamma=\lim _{p, n \rightarrow \infty} \frac{p}{n} \tag{1}
\end{equation*}
$$

as in applications, one never has infinite amount of samples and dimensionality

- A fundamental result by I. Johnstone in 2006 shows a phase transition of PCA:

Phase Transitions

- The primary (largest) eigenvalue of sample covariance matrix satisfies

$$
\lambda_{\max }\left(\widehat{\Sigma}_{n}\right) \rightarrow \begin{cases}(1+\sqrt{\gamma})^{2}=b, & \sigma_{X}^{2} \leq \sqrt{\gamma} \tag{2}\\ \left(1+\sigma_{X}^{2}\right)\left(1+\frac{\gamma}{\sigma_{X}^{2}}\right), & \sigma_{X}^{2}>\sqrt{\gamma}\end{cases}
$$

- The primary eigenvector (principal component) associated with the largest eigenvalue converges to

$$
\left|\left\langle u, v_{\max }\right\rangle\right|^{2} \rightarrow \begin{cases}0 & \sigma_{X}^{2} \leq \sqrt{\gamma} \tag{3}\\ \frac{1-\frac{\gamma}{\sigma_{X}}}{1+\frac{2}{\sigma_{X}^{2}}}, & \sigma_{X}^{2}>\sqrt{\gamma}\end{cases}
$$

Phase Transitions (continued)

In other words,

- If the signal is strong $S N R=\sigma_{X}^{2}>\sqrt{\gamma}$, the primary eigenvalue goes beyond the random spectrum (upper bound of MP distribution), and the primary eigenvector is correlated with signal (in a cone around the signal direction whose deviation angle goes to 0 as $\left.\sigma_{X}^{2} / \gamma \rightarrow \infty\right)$;
- If the signal is weak $S N R=\sigma_{X}^{2} \leq \sqrt{\gamma}$, the primary eigenvalue is buried in the random spectrum, and the primary eigenvector is random of no correlation with the signal.

Proof in Sketch

- Following the rank-1 model, consider random vectors $y_{i} \sim \mathcal{N}(0, \Sigma)$ $(i=1, \ldots, n)$, where $\Sigma=\sigma_{x}^{2} u u^{T}+\sigma_{\varepsilon}^{2} I_{p}$ and u is an arbitrarily chosen unit vector $\left(\|u\|^{2}=1\right)$ showing the signal direction.
- The sample covariance matrix is $\hat{\Sigma}_{n}=\frac{1}{n} \sum_{i=1}^{n} y_{i} y_{i}^{T}=\frac{1}{n} Y Y^{T}$ where $Y=\left[y_{1}, \ldots, y_{n}\right] \in \mathbb{R}^{p \times n}$. Suppose one of its eigenvalue is $\hat{\lambda}$ and the corresponding unit eigenvector is \hat{v}, so $\hat{\Sigma}_{n} \hat{v}=\lambda \hat{v}$.
- First of all, we relate the $\hat{\lambda}$ to the MP distribution by the trick:

$$
\begin{equation*}
z_{i}=\Sigma^{-\frac{1}{2}} y_{i} \rightarrow Z_{i} \sim \mathcal{N}\left(0, I_{p}\right) \tag{4}
\end{equation*}
$$

Then $S_{n}=\frac{1}{n} \sum_{i=1}^{n} z_{i} z_{i}^{T}=\frac{1}{n} Z Z^{T}\left(Z=\left[z_{1}, \ldots, z_{n}\right]\right)$ is a Wishart random matrix whose eigenvalues follow the Marčenko-Pastur distribution.

Proof in Sketch

- Notice that

$$
\hat{\Sigma}_{n}=\frac{1}{n} Y Y^{T}=\Sigma^{1 / 2}\left(\frac{1}{n} Z Z^{T}\right) \Sigma^{1 / 2}=\Sigma^{\frac{1}{2}} S_{n} \Sigma^{\frac{1}{2}}
$$

and $(\hat{\lambda}, \hat{v})$ is eigenvalue-eigenvector pair of matrix $\hat{\Sigma}_{n}$. Therefore

$$
\begin{equation*}
\Sigma^{\frac{1}{2}} S_{n} \Sigma^{\frac{1}{2}} \hat{v}=\hat{\lambda} \hat{v} \Rightarrow S_{n} \Sigma\left(\Sigma^{-\frac{1}{2}} \hat{v}\right)=\hat{\lambda}\left(\Sigma^{-\frac{1}{2}} \hat{v}\right) \tag{5}
\end{equation*}
$$

In other words, $\hat{\lambda}$ and $\Sigma^{-\frac{1}{2}} \hat{v}$ are the eigenvalue and eigenvector of matrix $S_{n} \Sigma$.

- Define $v=c \Sigma^{-\frac{1}{2}} \hat{v}$ where the constant c makes v a unit eigenvector,

$$
\begin{align*}
c^{2} & \left.=c^{2} \hat{v}^{T} \hat{v}=v^{T} \Sigma v=v^{T}\left(\sigma_{x}^{2} u u^{T}+\sigma_{\varepsilon}^{2}\right) v=\sigma_{x}^{2}\left(u^{T} v\right)^{2}+\sigma_{\varepsilon}^{2}\right) \\
& =R\left(u^{T} v\right)^{2}+1 \tag{6}
\end{align*}
$$

Proof in Sketch

Now we have,

$$
\begin{equation*}
S_{n} \Sigma v=\hat{\lambda} v \tag{7}
\end{equation*}
$$

Plugging in the expression of Σ, it gives

$$
S_{n}\left(\sigma_{X}^{2} u u^{T}+\sigma_{\varepsilon}^{2} I_{p}\right) v=\hat{\lambda} v
$$

Rearrange the term with u to one side, we got

$$
\left(\hat{\lambda} I_{p}-\sigma_{\varepsilon}^{2} S_{n}\right) v=\sigma_{X}^{2} S_{n} u\left(u^{T} v\right)
$$

Assuming that $\hat{\lambda} I_{p}-\sigma_{\varepsilon}^{2} S_{n}$ is invertible, then multiple its reversion at both sides of the equality, we get,

$$
\begin{equation*}
v=\sigma_{X}^{2} \cdot\left(\hat{\lambda} I_{p}-\sigma_{\varepsilon}^{2} S_{n}\right)^{-1} \cdot S_{n} u\left(u^{T} v\right) \tag{8}
\end{equation*}
$$

Primary Eigenvalue $\hat{\lambda}$

- Multiply (8) by u^{T} at both side,

$$
u^{T} v=\sigma_{X}^{2} \cdot u^{T}\left(\hat{\lambda} I_{p}-\sigma_{\varepsilon}^{2} S_{n}\right)^{-1} S_{n} u \cdot\left(u^{T} v\right)
$$

that is, if $u^{T} v \neq 0$,

$$
\begin{equation*}
1=\sigma_{X}^{2} \cdot u^{T}\left(\hat{\lambda} I_{p}-\sigma_{\varepsilon}^{2} S_{n}\right)^{-1} S_{n} u \tag{9}
\end{equation*}
$$

Primary Eigenvalue $\hat{\lambda}$

- Assume that S_{n} has the eigenvalue decomposition $S_{n}=W \hat{\Lambda} W^{T}$, where $\Lambda=\operatorname{diag}\left(\lambda_{i}: i=1, \ldots, p\right)$ and $W W^{T}=W^{T} W=I_{p}$ $\left(W=\left[w_{1}, \ldots, w_{p}\right] \in \mathbb{R}^{p \times p}\right)$. Define $\alpha_{i}=w_{i}^{T} u$ and $\alpha=\left(\alpha_{i}\right) \in \mathbb{R}^{p}$. Hence $u=\sum_{i=1}^{p} \alpha_{i} w_{i}=W^{T} \alpha$. Now (9) leads to

$$
1=\sigma_{X}^{2} \cdot u^{T}\left[W\left(\hat{\lambda} I_{p}-\sigma_{\varepsilon}^{2} \Lambda\right)^{-1} W^{T}\right]\left[W \Lambda W^{T}\right] u=\sigma_{X}^{2} \cdot \alpha^{T}\left(\hat{\lambda} I_{p}-\sigma_{\varepsilon}^{2} \Lambda\right)^{-1} \Lambda \alpha
$$ which is

$$
\begin{equation*}
1=\sigma_{X}^{2} \cdot \sum_{i=1}^{p} \frac{\lambda_{i}}{\hat{\lambda}-\sigma_{\varepsilon}^{2} \lambda_{i}} \alpha_{i}^{2} \tag{10}
\end{equation*}
$$

where $\sum_{i=1}^{p} \alpha_{i}^{2}=1, \alpha_{i}$ uniformly distributed around mean $1 / \sqrt{p}$.

- For large $p, \lambda_{i} \sim \mu^{M P}\left(\lambda_{i}\right)$ and the sum (10) can be approximated by

$$
\begin{equation*}
1=\sigma_{X}^{2} \cdot \frac{1}{p} \sum_{i=1}^{p} \frac{\lambda_{i}}{\hat{\lambda}-\sigma_{\varepsilon}^{2} \lambda_{i}} \sim \sigma_{X}^{2} \cdot \int_{a}^{b} \frac{t}{\hat{\lambda}-\sigma_{\varepsilon}^{2} t} d \mu^{M P}(t) \tag{11}
\end{equation*}
$$

where $\sigma_{\varepsilon}^{2}=1$ by assumption.

Primary Eigenvalue $\hat{\lambda}$

- Using the Stieltjes transform,

$$
\begin{align*}
1 & =\sigma_{X}^{2} \cdot \int_{a}^{b} \frac{t}{\hat{\lambda}-t} \frac{\sqrt{(b-t)(t-a)}}{2 \pi \gamma t} d t \\
& =\frac{\sigma_{X}^{2}}{4 \gamma}[2 \hat{\lambda}-(a+b)-2 \sqrt{|(\hat{\lambda}-a)(b-\hat{\lambda})|}] . \tag{12}
\end{align*}
$$

- For $\hat{\lambda} \geq b$ and $R=\sigma_{X}^{2} \geq \sqrt{\gamma}$, we have

$$
\begin{aligned}
1 & =\frac{\sigma_{X}^{2}}{4 \gamma}[2 \hat{\lambda}-(a+b)-2 \sqrt{(\hat{\lambda}-a)(\hat{\lambda}-b)}] \\
\Rightarrow \quad \hat{\lambda} & =\sigma_{X}^{2}+\frac{\gamma}{\sigma_{X}^{2}}+1+\gamma=\left(1+\sigma_{X}^{2}\right)\left(1+\frac{\gamma}{\sigma_{X}^{2}}\right)
\end{aligned}
$$

Primary Eigenvalue $\hat{\lambda}$

Here we observe the following phase transitions for primary eigenvalue:

- If $\hat{\lambda} \in[a, b]$, then $\widehat{\Sigma}_{n}$ has its primary eigenvalue $\hat{\lambda}$ within $\operatorname{supp}\left(\mu^{M P}\right)$, so it is undistinguishable from the noise.
- So $\hat{\lambda}=b$ is the phase transition where PCA works to pop up signal rather than noise. Then plugging in $\hat{\lambda}=b$ in (12), we get,

$$
\begin{equation*}
1=\sigma_{X}^{2} \cdot \frac{1}{4 \gamma}[2 b-(a+b)]=\frac{\sigma_{X}^{2}}{\sqrt{\gamma}} \Leftrightarrow \sigma_{X}^{2}=\sqrt{\gamma}=\sqrt{\frac{p}{n}} \tag{13}
\end{equation*}
$$

Hence, in order to make PCA works, we need to let the signal-noise-ratio $R \geq \sqrt{\frac{p}{n}}$.

Primary Eigenvector \hat{v}

- As $\|v\|_{2}=1$, plugging v in Equation (8),

$$
\begin{aligned}
1 & =v^{T} v=\sigma_{X}^{4} \cdot v^{T} u u^{T} S_{n}\left(\lambda I_{p}-\sigma_{\varepsilon}^{2} S_{n}\right)^{-2} S_{n} u u^{T} v \\
& =\sigma_{X}^{4} \cdot\left(\left|v^{T} u\right|\right)\left[u^{T} S_{n}\left(\lambda I_{p}-\sigma_{\varepsilon}^{2} S_{n}\right)^{-2} S_{n} u\right]\left(\left|u^{T} v\right|\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left|u^{T} v\right|^{-2}=\sigma_{X}^{4}\left[u^{T} S_{n}\left(\lambda I_{p}-\sigma_{\varepsilon}^{2} S_{n}\right)^{-2} S_{n} u\right] \tag{14}
\end{equation*}
$$

- Using the same trick as the equation (9), we reach the following Monte-Carlo integration

$$
\begin{align*}
\left|u^{T} v\right|^{-2} & =\sigma_{X}^{4}\left[u^{T} S_{n}\left(\lambda I_{p}-\sigma_{\varepsilon}^{2} S_{n}\right)^{-2} S_{n} u\right] \\
& \sim \sigma_{X}^{4} \int_{a}^{b} \frac{t^{2}}{\left(\lambda-\sigma_{\varepsilon}^{2} t\right)^{2}} d \mu^{M P}(t) \tag{15}
\end{align*}
$$

Primary Eigenvector \hat{v}

- For $\lambda \geq b$, from Stieltjes transform introduced later one can compute the integral as

$$
\begin{aligned}
\left|u^{T} v\right|^{-2}= & \sigma_{X}^{4} \cdot \int_{a}^{b} \frac{t^{2}}{\left(\lambda-\sigma_{\varepsilon}^{2} t\right)^{2}} d \mu^{M P}(t) \\
= & \frac{\sigma_{X}^{4}}{4 \gamma}(-4 \lambda+(a+b)+2 \sqrt{(\lambda-a)(\lambda-b)}+\ldots \\
& \left.\quad+\frac{\lambda(2 \lambda-(a+b))}{\sqrt{(\lambda-a)(\lambda-b)}}\right)
\end{aligned}
$$

from which it can be computed that (using $\hat{\lambda}=\left(1+\sigma_{X}^{2}\right)\left(1+\frac{\gamma}{\sigma_{X}^{2}}\right)$ obtained above with $R=\sigma_{X}^{2}$)

$$
\left|u^{T} v\right|^{2}=\frac{1-\frac{\gamma}{\sigma_{X}^{4}}}{1+\gamma+\frac{2 \gamma}{\sigma_{X}^{2}}} .
$$

Primary Eigenvector \hat{v}

- Now we can compute the inner product of u and \hat{v} that we are really interested in:

$$
\begin{aligned}
\left|u^{T} \hat{v}\right|^{2} & =\left(\frac{1}{c} u^{T} \Sigma^{\frac{1}{2}} v\right)^{2}=\frac{1}{c^{2}}\left(\left(\Sigma^{\frac{1}{2}} u\right)^{T} v\right)^{2} \\
& =\frac{1}{c^{2}}\left(\left(\left(\sigma_{X}^{2} u u^{T}+I_{p}\right)^{\frac{1}{2}} u\right)^{T} v\right)^{2} \\
& \stackrel{*}{=} \frac{1}{c^{2}}\left(\left(\sqrt{\left(1+\sigma_{X}^{2}\right)} u\right)^{T} v\right)^{2} \\
& \stackrel{* *}{=} \frac{\left(1+\sigma_{X}^{2}\right)\left(u^{T} v\right)^{2}}{R\left(u^{T} v\right)^{2}+1}, \quad R=\sigma_{X}^{2} \\
& =\frac{1+R-\frac{\gamma}{R}-\frac{\gamma}{R^{2}}}{1+R+\gamma+\frac{\gamma}{R}}=\frac{1-\frac{\gamma}{R^{2}}}{1+\frac{\gamma}{R}}
\end{aligned}
$$

where the equality $(*)$ uses $\Sigma^{1 / 2} u=\sqrt{1+\sigma_{X}^{2}} u$, and the equality $(* *)$ is due to the formula for c^{2} (Equation (6) above). Note that this identity holds under the condition that $R \geq \sqrt{\gamma}$ to ensure the numerator above non-negative.

Stieltjes Transform

Define the Stieltjes Transformation of MP-density $\mu^{M P}$ to be

$$
\begin{equation*}
s(z):=\int_{R} \frac{1}{t-z} d \mu^{M P}(t), z \in C \tag{16}
\end{equation*}
$$

Lemma (Bai-Silverstein'2011, Lemma 3.11)

$$
\begin{equation*}
s(z)=\frac{(1-\gamma)-z+\sqrt{(z-1-\gamma)^{2}-4 \gamma z}}{2 \gamma z} . \tag{17}
\end{equation*}
$$

Stieltjes Transform (continued)

Lemma (2)
1.

$$
\int_{a}^{b} \frac{t}{\lambda-t} \mu^{M P}(t) d t=-\lambda s(\lambda)-1
$$

2.

$$
\int_{a}^{b} \frac{t^{2}}{(\lambda-t)^{2}} \mu^{M P}(t) d t=\lambda^{2} s^{\prime}(\lambda)+2 \lambda s(\lambda)+1
$$

Proof of Lemma 2

Proof.

1. For convenience, define

$$
\begin{equation*}
T(\lambda):=\int_{a}^{b} \frac{t}{\lambda-t} \mu^{M P}(t) d t \tag{18}
\end{equation*}
$$

The first result follows from that

$$
1+T(\lambda)=1+\int_{a}^{b} \frac{t}{\lambda-t} \mu^{M P}(t) d t=\int_{a}^{b} \frac{\lambda-t+t}{\lambda-t} \mu^{M P}(t) d t=-\lambda s(\lambda) .
$$

2. From the definition of $T(\lambda)$, we have

$$
\int_{a}^{b} \frac{t^{2}}{(\lambda-t)^{2}} \mu^{M P}(t) d t=-T(\lambda)-\lambda T^{\prime}(\lambda)
$$

Combined with the first result, we reach the second one.

Open Problems

- If one can estimate the noise models, such as the rank-1 model here, then we can use random matrix theory (universality) or by simulations to find the number of principal components.
- Such a random matrix theory can not fully explain why Horn's Parallel Analysis, whose proof is open.
- In applications, noise models might not be homogeneous $\sigma_{\varepsilon}^{2} I_{p}$. How to deal with heterogeneous noise models is open (Wang-Owen'2015 attacked this problem).
- Distributive PCA can exploit random matrix theory to decide the number of samples in local clients (Fan-Wang et al. 2019).

