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Geometric Embedding

▶ A Fundamental Problem in Data Representation

▶ Unstructured data 7→ Euclidean Space

– PCA: high dim 7→ low dim affine space

– MDS: metric 7→ Euclidean space

▶ Simple cases for ‘representation’ learning (w.r.t. deep learning)

▶ image, speech, text, video . . .
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Principal Component Analysis (PCA)

▶ Given n sample points in Rp, i.e. X = [x1, . . . , xn] ∈ Rp×n

▶ Can you find a low dimensional affine representation?
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Best k-affine space approximation of data

▶ Let X = [x1, . . . , xn] ∈ Rp×n.

▶ Consider

min
β,µ,U

I :=

n∑
i=1

∥xi − (µ+ Uβi)∥2 (1)

where U ∈ Rp×k, UTU = Ik, and
∑n

i=1 βi = 0 (nonzero sum of βi

can be represented by µ).
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Finding optimal µ̂, β̂

▶ Taking the first order optimality condition:

∂I

∂µ
= −2

n∑
i=1

(xi − µ− Uβi) = 0 ⇒ µ̂n =
1

n

n∑
i=1

xi

∂I

∂βi
= (xi − µ− Uβi)

TU = 0 ⇒ β̂i = UT (xi − µ̂n)
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Finding optimal Û

▶ Plugging in the expression of µ̂n and β̂i

I =

n∑
i=1

∥xi − µ̂n − UUT (xi − µ̂n)∥2

=

n∑
i=1

∥xi − µ̂n − Pk(xi − µ̂n)∥2

=

n∑
i=1

∥yi − Pk(yi)∥2, yi := xi − µ̂n

where Pk = UUT is a projection operator satisfying the idempotent
property P 2

k = Pk.
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Finding optimal Û

▶ Denote Y = [y1|y2| · · · |yn] ∈ Rp×n, then the original problem is

min
U

n∑
i=1

∥yi − Pk(yi)∥2 = min tr[(Y − PkY )T (Y − PkY )]

= min tr[Y T (I − Pk)(I − Pk)Y ]

= min tr[Y Y T (I − Pk)
2]

= min tr[Y Y T (I − Pk)]

= min[tr(Y Y T )− tr(Y Y TUUT )]

= min[tr(Y Y T )− tr(UTY Y TU)].

Above we use cyclic property of trace and idempotent property of
projection.
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Finding optimal Û

▶ Since Y does not depend on U , the problem above is equivalent to

max
UUT=Ik

1

n
tr(UTY Y TU) = max

UUT=Ik
tr(UT Σ̂nU) (2)

where Σ̂n = 1
nY Y T = 1

n (X − µ̂n1
T )(X − µ̂n1

T )T is the sample
variance matrix.

▶ the sample covariance matrix, which is positive semi-definite, has the
eigenvalue decomposition Σ̂n = Û Λ̂ÛT , where ÛT Û = I,
Λ = diag(λ̂1, . . . , λ̂n), and λ̂1 ≥ . . . ≥ λ̂n ≥ 0. Then

max
UUT=Ik

tr(UT Σ̂nU) =

k∑
i=1

λ̂i

▶ PCA is given by top-k eigenvectors of sample covariance matrix, i.e.
top-k (left) singular vectors of Y
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PCA

▶ Input: data matrix X = [x1, . . . , xn] ∈ Rp×n

▶ Output: Euclidean k-dimensional coordinates Z ∈ Rk×n of data.

▶ Procedure:

– Centering: Y = XH, where H = I − 1
n
11T

– Singular Value Decomposition Y = USV T , S = diag(σj),
σ1 ≥ σ2 ≥ . . . ≥ σmin(n,p)

– PCA is given by top-k SVD (Sk, Uk): Uk = (u1, . . . , uk) ∈ Rp×k,
with embedding coordinates Zk = UT

k Y = SkV
T
k , i.e.

Zji = uT
j (xi − µ̂).
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How much variances in data explained by PCA?

The importance or variance of j-th principal component is characterized
by the j-th eigenvalue. Given the eigenvalues, the following quantities are
often used to measure the variances.
▶ Total variance:

tr(Σ̂n) =

p∑
i=1

λ̂i;

▶ Percentage of variance explained by top-k principal components:

k∑
i=1

λ̂i/ tr(Σ̂n);

▶ Generalized variance as total volume:

det(Σ̂n) =

p∏
i=1

λ̂i.
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Example: PCA of Handwritten Digits

(a) (b)

≈ - 2.52 - 0.64 + 2.02
(c)

Figure: (a) random 9 images. (b) percentage of singular values over total sum.
(c) approximation of the first image by top 3 principle components (singular
vectors).
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How many principal components?

▶ No universal rule, depending on applications.

▶ Rule of thumb: choose k such that

k∑
i=1

λ̂i/ tr(Σ̂n) > q, e.g. q = 0.95

▶ *Horn’s Parallel Analysis
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Horn’s Parallel Analysis

Random permutation test:
▶ Randomly permute sample features/variables for decorrelation

▶ Compute singular values of random matrices

X =


X1,1 X1,2 · · · X1,n

X2,1 X2,2 · · · X2,n

...
...

. . .
...

Xp,1 Xp,2 · · · Xp,n



7→ X1 =


X1,π1(1) X1,π1(2) · · · X1,π1(n)

X2,π2(1) X2,π2(2) · · · X2,π2(n)
...

...
. . .

...
Xp,πp(1) Xp,πp(2) · · · Xp,πp(n)


7→ λ̂1

j
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Horn’s Parallel Analysis

▶ Repeat such procedure for R times, we can get R set singular
values. They can be put together as a matrix

λ̂1
1 λ̂1

2 · · · λ̂1
p

λ̂2
1 λ̂2

2 · · · λ̂2
p

...
...

. . .
...

λ̂R
1 λ̂R

2 · · · λ̂R
p

 .

▶ Define the p-value for the i-th eigenvalue, and only keep eigenvalues
whose p-value is smaller than a threshold, e.g.

pvali =
1

R
#{λ̂r

i > λ̂i},

Keep λ̂i if pvali < 0.05.
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Example

▶

Figure: Examples of randomly permuted data.

▶

Figure: Results of parallel analysis on PCA. Considering the exponential decay of eigenvalues and to emphasize the top
eigenvalues, log scale are adopted for both axes. The top 5% singular values of the parallel data matrices are draw as reference.
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Example

Figure: Images of the sample mean (image No.0) and the top 24 principal components (top 19 are suggested by parallel analysis). It
shows that Horn’s parallel analysis is conservative when data are concentrated around submanifolds.
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Summary

▶ Data matrix: X = [x1, . . . , xn] ∈ Rp×n

– Centering: Y = XH, where H = I − 1
n
11T

▶ Singular Value Decomposition Y = USV T , S = diag(σj),
σ1 ≥ σ2 ≥ . . . ≥ σmin(n,p)

– PCA is given by top-k left SVD (Sk, Uk):
Uk = (u1, . . . , uk) ∈ Rp×k, with embedding coordinates UkSk

– What about right SVD? — Multidimensional Scaling (MDS), or
Kernel PCA
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Multidimensional Scaling

The problem of classical MDS or isometric Euclidean embedding is:

▶ given pairwise distances between data points, can one find a system
of Euclidean coordinates for those points whose pairwise distances
meet given constraints?
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Metric MDS

▶ Consider a forward problem: given a set of points
x1, x2, ..., xn ∈ Rp, let

X = [x1, x2, ..., xn]
p×n.

The distance between point xi and xj satisfies

d2ij = ∥xi − xj∥2 = (xi − xj)
T
(xi − xj) = xi

Txi + xj
Txj − 2xi

Txj .

▶ Now we are considering the inverse problem: given only dij , can one
find a {yi ∈ Rk : i = 1 . . . , n} for some k satisfying the constraint
dij = ∥yi − yj∥?
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Classical Metric MDS method

▶ transform squared distance matrix D = [d2ij ] to an inner product
form, which is positive semi-definite and often called as kernel
matrix;

▶ compute the eigen-decomposition for this inner product form (kernel
matrix).
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Classical MDS method

▶ The key observation is that the two-side centering transform of
squared distance matrix D gives the Gram matrix (inner product
matrix or kernel matrix) of centered data matrix, i.e.

− 1

2
HDHT = (XH)T (XH) =: K̂. (3)

where H := I − 1
n1 · 1T = HT with 1 = (1, 1, ..., 1)T ∈ Rn is the

Househölder centering matrix.
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Classical MDS method

▶ To see this, let K be the inner product or kernel matrix

K = XTX, X = [xi] ∈ Rp×n

with k = diag(Kii) ∈ Rn.

▶ Note that
D = (d2ij) = k · 1T + 1 · kT − 2K.

▶ The following lines established the fact that

−1

2
H ·D ·HT = HTKH = (XH)T (XH).
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Classical MDS method

▶ In fact, note that

−1

2
H ·D ·HT = −1

2
H · (k · 1T + 1 · kT − 2K) ·HT

▶ Since k · 1T ·HT = k · 1(I − 1
n · 1 · 1T ) = k · 1− k(1

T ·1
n ) · 1 = 0, we

have H · k 1 ·HT = H · 1 · kT ·HT = 0. This implies that

−1

2
H ·D ·HT = H ·K ·HT = HXTXHT = (XH)T (XH),

since H = HT , which establishes (3).
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The Classical MDS Algorithm

▶ Input: A squared distance matrix Dn×n with Dij = d2ij .

▶ Output: Euclidean k-dimensional coordinates Zk ∈ Rk×n of data.

▶ Procedure:

– Compute K̂ = −1

2
H ·D ·HT , with the Househölder matrix H.

– Compute Eigenvalue decomposition K̂ = V̂ Λ̂V̂ T with
Λ̂ = diag(λ̂1, . . . , λ̂n) where λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n ≥ 0;

– Choose top k nonzero eigenvalues and corresponding eigenvectors,

set the embedding coordinates Zk = Λ̂
1
2
k V̂

T
k where

V̂k = [v̂1, . . . , v̂k], v̂k ∈ Rn,

Λ̂k = diag(λ̂1, . . . , λ̂k),

with λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂k ≥ 0.
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Example

(a)

(b) (c)
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Remark: Nonmetric MDS

▶ Given a set of points xi ∈ Rp (i = 1, 2, · · · , n); form a data Matrix
Xp×n = [X1, X2 · · ·Xn]

T , when p is large, especially in some cases
larger than n, we want to find k-dimensional projection with which
pairwise distances of the data point are preserved as well as possible.

▶ That is to say, if we know the original pairwise distance
dij = ∥Xi −Xj∥ or data distances with some disturbance

d̃ij = ∥Xi −Xj∥+ ϵ, we want to find Yi ∈ Rk s.t.:

min
Yi∈Rk

∑
i,j

(∥Yi − Yj∥2 − d̃2ij)
2. (4)

Without loss of generality, we set
∑

i Yi = 0, i.e. putting the origin

as data center. This is called nonmetric MDS since such general d̃ij
is not necessarily a distance.
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Positive Definite Matrix

Definition (Positive Semi-definite Matrix)
Suppose An×n is a real symmetric matrix, then A is called positive
semi-definite (p.s.d.), denoted by A ⪰ 0, if ∀v ∈ Rn, vTAv ≥ 0.

▶

▶ Positive semi-definiteness completely characterizes the inner product
matrices: A ⪰ 0 ⇐⇒ A = Y TY for some Y .

Property
Suppose An×n, Bn×n are real symmetric matrix, A ⪰ 0, B ⪰ 0. Then
we have:

▶ (a) A+B ⪰ 0;
(b) A ◦B ⪰ 0;

where A ◦B is called Hadamard product and (A ◦B)i,j := Ai,j ·Bi,j .
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Definition (Conditionally Negative Definite Matrix)
Let An×n be a real symmetric matrix. A is conditionally negative definite
(c.n.d.), if for ∀v ∈ Rn such that 1T v =

∑n
i=1 vi = 0, there holds

vTAv ≤ 0.

▶

Lemma (Young/Househölder-Schoenberg’1938)
For any signed probability measure α (α ∈ Rn,

∑n
i=1 αi = 1),

Bα = −1

2
HαCHT

α ⪰ 0 ⇐⇒ C is c.n.d.

where Hα is Househölder centering matrix: Hα = I − 1 · αT .

▶
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Theorem (Classical MDS)
Let Dn×n be a real symmetric matrix and

C = D − 1

2
d · 1T − 1

2
1 · dT , with d = diag(D).

Then the following holds.

1. Bα = − 1
2HαDHT

α = − 1
2HαCHT

α for ∀α as a signed probability
measure;

2. Ci,j = Bi,i(α) +Bj,j(α)− 2Bi,j(α);

3. D c.n.d. ⇐⇒ C c.n.d.;

4. C c.n.d. ⇒ C is a squared distance matrix (i.e. ∃Y n×k s.t.

Ci,j =
∑k

m=1(yi,m − yj,m)2).
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Schoenberg Transform

Theorem (Schoenberg Transform)
Given D a squared distance matrix, Ci,j = Φ(Di,j). Then

C is a squared distance matrix ⇐⇒ Φ is a Schoenberg Transform.

Definition (Schoenberg Transform)
The Schoenberg Transform Φ : R+ → R+ is defined by

Φ(t) :=

∫ ∞

0

1− exp (−λt)

λ
g(λ)dλ, (5)

where g(λ) is some nonnegative measure on [0,∞) s.t∫ ∞

0

g(λ)

λ
dλ < ∞.

▶
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Schoenberg Transform

▶ Examples of Schoenberg Transforms include

– Φ0(t) = t with g0(λ) = δ(λ);

– Φ1(t) =
1− exp(−at)

a
with g1(λ) = δ(λ− a) (a > 0);

– Φ2(t) = ln(1 + t/a) with g2(λ) = exp(−aλ);

– Φ3(t) =
t

a(a+ t)
with g3(λ) = λ exp(−aλ);

– Φ4(t) = tp (p ∈ (0, 1)) with g4(λ) =
p

Γ(1− p)
λ−p.
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Isometric Hilbert Embedding

Definition (Positive Semi-definite Functions)
A symmetric function k(x, y) = k(y, x) is called positive definite if for all
finite xi, xj , ∑

i,j

cicjk(xi, xj) ≥ 0, ∀ci, cj

with equality = holds iff ci = cj = 0. In other words the function k
restricted on {(xi, xj) : i, j = 1, . . . , n} is a positive definite matrix.

▶

Theorem (Schoenberg 38)
A separable space M with a metric function d(x, y) can be isometrically
imbedded in a Hilbert space H, if and only if the family of functions
e−λd2

are positive definite for all λ > 0 (in fact we just need it for a
sequence of λi whose accumulate point is 0).

▶
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Complete Monotonicity and Positive Definiteness

▶ Note that Schoenberg transform satisfies Φ(0) = 0,

Φ′(t) =

∫ ∞

0

exp(−λt)g(λ)dλ ≥ 0,

Φ′′(t) = −
∫ ∞

0

exp(−λt)λg(λ)dλ ≤ 0,

and so on. In other words, Φ is a completely monotonic function
defined by (−1)nΦ(n)(x) ≥ 0, with additional constraint Φ(0) = 0.

▶ e−t is completely monotone. Schoenberg connects positive definite
and completely monotone functions.

Theorem (Schoenberg, 1938)
A function ϕ is completely monotone on [0,∞) if and only if ϕ(d2) is
positive definite and radial on Rk for all k.
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Mercer Kernel and RKHS

▶ Let X ⊆ Rd be a compact Euclidean domain.

▶ A Mercer kernel K : X × X → R, is a continuous symmetric
real-valued function which is positive definite, often called a
reproducing kernel.

▶ Reproducing kernel Hilbert space HK is constructed as follows.

– A Mercer kernel K induces a function Kx : X → R (x ∈ X ) defined
by Kx(t) = K(x, t) for t ∈ X

– An inner product between two functions Kx and Kx′ can be defined
as the bilinear form ⟨Kx,Kx′⟩HK

= K(x, x′) (x, x′ ∈ X ) due to the
positive definite K.

– Take the completion of the span{Kx : x ∈ X} with respect to the
inner product as the unique linear extension of the bilinear form
⟨Kx,Kx′⟩HK

= K(x, x′) (∀x, x′ ∈ X )
– The most important property of RKHS is the reproducing property:

for all f ∈ HK and x ∈ X , f(x) = ⟨f,Kx⟩HK
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Covariance operator

▶ Let L2
ρ be the Hilbert space of square integrable functions on X with

respect to the probability measure ρX .

▶ Define a linear operator LK : L2
ρ → L2

ρ by

LK(f)(x) =

∫
X

K(x, t)f(t)dρX .

▶ The operator LK : L2
ρ → L2

ρ is compact with a discrete spectrum,
i.e. an orthonormal eigensystem (λk, ϕk)k∈N, such that
LKϕk = λkϕk.

▶ The restriction of LK on HK induces an operator
LK |HK

: HK → HK , which is called as the covariance operator of
ρX in HK .
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Spectral Representation of Mercer’s Kernel

Theorem (Mercer’s Theorem)
Let X be a compact domain or a manifold, ρX a Borel measure on X ,
and K : X × X → R a Mercer kernel. Let λk be the k-th eigenvalue of
LK and {ϕk}k∈N the corresponding eigenvectors. For all x, t ∈ X ,

K(x, t) =

∞∑
k=1

λkϕk(x)ϕ(t) (6)

where the convergence is absolute (for each x, t ∈ X × X ) and uniform
(on X × X ).

▶
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Kernel PCA

Definition (Kernel PCA/MDS)
Given a data sample of {xi : i = 1, . . . , n} drawn independently and
identically distributed from ρX , the kernel matrix
K = (k(xi, xj) : i, j = 1, . . . , n) is a positive definite matrix. Then the
following procedure gives a k-dimensional Euclidean embedding of data.

(a) Find the top-k eigen-decomposition of the following centred matrix

K̂ = HKHT , where K = (k(xi, xj) : i, j = 1, . . . , n).

(b) Embed the data in the same way as classical MDS Algorithm.
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Summary: PCA and MDS

▶ Data matrix: X = [x1, . . . , xn] ∈ Rp×n

– Centering: Y = XH, where H = I − 1
n
11T

▶ Singular Value Decomposition Y = USV T , S = diag(σj),
σ1 ≥ σ2 ≥ . . . ≥ σmin(n,p)

– PCA is given by top-k (left) SVD (Sk, Uk):
Uk = (u1, . . . , uk) ∈ Rp×k, with embedding coordinates UkSk

– MDS is given by top-k (right) SVD (Sk, Vk):
Vk = (v1, . . . , vk) ∈ Rn×k, with embedding coordinates VkSk

– Kernel PCA (MDS): for K ⪰ 0, Kc = HKHT , Kc = UΛUT gives

MDS embedding UkΛ
1/2
k ∈ Rn×k
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PCA

▶ PCA is unsupervised learning of data

– It only analyzes X, without Y

– Invented by Pearson (1901) and Hotelling (1933)

▶ Supervised PCA?

– Dennis Cook (2001): sufficient dimensionality reduction

– Fisher’s Linear Discriminant Analysis (1920s) and Ker-Chao Li’s
Sliced Inverse Regression (1991)
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Sufficient Dimensionality Reduction

Definition (Cook 2005)
A sufficient dimension reduction Γ (Γ ∈ Rp×d, ΓTΓ = Id) refers to
the setting that the conditional distribution of Y |X is the same as the
distribution of Y |ΓTX for all X, i.e.

P(Y |X) = P(Y |ΓTX).

▶ Example: in regression Y = f(X, ε), for some unknown function f ,
sufficient dimensionality reduction implies that Y = f(ΓTX, ε).

▶ Can you find Γ without knowing f?

▶ Yes! Consider the inverse problem, with conditional distribution
P(X|Y ).
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An Inverse Model

Example (Inverse model)
For each value in response variable y,

Xy = µ+ Γνy + ε (7)

where

▶ Xy ∈ Rp,

▶ νy ∈ Rd, d < p,

▶ Γ ∈ Rp×d such that ΓTΓ = Id,

▶ ε ∼ Np(0, σ
2Ip),

▶ assume
∑

y νy = 0 for removing the degree of freedom in translation.
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Sufficient Dimensionality Reduction

Lemma (Cook 2005)
Under the inverse model, P(Y |X) = P(Y |ΓTX), i.e. Γ is a sufficient
dimensionality reduction.
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Proof

▶ First, X|(Y = y) ∼ Np(µ+ Γνy, σ
2Ip).

▶ By Bayesian formula, we have for any f

fY |X(y|x) ∝ fX|Y (x|y)fY (y)

∝ exp

(
− 1

2σ2
∥x− µ− Γνy∥2

)
fY (y)

∝ exp

(
− 1

2σ2
(νTy νy − 2νTy Γ

T (x− µ)

)
fY (y)

where the last line is given by the orthogonality ΓTΓ = I.
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Proof (continued)

▶ Similarly, since ΓTX|(Y = y) ∼ Nd(Γ
Tµ+ νy, σ

2Id), we have

fY |ΓTX(y|ΓTx) ∝ fΓTX|Y (Γ
Tx|y)fY (y)

∝ exp

(
− 1

2σ2
∥ΓTx− ΓTµ− νy∥2

)
fY (y)

∝ exp

(
− 1

2σ2
(νTy νy − 2νTy Γ

T (x− µ)

)
fY (y)

by the orthogonality ΓTΓ = I.

▶ Therefore, P(Y |X) = P(Y |ΓTX) of the same density kernels.
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Estimate of Γ

▶ Can we estimate Γ from finite sample without knowing f?

▶ PCA gives the Maximum Likelihood Estimate of Γ
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Maximum Likelihood Estimate

▶ Under the inverse model, the conditional likelihood function

f(Xy|µ,Γ, νy) =
1

σp
√

(2π)p
exp

[
− 1

2σ2
(Xy − µ− Γνy)

T (Xy − µ− Γνy)

]
,

▶ MLE
max
µ,Γ,νy

∏
y

f(Xy|µ,Γ, νy)

⇔ max
µ,Γ,νy

− 1

2σ2

∑
y

∥Xy − µ− Γνy∥2 −
∑
y

p log σ + C.
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Maximum Likelihood Estimate (continued)

▶ MLE solution

Γ̂ = arg min
ΓTΓ=I

∑
y

∥Xy − µ̂− PΓ(Xy − µ̂)∥2, PΓ = ΓΓT . (8)

where µ̂ = 1
n

∑
y Xy, νy = Γ̂T (Xy − µ̂).

▶ If y is of distinct values (e.g. the unknown f is injective), PCA (top

d eigen-decomposition of Σ̂) gives Γ̂.

▶ If y is of discrete values (e.g. classification), discriminant analysis

(eigen-decomposition of Σ̂B = 1
K

∑K
y=1(µ̂y − µ̂)(µ̂y − µ̂)T ) gives Γ̂.
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Maximum Likelihood Estimate (continued)

▶ In general
Xy = µ+ Γνy + ϵ (9)

where ε ∼ Np(0,Σ), µ̂y = Ê[Xy|y].

▶ Rescale Zy = Σ−1/2Xy.

▶ Eigen-decomposition of Σ−1/2Σ̂BΣ
−1/2 (with Σ̂ for the estimate of

Σ) meets Fisher’s Linear Discriminant Analysis for Γ̂.

▶ Therefore PCA/LDA can be also derived as a sufficient
dimensionality reduction in supervised learning, even the function f
is unknown here.
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Linear Discriminant Analysis

▶ Data: {Xi, yi}Ni=1 where yi is discrete in {1, 2, . . . ,K} but not
ordered

▶ Compute sample mean and within class means

µ̂ =
1

N

N∑
i=1

Xi, µ̂k =
1

Nk

∑
yi=k

Xi;

▶ Compute Between class covariance matrix

Σ̂p×p
B =

1

K

K∑
k=1

(µ̂k − µ̂)(µ̂k − µ̂)T ;

▶ Compute Within class covariance matrix

Σ̂p×p
W =

1

N −K

K∑
k=1

∑
yi=k

(Xi − µ̂k)(Xi − µ̂k)
T ;
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Fisher’s Linear Discriminant Analysis

We choose the k-th class such that the following linear score function is
the largest:

δ̂k(x) = µ̂T
k Σ̂

−1x− 1

2
µ̂T
k Σ̂

−1µ̂k + log π̂k, (10)

where given data (xi, yi), i = 1, ..., n,

▶ π̂k = nk/n is the sample proportion of class k where nk is the
number of subjects in class k

▶ µ̂k is the sample mean of class k

µ̂k =
1

nk

∑
i:yi=k

xi;

▶ Σ̂ is the pooled (overall) sample covariance

Σ̂ = Σ̂B + Σ̂W =
1

n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)(xi − µ̂k)
T ,
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Fisher’s LDA

▶ Fisher’s LDA (1920s) aims to capture dominant variations between
different classes of data:

– Compute generalized Eigen-decomposition Σ̂B = Σ̂UΛUT with
Λ = diag(λ1, λ2, ...λn) where λ1 ≥ λ2 ≥ ... ≥ λn;

– Choose top-d generalized eigenvectors corresponding to top d ≤ K
nonzero eigenvalues,

Ud = [u1, . . . , ud], uj ∈ Rp.
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Sliced Inverse Rgression

▶ Data: {Xi, yi}Ni=1, where Xi ∈ Rp, yi ∈ R is continuous (or ordered
discrete)

▶ Divide the range of yi into S non-overlapping slices
Hs(s = 1, ..., S). Ns is the number of observations within each slice.

▶ Compute the sample mean and total covariance matrix

µ̂ =
1

N

N∑
i=1

Xi, Σ̂p×p =
1

N

N∑
i=1

(Xi − µ̂)(Xi − µ̂)T ;

▶ Compute the mean of Xi over all slices and Between slices
covariance matrix

µ̂k =
1

Ns

∑
yi∈Hs

Xi, Σ̂p×p
B =

1

K

K∑
h

(µ̂k − µ̂)(µ̂k − µ̂)T ;
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Li’s SIR

▶ K.-C. Li’s Slice Inverse Regression (1991) aims to capture dominant
variations between different slices of data:

– Compute Generalized Eigen-decomposition Σ̂B = Σ̂UΛUT with
Λ = diag(λ1, λ2, ...λn) where λ1 ≥ λ2 ≥ ... ≥ λn;

– Choose top-d generalized eigenvectors corresponding to top d ≤ K
nonzero eigenvalues,

Γd = [u1, . . . , ud], uk ∈ Rp.
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Localized Sliced Inverse Rgression

▶ Data: {Xi, yi}Ni=1, where Xi ∈ Rp, yi ∈ R is continuous (or ordered
discrete)

▶ Divide the range of yi into S non-overlapping slices
Hs(s = 1, ..., S). Ns is the number of observations within each slice.

▶ Compute the sample mean (̂µ) and total covariance Σ̂ as in SIR

▶ Compute the localized mean of Xi over all slices and localized
Between-slice covariance matrix

µ̂i,loc =
1

|si|
∑
j∈si

Xj , Σ̂locB =
1

N

∑
i

(µ̂i,loc − µ̂)(µ̂i,loc − µ̂)T ;

where si = {j : xj belongs to the k nearest neighbours of xi in Hs}
and s indexes the slice Hs to which i belongs.
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LSIR

▶ Wu-Liang-Mukherjee Localized Slice Inverse Regression (2009) aims
to capture nonlinear variations between different slices of data:

– Compute Generalized Eigen-decomposition Σ̂locB = Σ̂UΛUT with
Λ = diag(λ1, λ2, ...λn) where λ1 ≥ λ2 ≥ ... ≥ λn;

– Choose top-d generalized eigenvectors corresponding to top d ≤ K
nonzero eigenvalues,

Γd = [u1, . . . , ud], uk ∈ Rp.
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