
A Mathematical Introduction to Data Science Feb 19, 2025

Homework 3. MLE and James-Stein Estimator

Instructor: Yuan Yao Due: 2 weeks

The problem below marked by ∗ is optional with bonus credits. For the experimental problem,
include the source codes which are runnable under standard settings. Since there is NO grader
assigned for this class, homework will not be graded. But if you would like to submit your exercise,
please send your homework to the address (datascience.hw@gmail.com) with a title “CSIC5011:
Homework #”. I’ll read them and give you bonus credits.

1. Maximum Likelihood Method: consider n random samples from a multivariate normal distri-
bution, Xi ∈ Rp ∼ N (µ,Σ) with i = 1, . . . , n.

(a) Show the log-likelihood function

ln(µ,Σ) = −n
2

trace(Σ−1Sn)− n

2
log det(Σ) + C,

where Sn = 1
n

∑n
i=1(Xi − µ)(Xi − µ)T , and some constant C does not depend on µ and

Σ;

(b) Show that f(X) = trace(AX−1) with A,X � 0 has a first-order approximation,

f(X + ∆) ≈ f(X)− trace(X−1A′X−1∆)

hence formally df(X)/dX = −X−1AX−1 (note (I +X)−1 ≈ I −X);

(c) Show that g(X) = log det(X) with A,X � 0 has a first-order approximation,

g(X + ∆) ≈ g(X) + trace(X−1∆)

hence dg(X)/dX = X−1 (note: consider eigenvalues of X−1/2∆X−1/2);

(d) Use these formal derivatives with respect to positive semi-definite matrix variables to
show that the maximum likelihood estimator of Σ is

Σ̂MLE
n = Sn.

A reference for (b) and (c) can be found in Convex Optimization, by Boyd and Vandenbergh,
examples in Appendix A.4.1 and A.4.3:

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

2. Shrinkage: Suppose y ∼ N (µ, Ip).
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(a) Consider the Ridge regression

min
µ

1

2
‖y − µ‖22 +

λ

2
‖µ‖22.

Show that the solution is given by

µ̂ridgei =
1

1 + λ
yi.

Compute the risk (mean square error) of this estimator. The risk of MLE is given when
C = I.

(b) Consider the LASSO problem,

min
µ

1

2
‖y − µ‖22 + λ‖µ‖1.

Show that the solution is given by Soft-Thresholding

µ̂softi = µsoft(yi;λ) := sign(yi)(|yi| − λ)+.

For the choice λ =
√

2 log p, show that the risk is bounded by

E‖µ̂soft(y)− µ‖2 ≤ 1 + (2 log p+ 1)

p∑
i=1

min(µ2i , 1).

Under what conditions on µ, such a risk is smaller than that of MLE? Note: see Gaussian
Estimation by Iain Johnstone, Lemma 2.9 and the reasoning before it.

(c) Consider the l0 regularization

min
µ
‖y − µ‖22 + λ2‖µ‖0,

where ‖µ‖0 :=
∑p

i=1 I(µi 6= 0). Show that the solution is given by Hard-Thresholding

µ̂hardi = µhard(yi;λ) := yiI(|yi| > λ).

Rewriting µ̂hard(y) = (1− g(y))y, is g(y) weakly differentiable? Why?

(d) Consider the James-Stein Estimator

µ̂JS(y) =

(
1− α

‖y‖2

)
y.

Show that the risk is
E‖µ̂JS(y)− µ‖2 = EUα(y)

where Uα(y) = p− (2α(p− 2)−α2)/‖y‖2. Find the optimal α∗ = arg minα Uα(y). Show
that for p > 2, the risk of James-Stein Estimator is smaller than that of MLE for all
µ ∈ Rp.
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(e) In general, an odd monotone unbounded function Θ : R → R defined by Θλ(t) with
parameter λ ≥ 0 is called shrinkage rule, if it satisfies

[shrinkage] 0 ≤ Θλ(|t|) ≤ |t|;
[odd] Θλ(−t) = −Θλ(t);

[monotone] Θλ(t) ≤ Θλ(t′) for t ≤ t′;
[unbounded] limt→∞Θλ(t) =∞.

Which rules above are shrinkage rules?

3. Necessary Condition for Admissibility of Linear Estimators. Consider linear estimator for
y ∼ N (µ, σ2Ip)

µ̂C(y) = Cy.

Show that µ̂C is admissible only if

(a) C is symmetric;

(b) 0 ≤ ρi(C) ≤ 1 (where ρi(C) are eigenvalues of C);

(c) ρi(C) = 1 for at most two i.

These conditions are satisfied for MLE estimator when p = 1 and p = 2.

Reference: Theorem 2.3 in Gaussian Estimation by Iain Johnstone,
http://statweb.stanford.edu/~imj/Book100611.pdf

4. *James-Stein Estimator for p = 1, 2 and upper bound:

If we use SURE to calculate the risk of James Stein Estimator,

R(µ̂JS, µ) = EU(Y ) = p− Eµ
(p− 2)2

‖Y ‖2
< p = R(µ̂MLE, µ)

it seems that for p = 1 James Stein Estimator should still have lower risk than MLE for any
µ. Can you find what will happen for p = 1 and p = 2 cases?

Moreover, can you derive the upper bound for the risk of James-Stein Estimator?

R(µ̂JS, µ) ≤ p− (p− 2)2

p− 2 + ‖µ‖2
= 2 +

(p− 2)‖µ‖2

p− 2 + ‖µ‖2
.

5. Empirical Bayes Approach to James-Stein Estimator and Tweedie Formula:

James-Stein Estimator can be derived via an Empirical Bayes approach (see Efron and Hastie,
Computer Age Statistical Inference), which can be further generalized to Tweedie Formula.
To see this, consider the following posterior mean estimation

θ̂ = E[θ|x] =

∫
θp(θ|x)dθ

which minimizes the mean square error (risk) R(θ̂) = E(θ̂−θ)2. Here the posterior distribution
density p(θ|x) = p(x|θ)p(θ)/p(x) by the Bayes theorem, wherep(θ) is the prior, p(x|θ) is the
likelihood function, and p(x) is the marginal distribution. In Empirical Bayes, prior is not
given and needs to be estimated from data, in contrast to the traditional Bayes where prior
is given and independent to data.

http://statweb.stanford.edu/~imj/Book100611.pdf
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(a) (James-Stein) Consider the following two-level Gaussian sampling process: let µi ∼
N (M,A) (i = 1, . . . , n), and for each i, xi ∼ N (µi, 1). In other words, µi is sampled
from a Gaussian prior p(θ) = N (M,A) with unknown A,M and data xi is further
sampled from Gaussian distribution p(x|θ) = N (µi, 1). Show that

[i.] the marginal p(x) = N (M,A+ 1);

[ii.] the posterior p(θ|x) = N (M +B(x−M), B) whereB = A
A+1 , x = (x1, . . . , xn)T

and M = (M, . . . ,M)T as vector;

[iii.] the posterior mean gives, for each i = 1, . . . , n

µ̂Bayesi = E[θ|xi] = M +B(xi −M)

where the unbiased estimates of M and B give M̂ = x̄ = 1
n

∑n
i=1 xi, B̂ = 1− (n− 3)/S

with S =
∑n

i=1 x
2
i . This leads to the James-Stein estimator in the form

µ̂JSi = x̄+

(
1− n− 3

S

)
(xi − x̄).

[iv.] the mean square error (risk):

E‖µ̂Bayes − µ‖2 = nB

E‖µ̂MLE − µ‖2 = n, µ̂MLE = x

where the Bayes estimate is only B portion risk of that of MLE, which can be small if
A is small.

(b) (Tweedie Formula) Consider a general prior p(θ) and the Gaussian likelihood p(x|θ) =
N (θ, σ2). Show that the posterior mean must be

E[θ|x] = x+ σ2
d

dx
log p(x) (1)

which does NOT depends on the prior distribution p(θ), but just the gradient of score
function of marginal (log p(x))! This generalization of James-Stein estimator is called
Tweedie Formula, which was recently found useful in denoising diffusion models and
transformers.


