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Deep Learning is 
Notoriously Not Robust!

• Imperceivable adversarial examples are ubiquitous 
to fail neural networks 

• How can one achieve (adversarial) robustness?

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Adversarial and Huber’s Agnostic Contamination Model

Deep Neural Networks are Notoriously not Robust

• Imperceivable adversarial examples are ubiquitous to fail neural networks.

• How can one achieve robustness against adversarial?

Yuan Yao Breiman-Huber
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Robust Optimization

Figure 7: The choice of attack method - FGSM (red) vs. PGD (blue) matters.

Figure 8: Values of the local maxima given by the cross-entropy loss for five examples from the MNIST
and CIFAR10 evaluation datasets. For each example, PGD is started uniformly at random around the
example and iterated until the loss plateaus.The blue histogram corresponds to the loss on a naturally
trained network, while the red histogram corresponds to the adversarially trained counterpart. The
loss is significantly smaller for the adversarially trained networks, and the final loss values are very
concentrated without any outliers.

Figure 9: Natural classification (left) vs. adversarial boundaries (right) corresponding to `1 ball around
training points.

alone increases accuracy. When adversaries like PGD are added, for small capacity networks PGD fails
to learn a meaningful decision boundary and performance is sacrificed for robustness. On the other
hand, for large capacity networks a robust and accurate solution can be achieved with PGD adversary.

The PGD adversary was trained for both MNIST and CIFAR10 and it has been shown that there
is a steady decrease in the training loss of adversarial examples (Figure 11) showing an indication that
the original adversarial training optimization problem is indeed being solved during training.
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Adversarial and Huber’s Agnostic Contamination Model

Robust Optimization

• Traditional training:

min
✓

Jn(✓, z = (xi , yi )
n
i=1)

• e.g. square or cross-entropy loss as negative log-likelihood of logit

models

• Robust optimization (Madry et al. ICLR’2018):

min
✓

max
k✏ik�

Jn(✓, z = (xi + ✏i , yi )
n
i=1)

• robust to any distributions, yet computationally hard

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

Yuan Yao Breiman-Huber
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Distributionally Robust 
Optimization (DRO)
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Adversarial and Huber’s Agnostic Contamination Model

Distributionally Robust Optimization

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

D = {P✏ : W2(P✏, uniform distribution)  ✏}

where DRO may be reduced to regularized maximum likelihood estimates

(Shafieezadeh-Abadeh, Esfahani, Kuhn, NIPS’2015) that are convex

optimizations and tractable

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

D = {P✏ : TV (P✏, uniform distribution)  ✏}?

Yuan Yao Breiman-Huber
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Wasserstein Distributionally 
Robust Optimization

6

Wasserstein-DRO

Wasserstein-DRO:

min
✓

max
P✏:Wp(P✏,Pn)✏

Ez⇠P✏2D[`✓(z)]

where

Wp(P,Q) =

8
<

:

⇣
min�2�(P,Q)

nR
Z⇥Z dp (z, z0) � (dz, dz0)

o⌘1/p
, if 1  p < 1,

inf�2�(P,Q){� � esssupZ⇥Z d (z, z0)}, if p = 1,

I For a broad class of loss functions, Wasserstein-DRO is
asymptotically equivalent to the following regularization problem

min
✓

E(x,y)⇠Pn
[`✓(x, y)] + ↵ ·

��r(x,y)`✓

��
Pn,p⇤

where p⇤ = p
p�1 and the penalty term

��r(x,y)`�

��
Pn,p⇤

represents
the empirical dual p⇤-norm of the gradient of the loss function with
respect to the data (input Lipschitz).

I Gao, Kleywegt (2016); Gao, Chen, Kleywegt (2017); Blanchet,
Kang, Murphy (2016), et. al.
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Certified Adversarial 
Robustness of Lasso
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Theorem (Blanchet, Kang, Murphy (2016))
Consider the cost for z = (x, y):

c ((x, y), (x0
, y

0)) =

⇢
kx� x

0k2p if y = y
0

1 if y 6= y
0 (1a)

For p = 1 and linear regression, Wasserstein-DRO is equivalent to

SQRT-Lasso:

min
�

max
P :Wc(P,Pn)�

EP

⇣�
Y � �

T
X
�2⌘

=min
�

n
E

1/2
Pn

h�
Y � �

T
X
�2i

+
p
�k�kp⇤

o2

where p⇤ = p
p�1 = 1.
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TV-neighborhood
• Now how about the TV-uncertainty set? 

• an example from robust statistics …

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model

Adversarial and Huber’s Agnostic Contamination Model

Distributionally Robust Optimization

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

D = {P✏ : W2(P✏, uniform distribution)  ✏}

where DRO may be reduced to regularized maximum likelihood estimates

(Shafieezadeh-Abadeh, Esfahani, Kuhn, NIPS’2015) that are convex

optimizations and tractable

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

D = {P✏ : TV (P✏, uniform distribution)  ✏}?

Yuan Yao Breiman-Huber
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Huber’s Model

contamination proportion

parameter of interest

arbitrary contamination

[Huber 1964]

Chao Gao, Department of Statistics, Yale University c� July 28, 2016 1

X1, ..., Xn ⇠ (1� ✏)P✓ + ✏Q

M(✏) = inf
✓̂
sup
✓2⇥

sup
Q

E(✓,✏,Q)L(✓̂, ✓)

M(✏) ⇣ M(0) _ !(✏,⇥)

dmin = ⌦(1)

n(p� q)4

k9p3d2max
! 1

p

q

exp(�I)

I ! 1

I > log n

When di = 1, exp(�I) = exp
⇣
�n

k
(
p
p �p

q )2
⌘

1 Introduction
⇣
P

(n)
f , f 2 E↵(Q)

⌘

X
n|f ⇠ P

(n)
f

f ⇠ ⇧

9



Example: Financial Fraud
• P represent normal transactions 

• Q represent fraudulent transactions, e.g. money laundering, which 
is sparse and arbitrarily close to P  

• Finding P and its dual problem in finding Q?
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An Example
Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

how to estimate ?
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Medians
Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1

1

n

nX

i=1

I{uTXi > uT ⌘}.

1. Coordinatewise median (M-estimator)
Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1

1

n

nX

i=1

I{uTXi > uT ⌘}.

2. Tukey’s median (1975)
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Comparisons

Note: R-package for Tukey median can not deal with more 
than 10 dimensions! 

[https://github.com/ChenMengjie/DepthDescent] 
13
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Adversarial and Huber’s Agnostic Contamination Model

Statistical Accuracy

Coordinatewise Median Tukey’s Median

breakdown point 1/2 1/3

statistical precision
p

n

p

n

(no contamination)

statistical precision
p

n
+ p✏2

p

n
+ ✏2: optimal

(with contamination) [Chen-Gao-Ren’15]

computational complexity Polynomial NP-hard

[Amenta et al. ’00]

Yuan Yao Breiman-Huber

https://github.com/ChenMengjie/DepthDescent


Depth and Statistical 
Properties

14



Chao Gao, Department of Statistics, Yale University c� October 25, 2016 1

s

✓̂ = argmax
⌘2Rp

min
kuk=1

(
1

n

nX

i=1

I{uTXi > uT ⌘} ^
1

n

nX

i=1

I{uTXi  uT ⌘}

)

⇣ p

n
_ ✏2

⌘
polylog(p)

|✓̂median � ✓|2 = OP

✓
1

n
_ ✏2

◆

1d-solution: Median Absolute Deviation

log

✓
p

s

◆

s log
ep

s

k2

n log k

k2 + n log k

np+ ds log
ep

s

ds log
ep

s

min
k

⇢
1

k2↵
+

k2

n2
+

log k

n

�
⇣

8
><

>:

n� 2↵
↵+1 , 0 < ↵ < 1

log n

n
, ↵ � 1

{(⇠i, ⇠j)}1i,jn

n� 2↵
↵+1

Multivariate Location Depth

[Tukey, 1975]

Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1

1

n

nX

i=1

I{uTXi > uT ⌘}.
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Regression Depth

Robust Regression via Muti-task Regression Depth

Chao Gao

University of Chicago

December 19, 2016

Abstract

abstract.

Keywords.

1 Introduction

y|X ⇠ N(XT�,�2)

Xy|X ⇠ N(XXT�,�2XXT )

uTXy|X ⇠ N(uTXXT�,�2uTXXTu)

2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

3 Applications of Regression Depth

3.1 Nonparametric Regression

Consider the model y = f(x)+�z. (random uniform design and Fourier basis.) The regression

function admits the expansion f(x) =
P1

j=1 �j�j(x). We assume the true function f⇤ belongs

1
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u2Rp

(
1
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n
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1
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Tukey’s depth is not a special 
case of regression depth.
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Multi-task Regression Depth
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1

population version:

[Mizera, 2002]18



Multi-task Regression Depth
2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

3 Applications of Regression Depth

3.1 Nonparametric Regression

Consider the model y = f(x)+�z. (random uniform design and Fourier basis.) The regression

function admits the expansion f(x) =
P1

j=1 �j�j(x). We assume the true function f⇤ belongs

to the following Sobolev ball:

S↵(M) =

8
<

:f =
1X

j=1

�j�j :
1X

j=1

j2↵�2
j  M2

9
=

; .

Define the vector of infinite size Xi = {�j(xi)}j2[1] 2 R1. Then, the model becomes
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Statistical Errors of Multi-task 
Regression Depth

Estimation Error. For any          , 

with probability at least            .
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Statistical Optimality of 
Multi-task Regression DepthDU (�,P) = inf

U2U
P
�
uTX(y � �TX) � 0

 

(X,Y ) ⇠ PB : X ⇠ N(0,⌃), Y |X ⇠ N(BTX,�2Im)

(X1, Y1), ..., (Xn, Yn) ⇠ (1� ✏)PB + ✏Q

2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

3 Applications of Regression Depth

3.1 Nonparametric Regression

Consider the model y = f(x)+�z. (random uniform design and Fourier basis.) The regression

function admits the expansion f(x) =
P1
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j=1

�j�j :
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j2↵�2
j  M2
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; .

Define the vector of infinite size Xi = {�j(xi)}j2[1] 2 R1. Then, the model becomes

y = �TX + �z. Define

Uk = {u 2 R1 : uj = 0 for all j > k} .

The regression coe�cient is estimated by

�̂ = argmax
�2Uk

DU2k(�, {(Xi, yi)}ni=1).

Proposition 3.1. For any probability measure P and its associated empirical measure Pn,
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r
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,

with probability at least 1� 2�, where C > 0 is some absolute constant.
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Theorem [G17]. For some 

with high probability uniformly over        .

Chao Gao, Department of Statistics, Yale University c� October 22, 2016 8

X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

Q: What would Harry do?

A: Harry would start with p = 1.

Corollary. Define � through the equation

�(
p
� ) = 3/4,

where � is the CDF of N(0, 1). Then for any U ⇢ Sp�1, we have DU (�⌃, P⌃) =
1

2
.

DU

⇣
�⌃, N(0,⌃)

⌘
=

1

2

U = Sp�1 = {u 2 Rp : kuk = 1}.

Us =

(
u 2 Sp�1 :

)

2s

C > 0,

When ✏ = 0, the likelihood ratio test

� = I
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nY

i=1

dP2

dP1
(Xi) > C

)

is optimal.

When ✏ > 0, the test is not robust to outliers.

Consider

H0 : P 2 {P : H(P, P1)  �} , H1 : P 2 {P : H(P, P2)  �}.

There exists a testing function � such that
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P�+ sup
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�
1

2
n (H(P1, P2)� 2�)2

◆
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n
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o
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4.2 Linear Regression with Group Sparsity

Consider the model Y = BTX + �Z. The matrix B is in the following space
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; .
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Covariance Matrix

Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1

1

n

nX

i=1

I{uTXi > uT ⌘}.

1

2

1

3

p

n
_ ✏2 p

✓
1

n
_ ✏2

◆

Theorem 1. Write P(✏,✓,Q) = (1� ✏)N(✓, Ip) + ✏Q. There are constants C, c > 0 such that

inf

✓̂
sup

✓,Q
P(✏,✓,Q)

⇢���✓̂ � ✓
���
2
� C

⇣ p

n
_ ✏2

⌘�
� c,

for any ✏ 2 [0, 1]. For the coordinate median ✓̂, there are constants C, c > 0 such that

sup

✓,Q
P(✏,✓,Q)

⇢���✓̂ � ✓
���
2
� Cp

✓
1

n
_ ✏2

◆�
� c,

for any ✏ 2 [0, 1].

X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

how to estimate ?
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Covariance Matrix

Given i.i.d. observations {Xi}ni=1 from P, the matrix depth of � with respect to {Xi}ni=1

is defined as

DU (�, {Xi}ni=1) = min
u2U

min

(
1

n

nX

i=1

I{|uTXi|2  uT�u}, 1
n

nX

i=1

I{|uTXi|2 � uT�u}
)
. (4)

A general estimator for �⌃ is given by

�̂ = argmax
�2F

DU (�, {Xi}ni=1), (5)

where F is some matrix class to be specified later. The estimator of ⌃ is

⌃̂ = �̂/�, (6)

where � is defined through (3).

3.2 General Covariance Matrix

Consider the following covariance matrix class with bounded spectra

F(M) =
�
⌃ = ⌃T 2 Rp⇥p : ⌃ ⌫ 0, smax(⌃)  M

 
,

where ⌃ ⌫ 0 means ⌃ is positive semi-definite and M > 0 is some absolute constant that

does not scale with p or n.

To define an estimator, we need to specify a subset U ⇢ Sp�1 in the depth function. Let

Up be a (1/4)-net of the unit sphere Sp�1 in the Euclidean space in Rp. This means for any

u 2 Sp�1, there exists a u0 2 Up such that ku� u0k  1/4. According to [45], such Up can be

picked with cardinality bounded by 9p. Define

�̂ = argmax
�⌫0

DUp(�, {Xi}ni=1). (7)

When (7) has multiple maxima, �̂ is understood as any positive semi-definite matrix that

attains the deepest level. A final estimator of ⌃ is defined by ⌃̂ = �̂/� as in (6). The

statistical property of ⌃̂ is stated in the following theorem.

Theorem 3.1. Assume that ✏ < 1/4 and p/n < c for some su�ciently small constant c.

Then, we have

k⌃̂� ⌃k2op  C
⇣ p
n
_ ✏2

⌘
,

with P(✏,⌃,Q)-probability at least 1� exp
�
�C 0(p+ n✏2)

�
uniformly over all Q and ⌃ 2 F(M),

where C,C 0 > 0 are some absolute constants.

Remark 3.1. Due to the computational consideration, we chose a (1/4)-net Up of Sp�1
and

defined our estimator via the matrix depth relative to Up. In fact, it can be shown that the

result in Theorem 3.1 also holds if we define �̂ = argmax�⌫0D(�, {Xi}ni=1) relative to Sp�1
.

7
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�̂ = argmax
�⌫0

D(�, {Xi}ni=1)

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏G

X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏G

|f̂(0)� f(0)|2

���⌃̂� ⌃
���
2

op
.P

⇣ p

n
_ ✏2

⌘

k✓̂ � ✓k2 .P

⇣ p

n
_ ✏2

⌘

max
✓2Rp

min
kuk=1

(
1

n

nX

i=1

I{uT log p✓(Xi)  0}� P✓

�
uT log p✓(X)  0

�
)

max
✓2Rp

min
kuk=1

(
1

n

nX

i=1

I{uT log p✓(Xi)  0}
)

log
p✓̃
p✓

⇡ (✓̃ � ✓)Tr log p✓

Q =
n
N(0,⌃) : ⌃ 2 Rp⇥p

o

Q = Q̃ = {p✓ : ✓ 2 Rp}

Q̃ =
n
N(0, ⌃̃) : ⌃̃ = ⌃+ ruuT , kuk = 1

o

Q =
n
N(✓, Ip) : ✓ 2 Rp

o

Q̃ =
n
N(✓̃, Ip) : ✓̃ 2 Nr(✓)

o

Theorem [CGR15]. For some 

with high probability uniformly over         .
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X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

Q: What would Harry do?

A: Harry would start with p = 1.

Corollary. Define � through the equation

�(
p
� ) = 3/4,

where � is the CDF of N(0, 1). Then for any U ⇢ Sp�1, we have DU (�⌃, P⌃) =
1

2
.

DU

⇣
�⌃, N(0,⌃)

⌘
=

1

2

U = Sp�1 = {u 2 Rp : kuk = 1}.

Us =

(
u 2 Sp�1 :

)

2s

C > 0,

When ✏ = 0, the likelihood ratio test

� = I
(

nY

i=1

dP2

dP1
(Xi) > C

)

is optimal.

When ✏ > 0, the test is not robust to outliers.

Consider

H0 : P 2 {P : H(P, P1)  �} , H1 : P 2 {P : H(P, P2)  �}.

There exists a testing function � such that

sup
P2H0

P�+ sup
P2H1

P (1� �)  2 exp

✓
�
1

2
n (H(P1, P2)� 2�)2

◆
.

However, by convexity of H2(·, ·),

{(1� ✏)P1 + ✏Q : Q} ⇢

n
P : H(P, P1) 

p

2✏
o
.
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D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX
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I{|uTXi|2 � uT�u}, 1
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covariance matrix
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X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Computational Challenges

Lai, Rao, Vempala 
Diakonikolas, Kamath, Kane, Li, Moitra, Stewart 

Balakrishnan, Du, Singh 
Dalalyan, Carpentier, Collier, Verzelen

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Adversarial and Huber’s Agnostic Contamination Model

Computational Complexity

• Polynomial algorithms are proposed [Diakonikolas et al.’16, Lai et al. 16]

of minimax optimal statistical precision

• needs information on second or higher order of moments

• some priori knowledge about ✏

• Tukey’s median has a wider adaptivity,

• does not need to know ✏

• does not need to know second (or higher) order of moments

• optimal for any elliptical distribution even when moments are not defined

• find saddle points of mini-max optimization

• any computational facility for it?

Generative Adversarial Networks (GANs)!

Yuan Yao Breiman-Huber
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• Adaptive to    and 

• Optimal for any elliptical distribution, e.g. Cauchy 

whose moments even do not exist

• Find saddle points of minimax optimization

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1
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Hölder(�)

�2

2
r(p+m)

n
_ �2

2
✏2

s2 log(ep/s)

n
_ s✏2

s log(ep/s)

n�2
_ ✏2

�2

k · k2

k·k2F

k · k2op

k · k2
`1

M(✏) ⇣ min
�>0

⇢
logN (�,⇥,TV(·, ·))

n
+ �2

�
_ ✏2.

M(✏) & M(0) _ !(✏,⇥)

28

Advantages of Tukey Median



A practically good algorithm?

29



`2 loss is
p p

n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
n _ ✏

�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations

11

Generative Adversarial Networks 
[Goodfellow et al. 2014]

Note: R-package for Tukey median can not deal with more 
than 10 dimensions [https://github.com/ChenMengjie/

DepthDescent] 
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Experimental Results

Experiments: Comparisons

Q n p ✏ TV-GAN JS-GAN Dimension Halving Iterative Filtering

N(0.5 ⇤ 1p, Ip) 50,000 100 .2 0.0953 (0.0064) 0.1144 (0.0154) 0.3247 (0.0058) 0.1472 (0.0071)

N(0.5 ⇤ 1p, Ip) 5,000 100 .2 0.1941 (0.0173) 0.2182 (0.0527) 0.3568 (0.0197) 0.2285 (0.0103)

N(0.5 ⇤ 1p, Ip) 50,000 200 .2 0.1108 (0.0093) 0.1573 (0.0815) 0.3251 (0.0078) 0.1525 (0.0045)

N(0.5 ⇤ 1p, Ip) 50,000 100 .05 0.0913 (0.0527) 0.1390 (0.0050) 0.0814 (0.0056) 0.0530 (0.0052)

N(5 ⇤ 1p, Ip) 50,000 100 .2 2.7721 (0.1285) 0.0534 (0.0041) 0.3229 (0.0087) 0.1471 (0.0059)

N(0.5 ⇤ 1p,⌃) 50,000 100 .2 0.1189 (0.0195) 0.1148 (0.0234) 0.3241 (0.0088) 0.1426 (0.0113)

Cauchy(0.5 ⇤ 1p) 50,000 100 .2 0.0738 (0.0053) 0.0525 (0.0029) 0.1045 (0.0071) 0.0633 (0.0042)

Table: Comparison of various robust mean estimation methods. The smallest error of

each case is highlighted in bold.

• Dimension Halving: [Lai et al.’16]

https://github.com/kal2000/AgnosticMeanAndCovarianceCode.

• Iterative Filtering: [Diakonikolas et al.’17]

https://github.com/hoonose/robust-filter.

Yuan Yao Breiman-Huber
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Table 4 shows the performances of JS-GAN, TV-GAN, dimension halving, and iterative

filtering with i.i.d. observations sampled from (1� ✏)N(0p, Ip) + ✏Q. The network structure,

for both JS-GAN and TV-GAN, has one hidden layer with 20 hidden units when the sample

size is 50,000 and 2 hidden units when sample size is 5,000. With fixed network structure,

the hyper parameters are robust to various sampling distributions. For the network with

20 hidden units, the critical parameters to reproduce the results in the table are �g = 0.02,

�d = 0.2, K = 5, T = 150 (p = 100), T = 250 (p = 200), T0 = 25 for JS-GAN and

�g = 0.0001, �d = 0.3, K = 2, T = 150 (p = 100), T = 250 (p = 200), T0 = 1, � = 0.1

for TV-GAN, where � is the penalty factor of the additional regularization term (21). For

the network with 2 hidden units, the critical parameters to reproduce the results below are

�g = 0.01, �d = 0.2, K = 5, T = 150 (p = 100), T0 = 25 for JS-GAN and �g = 0.01, �d = 0.1,

K = 5, T = 150 (p = 100), T0 = 1 for TV-GAN. We use Xavier initialization [28] for both

JS-GAN and TV-GAN trainings.

To summarize, our method outperforms other algorithms in most cases. TV-GAN is good

at cases when Q and N(0p, Ip) are non-separable but fails when Q is far away from N(0p, Ip)

due to optimization issues discussed in Section 3.1 (Figure 1). On the other hand, JS-GAN

stably achieves the lowest error in separable cases and also shows competitive performances

for non-separable ones.

Q n p ✏ TV-GAN JS-GAN Dimension Halving Iterative Filtering

N(0.5 ⇤ 1p, Ip) 50,000 100 .2 0.0953 (0.0064) 0.1144 (0.0154) 0.3247 (0.0058) 0.1472 (0.0071)

N(0.5 ⇤ 1p, Ip) 5,000 100 .2 0.1941 (0.0173) 0.2182 (0.0527) 0.3568 (0.0197) 0.2285 (0.0103)

N(0.5 ⇤ 1p, Ip) 50,000 200 .2 0.1108 (0.0093) 0.1573 (0.0815) 0.3251 (0.0078) 0.1525 (0.0045)

N(0.5 ⇤ 1p, Ip) 50,000 100 .05 0.0913 (0.0527) 0.1390 (0.0050) 0.0814 (0.0056) 0.0530 (0.0052)

N(5 ⇤ 1p, Ip) 50,000 100 .2 2.7721 (0.1285) 0.0534 (0.0041) 0.3229 (0.0087) 0.1471 (0.0059)

N(0.5 ⇤ 1p,⌃) 50,000 100 .2 0.1189 (0.0195) 0.1148 (0.0234) 0.3241 (0.0088) 0.1426 (0.0113)

Cauchy(0.5 ⇤ 1p) 50,000 100 .2 0.0738 (0.0053) 0.0525 (0.0029) 0.1045 (0.0071) 0.0633 (0.0042)

Table 4: Comparison of various robust mean estimation methods. The smallest error of each

case is highlighted in bold.

6.4 Network Structures

In this section, we study the performances of TV-GAN and JS-GAN with various structures

of neural networks. The experiments are conducted with i.i.d. observations drawn from

(1 � ✏)N(0p, Ip) + ✏N(0.5 ⇤ 1p, Ip) with ✏ = 0.2. Table 5 summarizes results for p = 100,

n 2 {5000, 50000} and various network structures. We observe that TV-GAN that uses

neural nets with one hidden layer improves over the performance of that without any hidden

layer. This indicates that the landscape of TV-GAN is improved by a more complicated

network structure. However, adding one more layer does not improve the results. For JS-

GAN, we omit the results without hidden layer because of its lack of robustness (Proposition

3.1). Deeper networks sometimes improve over shallow networks, but this is not always true.

Table 6 illustrates the improvements of network with more than one hidden layers over that

22
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5.5 ADAPTATION TO UNKNOWN COVARIANCE

The robust mean estimator constructed through JS-GAN can be easily made adaptive to unknown covariance
structure, which is a special case of (16). We define

(b✓, b⌃) = argmin
⌘2Rp,�2Ep

max
D2D

"
1

n

nX

i=1

logD(Xi) + EN(⌘,�) log(1�D(Xi))

#
+ log 4,

The estimator b✓, as a result, is rate-optimal even when the true covariance matrix is not necessarily identity and
is unknown (see Theorem 4.1). Below, we demonstrate some numerical evidence of the optimality of b✓ as well
as the error of b⌃ in Table 3.

Data generating process Network structure kb✓ � 0pk kb⌃� ⌃1kop

0.8N(0p,⌃1) + 0.2N(0.5 ⇤ 1p,⌃2) 100-20-1 0.1680 (0.1540) 1.9716 (0.7405)
0.8N(0p,⌃1) + 0.2N(0.5 ⇤ 1p,⌃2) 100-20-20-1 0.1824 (0.3034) 1.4495 (0.6028)

0.8N(0p,⌃1) + 0.2N(1p,⌃2) 100-20-1 0.0817 (0.0213) 1.2753 (0.4523)
0.8N(0p,⌃1) + 0.2N(6 ⇤ 1p,⌃2) 100-20-1 0.1069 (0.0357) 1.1668 (0.1839)

0.8N(0p,⌃1) + 0.2Cauchy(0.5 ⇤ 1p) 100-20-1 0.0797 (0.0257) 4.0653 (0.1569)

Table 3: Numerical experiments for robust mean estimation with unknown covariance trained with 50, 000
samples. The covariance matrices ⌃1 and ⌃2 are generated by the same way described in Appendix B.2.

5.6 ADAPTATION TO ELLIPTICAL DISTRIBUTIONS

We consider the estimation of the location parameter ✓ in elliptical distribution EC(✓,⌃, h) by the JS-GAN
defined in (16). In particular, we study the case with i.i.d. observations X1, ..., Xn ⇠ (1�✏)Cauchy(✓, Ip)+✏Q.
The density function of Cauchy(✓,⌃) is given by p(x; ✓,⌃) / |⌃|�1/2

�
1 + (x� ✓)T⌃�1(x� ✓)

��(1+p)/2.

Compared with Algorithm (1), the difference lies in the choice of the generator. We consider the generator
G1(⇠, U) = g!(⇠)U + ✓, where g!(⇠) is a non-negative neural network parametrized by ! and some random
variable ⇠. The random vector U is sampled from the uniform distribution on {u 2 Rp : kuk = 1}. If the
scatter matrix is unknown, we will use the generator G2(⇠, U) = g!(⇠)AU+✓, with AAT modeling the scatter
matrix.

Table 4 shows the comparison with other methods. Our method still works well under Cauchy distribution,
while the performance of other methods that rely on moment conditions deteriorates in this setting.

Table 4: Comparison of various methods of robust location estimation under Cauchy distributions. Samples
are drawn from (1 � ✏)Cauchy(0p, Ip) + ✏Q with ✏ = 0.2, p = 50 and various choices of Q. Sample size:
50,000. Discriminator net structure: 50-50-25-1. Generator g!(⇠) structure: 48-48-32-24-12-1 with absolute
value activation function in the output layer.

Contamination Q JS-GAN (G1) JS-GAN (G2) Dimension Halving Iterative Filtering
Cauchy(1.5 ⇤ 1p, Ip) 0.0664 (0.0065) 0.0743 (0.0103) 0.3529 (0.0543) 0.1244 (0.0114)
Cauchy(5.0 ⇤ 1p, Ip) 0.0480 (0.0058) 0.0540 (0.0064) 0.4855 (0.0616) 0.1687 (0.0310)

Cauchy(1.5 ⇤ 1p, 5 ⇤ Ip) 0.0754 (0.0135) 0.0742 (0.0111) 0.3726 (0.0530) 0.1220 (0.0112)
Normal(1.5 ⇤ 1p, 5 ⇤ Ip) 0.0702 (0.0064) 0.0713 (0.0088) 0.3915 (0.0232) 0.1048 (0.0288))
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Experimental Results

Experiments: Comparisons

Q n p ✏ TV-GAN JS-GAN Dimension Halving Iterative Filtering

N(0.5 ⇤ 1p, Ip) 50,000 100 .2 0.0953 (0.0064) 0.1144 (0.0154) 0.3247 (0.0058) 0.1472 (0.0071)

N(0.5 ⇤ 1p, Ip) 5,000 100 .2 0.1941 (0.0173) 0.2182 (0.0527) 0.3568 (0.0197) 0.2285 (0.0103)

N(0.5 ⇤ 1p, Ip) 50,000 200 .2 0.1108 (0.0093) 0.1573 (0.0815) 0.3251 (0.0078) 0.1525 (0.0045)

N(0.5 ⇤ 1p, Ip) 50,000 100 .05 0.0913 (0.0527) 0.1390 (0.0050) 0.0814 (0.0056) 0.0530 (0.0052)

N(5 ⇤ 1p, Ip) 50,000 100 .2 2.7721 (0.1285) 0.0534 (0.0041) 0.3229 (0.0087) 0.1471 (0.0059)

N(0.5 ⇤ 1p,⌃) 50,000 100 .2 0.1189 (0.0195) 0.1148 (0.0234) 0.3241 (0.0088) 0.1426 (0.0113)

Cauchy(0.5 ⇤ 1p) 50,000 100 .2 0.0738 (0.0053) 0.0525 (0.0029) 0.1045 (0.0071) 0.0633 (0.0042)

Table: Comparison of various robust mean estimation methods. The smallest error of

each case is highlighted in bold.

• Dimension Halving: [Lai et al.’16]

https://github.com/kal2000/AgnosticMeanAndCovarianceCode.

• Iterative Filtering: [Diakonikolas et al.’17]

https://github.com/hoonose/robust-filter.
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Generative Adversarial Networks for Robust Estimation

f -GAN

Given a strictly convex function f that satisfies f (1) = 0, the f -divergence

between two probability distributions P and Q is defined by

Df (PkQ) =

Z
f

✓
p

q

◆
dQ. (8)

Let f ⇤ be the convex conjugate of f . A variational lower bound of (8) is

Df (PkQ) � sup
T2T

[EPT (X )� EQ f
⇤(T (X ))] . (9)

where equality holds whenever the class T contains the function f
0 (p/q).

[Nowozin-Cseke-Tomioka’16] f -GAN minimizes the variational lower bound (9)

bP = argmin
Q2Q

sup
T2T

"
1
n

nX

i=1

T (Xi )� EQ f
⇤(T (X ))

#
. (10)

with i.i.d. observations X1, ...,Xn ⇠ P.

Yuan Yao Breiman-Huber
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From f-GAN to Tukey’s Median: f-learning  
(GLYZ’18)

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Generative Adversarial Networks for Robust Estimation

From f -GAN to Tukey’s Median

Consider the special case

T =

⇢
f
0
✓
eq
q

◆
: eq 2 eQ

�
. (11)

which is tight if P 2 eQ. The sample version leads to the following f -learning

bP = argmin
Q2Q

sup
eQ2 eQ

"
1
n

nX

i=1

f
0
✓
eq(Xi )
q(Xi )

◆
� EQ f

⇤
✓
f
0
✓
eq(X )
q(X )

◆◆#
. (12)

• If f (x) = x log x , Q = eQ, (12) ) Maximum Likelihood Estimate

• If f (x) = (x � 1)+, then Df (PkQ) = 1
2

R
|p � q| is the TV-distance,

f
⇤(t) = tI{0  t  1}, f -GAN ) TV-GAN

• Q = {N(⌘, Ip) : ⌘ 2 Rp} and eQ = {N(e⌘, Ip) : ke⌘ � ⌘k  r}, (12) r!0)
Tukey’s Median

Yuan Yao Breiman-Huber
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4

where the last inequality sets � = 1, and we use the fact that lim
�!1

1

1 + e��t
= I{t � 0}.

The variational lower-bound of TV-Learning is

max
e⌘


P
✓
pe⌘
p⌘

� 1

◆
� P⌘

✓
pe⌘
p⌘

� 1

◆�

= max
e⌘


P
✓
(e⌘ � ⌘)TX +

k⌘k2 � ke⌘k2

2
� 0

◆
� P⌘

✓
(e⌘ � ⌘)TX +

k⌘k2 � ke⌘k2

2
� 0

◆�

 sup
w,b

�
P
�
w

T
X + b � 0

�
� P⌘

�
w

T
X + b � 0

��
.

Combining the above results, we see that

TV(P, P⌘) � sup
w,b

✓
E 1

1 + e�wTX�b
� E⌘

1

1 + e�wTX�b

◆

� max
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P
✓
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� 1

◆
� P⌘

✓
pe⌘
p⌘

� 1

◆�
.

This means that TV-GAN with a logistic regression (or a zero hidden-layer neural net)

classifier gives a sharper variational lower bound than TV-Learning. Moreover, we know

that when P = P✓, TV-Learning is a sharp variational lower bound, which immediately

implies that the logistic regression TV-GAN is also sharp.

We know that sample versions of TV-Learning and Tukey depth gives a robust

estimator b✓ that achieves the minimax rate kb✓ � ✓k2 . p

n
_ ✏

2 with high probability. The

question is whether the TV-GAN with a logistic regression also leads to a robust estimator

that is minimax optimal. The answer is yes. Consider the estimator

b✓ = argmin
⌘

sup
w,b

"
1

n

nX

i=1

1

1 + e�wTXi�b
� E⌘

1

1 + e�wTX�b

#
.

Theorem 2.1. With i.i.d. observations X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q, we have

kb✓ � ✓k2 . p

n
_ ✏

2
,

with high probability uniformly over all ✓ 2 Rp and all Q.

I believe the theorem is correct and the proof should not be too hard, but I still need

some time to finish the proof. The only technical result I need is

sup
f2F

�����
1

n

nX

i=1

f(Xi)� Ef(X)

����� .
r

p

n
,

with high probability, where F =

⇢
f(x) =

1

1 + e�wT x�b
: w 2 Rp

, b 2 R
�
.

In general, one will use a neural network with h-layers. The estimator is defined as

b✓ = argmin
⌘

sup
T2Nh

"
1

n

nX

i=1

T (Xi)� E⌘T (Xi)

#
.

logistic regression classifier

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1
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Theorem [GLYZ18]. For some 

with high probability uniformly over             .
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X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

Q: What would Harry do?

A: Harry would start with p = 1.

Corollary. Define � through the equation

�(
p
� ) = 3/4,

where � is the CDF of N(0, 1). Then for any U ⇢ Sp�1, we have DU (�⌃, P⌃) =
1

2
.

DU

⇣
�⌃, N(0,⌃)

⌘
=

1

2

U = Sp�1 = {u 2 Rp : kuk = 1}.

Us =

(
u 2 Sp�1 :

)

2s

C > 0,

When ✏ = 0, the likelihood ratio test

� = I
(

nY

i=1

dP2

dP1
(Xi) > C

)

is optimal.

When ✏ > 0, the test is not robust to outliers.

Consider

H0 : P 2 {P : H(P, P1)  �} , H1 : P 2 {P : H(P, P2)  �}.

There exists a testing function � such that

sup
P2H0

P�+ sup
P2H1

P (1� �)  2 exp

✓
�
1

2
n (H(P1, P2)� 2�)2

◆
.

However, by convexity of H2(·, ·),

{(1� ✏)P1 + ✏Q : Q} ⇢

n
P : H(P, P1) 

p

2✏
o
.

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

N(⌘, Ip)

kb✓ � ✓k2  C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

✓
n

log n

◆� 2�
2�+1

_ ✏
2�
�+1
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Figure 1: Landscape of TV-GAN objective function F (⌘, w) = supb[EP sigmoid(wX + b) �

EN(⌘,1)sigmoid(wX + b)], where b is maximized out for visualization. Samples are drawn from P =
(1 � ✏)N(1, 1) + ✏N(10, 1) with ✏ = 0.2. Left: a surface plot of F (⌘, w). The solid curves are marginal
functions for fixed ⌘’s: F (1, w) (red) and F (5, w) (blue), and the dash curves are marginal functions for fixed
w’s: F (⌘,�10) (orange) and F (⌘, 10) (green). Right: a heatmap of F (⌘, w). It is clear that F̃ (w) = F (⌘, w)
has two local maxima for a given ⌘, achieved at w = +1 and w = �1. In fact, the global maximum for
F̃ (w) has a phase transition from w = +1 to w = �1 as ⌘ grows. For example, the maximum is achieved at
w = +1 when ⌘ = 1 (blue solid) and is achieved at w = �1 when ⌘ = 5 (red solid). Unfortunately, even if
we initialize with ⌘0 = 1 and w0 > 0, gradient ascents on ⌘ will only increase the value of ⌘ (green dash), and
thus as long as the discriminator cannot reach the global maximizer, w will be stuck in the positive half space
{w : w > 0} and further increase the value of ⌘.

3.1 RESULTS FOR TV-GAN

We start with the total variation GAN (TV-GAN) with f(x) = (x � 1)+ in (4). For the Gaussian location
family, (4) can be written as
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with T (x) = D(x) in (4). Now we need to specify the class of discriminators D to solve the classification prob-
lem between N(⌘, Ip) and the empirical distribution 1
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i=1 �Xi

. One of the simplest discriminator classes is
the logistic regression,

D =
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With D(x) = sigmoid(wTx+ b) = (1+ e�wT x�b)�1 in (13), the procedure (12) can be viewed as a smoothed
version of TV-Learning (8). To be specific, the sigmoid function sigmoid(wTx + b) tends to an indicator
function as kwk ! 1, which leads to a procedure very similar to (9). In fact, the class (13) is richer than the
one used in (9), and thus (12) can be understood as the minimizer of a sharper variational lower bound than
that of (9).

Theorem 3.1. Assume p
n + ✏2  c for some sufficiently small constant c > 0. With i.i.d. observations

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q, the estimator b✓ defined by (12) satisfies

kb✓ � ✓k2  C
⇣ p
n
_ ✏2

⌘
,

with probability at least 1 � e�C0(p+n✏2) uniformly over all ✓ 2 Rp and all Q. The constants C,C 0 > 0 are
universal.

Though TV-GAN can achieve the minimax rate p
n _ ✏2 under Huber’s contamination model, it may suffer from

optimization difficulties especially when the distributions Q and N(✓, Ip) are far away from each other, as
shown in Figure 1.
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Abstract
Robust estimation under Huber’s ‘-contamination model has become an important topic in statistics
and theoretical computer science. Statistically optimal procedures such as Tukey’s median and other
estimators based on depth functions are impractical because of their computational intractability. In
this paper, we establish an intriguing connection between f-GANs and various depth functions through
the lens of f-Learning. Similar to the derivation of f-GANs, we show that these depth functions that
lead to statistically optimal robust estimators can all be viewed as variational lower bounds of the
total variation distance in the framework of f-Learning. This connection opens the door of computing
robust estimators using tools developed for training GANs. In particular, we show in both theory and
experiments that some appropriate structures of discriminator networks with hidden layers in GANs
lead to statistically optimal robust location estimators for both Gaussian distribution and general
elliptical distributions where first moment may not exist.

Overview

Statistical depth functions such as Tukey’s halfspace depth, covariance matrix depth and regression
depth, can lead to estimators that achieve minimax rates under Huber’s ‘-contamination model,

X1, ..., Xn ≥ (1 ≠ ‘)P◊ + ‘P̃ . (1)
However, these statistically optimal procedures are computationally infeasible. We propose a general
notion, called f-Learning, to unify statistical depth functions, maximal likelihood estimator and many
other estimation procedures into a single framework. This leads to an intriguing connection between
f-GANs and statistical depth functions, and therefore allows us to use algorithms that solve GANs to
solve problems of robust estimation.

f-Learning and f-GANs

• f-Learning and f-GANs [1] are induced by minimizers of two di�erent variational lower bounds of the
f-divergence between empirical measure and some probability Q,

f-Learning: cP = argmin
QœQ
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f-GAN: cP = argmin
QœQ

sup
TœT
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41
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T (Xi) ≠ EQf ú(T (X))

3

5 . (3)

• The two variational lower bounds are tight if P œ fQ for f-Learning or f Õ(p/q) œ T for f-GAN.
• If f (x) = x log x, f-Learning leads to the maximum likelihood estimate (MLE).
• If f (x) = (x ≠ 1)+, f-Learning leads to various statistical depth functions: location, matrix, and
regression, etc.

TV-Learning Unifies Statistical Depth Functions

• When f (x) = (x ≠ 1)+, f-divergence is the total variation (TV) distance Df(PÎQ) = 1
2
R |p ≠ q| and the corresponding TV-Learning is,
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TV-Learning Statistical Depth (r æ 0) Huber’s model Minimax RateQ fQ
{N(÷, Ip) : ÷ œ Rp} {N( e÷, Ip) : Î e÷ ≠ ÷Î Æ r} Tukey’s median Xi ≥ (1 ≠ ‘)N(◊, Ip) + ‘P̃ Î b◊ ≠ ◊Î2

2 . p/n + ‘2

{N(0, �) : � œ Ep}
n
N(0, e�) : e�≠1 = �≠1 + eruuT œ Ep, |er| Æ r, ÎuÎ = 1

o
matrix depth Xi ≥ (1 ≠ ‘)N(0, �) + ‘P̃ Î b� ≠ �Î2

op . p/n + ‘2

n
Py,X = Py|XPX : Py|X = N(XT÷, 1), ÷ œ Rp

o n
Py,X = Py|XPX : Py|X = N(XT e÷, 1), Î e÷ ≠ ÷Î Æ r

o
regression depth P— : X ≥ N(0, �), y|X ≥ N(XT—, ‡2) Î b— ≠ —Î2

2 . p/n + ‘2

(Xi, yi) ≥ (1 ≠ ‘)P— + ‘P̃

TV-GAN

• Objective function. For the Gaussian location family, by taking f (x) =
(x ≠ 1)+, (3) becomes,

b◊ = argmin
÷œRp

max
DœD
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D(Xi) ≠ EN(÷,Ip)D(X)

3

5 . (5)

• Discriminator class. The simplest discriminator class, that is logistic re-
gression, works in theory.

D =
n
D(x) = sigmoid(wTx + b) : w œ Rp, b œ R

o
. (6)

THEOREM 1 (Statistical Optimality of TV-GAN)
For zero-hidden layer discriminator class D,

Î b◊ ≠ ◊Î2 . p

n
‚ ‘2

with high probability uniformly over ◊ œ Rp, P̃ .

• Rugged landscape. Though TV-GAN can achieve the minimax rate, it
may su�er from optimization di�culties especially when distributions P̃ and
N(◊, Ip) are linearly separable.

JS-GAN

• Objective function. By taking f (x) = x log x ≠ (x + 1) log x+1
2 , (3) becomes,

b◊ = argmin
÷œRp

max
DœD
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5 + log 4. (7)

• Discriminator class. Consider the following class of discriminators,
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THEOREM 2 (Statistical Optimality of JS-GAN)
For a neural network class D with at least one hidden layer and appropriate regularization on weight matrix, we have

Î b◊ ≠ ◊Î2 .
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>>>><

>>>>:

p

n
‚ ‘2, L = 1 and ‡1 is bounded activation

p log p

n
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with high probability uniformly over all ◊ œ Rp and all P̃ .

JS-GAN is a “Generalized Moment” (Feature) Matching

JSg(P, Q) = 0 if and only if EPg(X) = EQg(X), where
JSg(P, Q) = max

wœW

h
EP log sigmoid(wTg(X)) + EQ log(1 ≠ sigmoid(wTg(X)))

i
+ log 4.

• Example. In the right figure,
X1, ..., Xn ≥ (1 ≠ ‘)N(◊, Ip) + ‘N(◊̃, Ip), JS-GAN
estimate (7) gives MLE in the left (no hidden layer,
i.e. L = 0) or robust estimates in the middle and
right (L Ø 1), respectively.

Experiments

• Settings. We assume i.i.d. observations are drawn from (1 ≠ ‘)N(0p, Ip) + ‘P̃ with ‘, p and P̃ to be
specified.
• Compared Methods. We compare GANs with the dimension halving [2] and iterative filtering [3].

Table 1: Experiment results for JS-GAN using networks with di�erent structures in high dimension. Settings: ‘ = 0.2,
p œ {200, 400} and n = 50, 000. The result shows one-hidden layer becomes tough as the dimension grows (e.g. p Ø 200),
while a deeper network can significantly refine the situation perhaps by improving the landscape.

p 200-100-20-1 200-200-100-1 200-100-1 200-20-1
200 0.0910 (0.0056) 0.0790 (0.0026) 0.3064 (0.0077) 0.1573 (0.0815)
p 400-200-100-50-20-1 400-200-100-20-1 400-200-20-1 400-200-1

400 0.1477 (0.0053) 0.1732 (0.0397) 0.1393 (0.0090) 0.3604 (0.0990)

Table 2: Comparison of various robust mean estimation methods. Net structure: One-hidden layer network with 20 hidden
units when n = 50, 000 and 2 hidden units when n = 5, 000. The number in each cell is the average of ¸2 error Îb◊ ≠ ◊Î with
standard deviation in parenthesis estimated from 10 repeated experiments and the smallest error among four methods is
highlighted in bold. The results show JS-GAN stably achieves the lowest error in separable cases and also shows competitive
performances for non-separable ones.

Contamination P̃ n p ‘ TV-GAN JS-GAN Dimension Halving Iterative Filtering
N(0.5 ú 1p, Ip) 50,000 100 .2 0.0953 (0.0064) 0.1144 (0.0154) 0.3247 (0.0058) 0.1472 (0.0071)
N(0.5 ú 1p, Ip) 5,000 100 .2 0.1941 (0.0173) 0.2182 (0.0527) 0.3568 (0.0197) 0.2285 (0.0103)
N(0.5 ú 1p, Ip) 50,000 200 .2 0.1108 (0.0093) 0.1573 (0.0815) 0.3251 (0.0078) 0.1525 (0.0045)
N(0.5 ú 1p, Ip) 50,000 100 .05 0.0913 (0.0527) 0.1390 (0.0050) 0.0814 (0.0056) 0.0530 (0.0052)
N(5 ú 1p, Ip) 50,000 100 .2 2.7721 (0.1285) 0.0534 (0.0041) 0.3229 (0.0087) 0.1471 (0.0059)

N(0.5 ú 1p, �) 50,000 100 .2 0.1189 (0.0195) 0.1148 (0.0234) 0.3241 (0.0088) 0.1426 (0.0113)
Cauchy(0.5 ú 1p) 50,000 100 .2 0.0738 (0.0053) 0.0525 (0.0029) 0.1045 (0.0071) 0.0633 (0.0042)

Adaptation to Elliptical Distributions

• Elliptical Distributions. A random vector X œ Rp follows an elliptical distribution if it admits a
representation

X = ◊ + ›AU,

where U is uniformly distributed on the unit sphere {u œ Rp : ÎuÎ = 1} and › Ø 0 is a random variable
independent of U that determines the shape of the elliptical distribution. In particular, it includes
Cauchy family whose moments of order one or more do not exist.
• Modifications on the Generator.

G1(›, U ; w, ◊) = gw(›)U + ◊ or G2(›, U ; w, ◊, A) = gw(›)AU + ◊

Table 3: Comparison of various methods of robust location estimation under Cauchy distributions. Samples are drawn from
(1 ≠ ‘)Cauchy(0p, Ip) + ‘P̃ with ‘ = 0.2, p = 50 and various choices of P̃ . Sample size: 50,000.

Contamination P̃ JS-GAN (G1) JS-GAN (G2) Dimension Halving Iterative Filtering
Cauchy(1.5 ú 1p, Ip) 0.0664 (0.0065) 0.0743 (0.0103) 0.3529 (0.0543) 0.1244 (0.0114)
Cauchy(5.0 ú 1p, Ip) 0.0480 (0.0058) 0.0540 (0.0064) 0.4855 (0.0616) 0.1687 (0.0310)

Cauchy(1.5 ú 1p, 5 ú Ip) 0.0754 (0.0135) 0.0742 (0.0111) 0.3726 (0.0530) 0.1220 (0.0112)
Normal(1.5 ú 1p, 5 ú Ip) 0.0702 (0.0064) 0.0713 (0.0088) 0.3915 (0.0232) 0.1048 (0.0288))

Conclusion
XWe identify an important subclass of f-GAN, called f-Learning, which helps us to unify the under-
standings of various depth-based estimators, GAN, and MLE in a single framework. The connection
between depth functions and f-GAN allows us to develop depth-like estimators that not only share
good statistical properties, but can also be trained by stochastic gradient ascent/descent algorithms.
XIn order to choose an appropriate discriminator class for robust estimation, we establish a relation
between GAN optimization and feature matching. This implies the necessity of hidden layers of
neural network structures used in the GAN training. A neural network class without hidden layer is
equivalent to matching linear features, and is thus not suitable for robust estimation.
XWe prove that rate-optimal robust estimation can be achieved by GAN that uses neural network
discriminator classes with hidden layers and appropriate regularizations. Extensive numerical ex-
periments are conducted to verify our theoretical findings and show that these procedures can be
computed in practice.
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The original Jenson-Shannon GAN

[Goodfellow et al. 2014] For f (x) = x log x � (x + 1) log x+1
2 ,

b✓ = argmin
⌘2Rp

max
D2D

"
1
n

nX

i=1

logD(Xi ) + EN (⌘,Ip) log(1� D(X ))

#
+ log 4. (15)

What are D, the class of discriminators?

• Single layer (no hidden layer):

D =
n
D(x) = sigmoid(wT

x + b) : w 2 Rp, b 2 R
o

• One-hidden or Multiple layer:

D =
n
D(x) = sigmoid(wT

g(X ))
o

Yuan Yao Breiman-Huber
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n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that
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�
= ✏. Figure
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2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?
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3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).
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is
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JS-GAN
A classifier with hidden layers leads to robustness. Why?
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JS-GAN

Theorem [GLYZ18]. For a neural network 
class     with at least one hidden layer and 
appropriate regularization, we have 

with high probability uniformly over             .
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Hölder(�)

�2

2
r(p+m)

n
_ �2

2
✏2

s2 log(ep/s)

n
_ s✏2

s log(ep/s)

n�2
_ ✏2

�2

(indicator/sigmoid/ramp)

  (ReLUs+sigmoid features)

Chao Gao, Department of Statistics, Yale University c� August 14, 2018 1

Ar = {B 2 Rp⇥m
: rank(B)  r}

JSg(P,Q) = max
w2Rd


P log

1

1 + e�wT g(X)
+Q log

1

1 + ewT g(X)

�
+ log 4.

JSg(P,Q) = 0 () Pg(X) = Qg(X)

kb✓ � ✓k2 .

8
><

>:

p

n
+ ✏2

p

n
+ ✏

Fs(M) =

8
<

:⌦ = ⌦
T 2 Rp⇥p

: M�1  �min(⌦)  �max(⌦)  M, max
1ip

pX

j=1

I{⌦ij 6= 0}  s

9
=

;

b✓ = argmin

⌘2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ ✓

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2  C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

Chao Gao, Department of Statistics, Yale University c� October 30, 2018 1

max
⌃

min
kuk=1

" 
1

n

nX

i=1

I{|uTXi|2  uT⌃u}� P(�2
1  1)

!
^
 
1

n

nX

i=1

I{|uTXi|2 > uT⌃u}� P(�2
1 > 1)

!#

kb✓ � ✓k2 .

8
><

>:

p

n
+ ✏2

p log p

n
+ ✏2

f(x) = x log x

k⌃̂� ⌃k2op  C
⇣ p
n
_ ✏2

⌘

f(x) = x log x

�(x+ 1) log(x+ 1)

min
✓2⇥k

kX � ✓k2

b⌘1  b⌘2  · · ·  b⌘| bAn|

{b⌘j}|
bAn|

j=1

b✓(2) = argmin
✓2⇥"

2

kX � ✓k2

b✓(k) = argmin
✓2⇥"

k

kX � ✓k2

max
1in

|Zi|2 ⇣ �2 log(en)

max
1mn

�����
1p
m

mX

i=1

Zi

�����

2

⇣ �2 log log(16n)

|X(ba:bb] � µ|  |X(a:bb] � µ| _ |X(ba:b] � µ|

40



JS-GAN: Adaptation to 
Unknown Covariance
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no need to change the discriminator class
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• Discriminator helps identify outliers or contaminated samples 

• Generator fits uncontaminated portion of true samples 

Discriminator identifies 
outliers 

Table 4 shows the performances of JS-GAN, TV-GAN, dimension halving, and iterative

filtering with i.i.d. observations sampled from (1� ✏)N(0p, Ip) + ✏Q. The network structure,

for both JS-GAN and TV-GAN, has one hidden layer with 20 hidden units when the sample

size is 50,000 and 2 hidden units when sample size is 5,000. With fixed network structure,

the hyper parameters are robust to various sampling distributions. For the network with

20 hidden units, the critical parameters to reproduce the results in the table are �g = 0.02,

�d = 0.2, K = 5, T = 150 (p = 100), T = 250 (p = 200), T0 = 25 for JS-GAN and

�g = 0.0001, �d = 0.3, K = 2, T = 150 (p = 100), T = 250 (p = 200), T0 = 1, � = 0.1

for TV-GAN, where � is the penalty factor of the additional regularization term (21). For

the network with 2 hidden units, the critical parameters to reproduce the results below are

�g = 0.01, �d = 0.2, K = 5, T = 150 (p = 100), T0 = 25 for JS-GAN and �g = 0.01, �d = 0.1,

K = 5, T = 150 (p = 100), T0 = 1 for TV-GAN. We use Xavier initialization [28] for both

JS-GAN and TV-GAN trainings.

To summarize, our method outperforms other algorithms in most cases. TV-GAN is good

at cases when Q and N(0p, Ip) are non-separable but fails when Q is far away from N(0p, Ip)

due to optimization issues discussed in Section 3.1 (Figure 1). On the other hand, JS-GAN

stably achieves the lowest error in separable cases and also shows competitive performances

for non-separable ones.

Q n p ✏ TV-GAN JS-GAN Dimension Halving Iterative Filtering

N(0.5 ⇤ 1p, Ip) 50,000 100 .2 0.0953 (0.0064) 0.1144 (0.0154) 0.3247 (0.0058) 0.1472 (0.0071)

N(0.5 ⇤ 1p, Ip) 5,000 100 .2 0.1941 (0.0173) 0.2182 (0.0527) 0.3568 (0.0197) 0.2285 (0.0103)

N(0.5 ⇤ 1p, Ip) 50,000 200 .2 0.1108 (0.0093) 0.1573 (0.0815) 0.3251 (0.0078) 0.1525 (0.0045)

N(0.5 ⇤ 1p, Ip) 50,000 100 .05 0.0913 (0.0527) 0.1390 (0.0050) 0.0814 (0.0056) 0.0530 (0.0052)

N(5 ⇤ 1p, Ip) 50,000 100 .2 2.7721 (0.1285) 0.0534 (0.0041) 0.3229 (0.0087) 0.1471 (0.0059)

N(0.5 ⇤ 1p,⌃) 50,000 100 .2 0.1189 (0.0195) 0.1148 (0.0234) 0.3241 (0.0088) 0.1426 (0.0113)

Cauchy(0.5 ⇤ 1p) 50,000 100 .2 0.0738 (0.0053) 0.0525 (0.0029) 0.1045 (0.0071) 0.0633 (0.0042)

Table 4: Comparison of various robust mean estimation methods. The smallest error of each

case is highlighted in bold.

6.4 Network Structures

In this section, we study the performances of TV-GAN and JS-GAN with various structures

of neural networks. The experiments are conducted with i.i.d. observations drawn from

(1 � ✏)N(0p, Ip) + ✏N(0.5 ⇤ 1p, Ip) with ✏ = 0.2. Table 5 summarizes results for p = 100,

n 2 {5000, 50000} and various network structures. We observe that TV-GAN that uses

neural nets with one hidden layer improves over the performance of that without any hidden

layer. This indicates that the landscape of TV-GAN is improved by a more complicated

network structure. However, adding one more layer does not improve the results. For JS-

GAN, we omit the results without hidden layer because of its lack of robustness (Proposition

3.1). Deeper networks sometimes improve over shallow networks, but this is not always true.

Table 6 illustrates the improvements of network with more than one hidden layers over that
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Table 6 illustrates the improvements of network with more than one hidden layers over that

22

42



Generalization
Strong Contamination model:

For any unit vector u, the distribution of ⇠uTU does not depend on u because of the

symmetry of U . Define H(·) to be the distribution function of ⇠uTU . Since there is a one-to-

one relation between H(·) and the distribution of ⇠, the distribution of X = ✓+ ⇠AU is fully

determined by the triplet (✓,⌃, H), and therefore we write the distribution as E(✓,⌃, H).

Note that ⌃ and H are not identifiable, this is because ⇠AU = (a⇠)(a�1A)U for any

a > 0. To overcome this issue, we restrict H to the following class

H =

⇢
H is a distribution function : H(t) +H(�t) ⌘ 1,

Z
R(|t|)dH(t) =

Z
R(|t|)d�(t)

�
,

where �(·) is the distribution function of N(0, 1), and

R(|t|) =

(
|t|, |t|  1,

1, |t| > 1,
(31)

which is recognized as the clipped `1 function. The restriction H 2 H is without loss of

generality. This is because the function F (a) = ER(|a⇠uTU |) is increasing for all a > 0, so

that the equation F (a) =
R
R(|t|)d�(t) must have a solution. Here, we do not use the simpler

absolute function, because the first moment of ⇠uTU may not exist.

Definition 6.2. The elliptical distribution X = ✓ + ⇠AU has a canonical parametrization

(✓,⌃, H) with ⌃ = AAT and H 2 H. We use the notation E(✓,⌃, H) to denote the elliptical

distribution in its canonical form.

With the canonical representation, the parameters ✓,⌃, H are all identifiable. The scat-

ter matrix ⌃ is proportion to the covariance matrix whenever the covariance matrix exists.

Moreover, for multivariate Gaussian N(✓,⌃), its canonical parametrization is (✓,⌃,�), and

the scatter matrix and the covariance matrix are identical.

The goal of this section is to estimate both the location ✓ and the scatter ⌃ with obser-

vations

X1, ..., Xn
iid
⇠ P for some P satisfying TV(P,E(✓,⌃, H))  ✏. (32)

To achieve this goal, we further require that H belongs to the following class

H(M 0) =

(
H 2 H :

Z 1/3

1/4
dH(t) �

1

M 0

)
.

The number M 0 > 0 is assumed to be some large constant. It is easy to see that H =

[M 0>0H(M 0). The regular condition H 2 H(M 0) will be easily satisfied as long as there is a

constant probability mass of H contained in the interval [1/4, 1/3]. This condition prevents

some of the probability mass from escaping to infinity.

Define the estimator

(b✓, b⌃, bH) = argmin
⌘2Rp,�2Ep(M),H2H(M 0)

max
T2T

"
1

n

nX

i=1

S(T (Xi), 1) + EX⇠E(⌘,�,G)S(T (X), 0)

#
. (33)
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Define the estimator
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n

nX
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Scoring Rules

I We are going to replace the log likelihoods in JS-GAN by some
scoring functions

log t 7! S(t, 1) : [0, 1] ! R

log(1� t) 7! S(t, 0) : [0, 1] ! R

that map the probability (likelihood) to some real numbers.

Proper Scoring Rules 45



Fisher Consistency:  
Proper Scoring Rule

44

Fisher Consistency: Proper Scoring Rule

I With a Bernoulli experiment of probability p observing 1, define the
expected score

S(t, p) = pS(t, 1) + (1� p)S(t, 0)

I Like likelihood functions, as a function of t, we hope that S(t, p) is
maximized at t = p

max
t

S(t, p) = S(p, p) =: G(p)

I Such a score is called Proper Scoring Rule.

Proper Scoring Rules 46



Savage Representation of  
Proper Scoring Rule

45

Savage Representation

Lemma (Savage representation)

I For a proper scoring rule S(t, p):

– G(t) = S(t, t) is convex

– S(t, 0) = G(t)� tG0(t)

– S(t, 1) = G(t) + (1� t)G0(t)

– S(t, p) = pS(t, 1) + (1� p)S(t, 0) = G(t) +G0(t)(p� t)

Proper Scoring Rules 47



Divergence

46

Gao, Yao and Zhu

such that (
S(t, 1) = G(t) + (1� t)G0(t),

S(t, 0) = G(t)� tG0(t).
(2)

Here, G0(t) is a subgradient of G at the point t. Moreover, the statement also holds for

strictly proper scoring rules when convex is replaced by strictly convex.

For any regular proper scoring rule, the convex function G(·) can be determined by

G(t) = S(t; t) = tS(t, 1) + (1� t)S(t, 0),

and the Savage representation simply says that S(t; t) is a convex function in t.

2.3 Relation to f-Divergence

Given two probability distributions P and Q, a divergence function D(P,Q) measures the

di↵erence between P and Q. It satisfies the following two properties:

1. For any P and Q, D(P,Q) � 0.

2. Whenever P = Q, D(P,Q) = 0.

Following the principle outlined in Mohamed and Lakshminarayanan (2016), we show that a

general class of divergence functions can be induced from proper scoring rules. To motivate

the derivation, we consider a classification problem by introducing a binary latent variable

y 2 {0, 1}. The conditional distribution of X given y is specified as X|(y = 1) ⇠ P and

X|(y = 0) ⇠ Q. We also assume that P(y = 1) = 1
2 so that the joint distribution (X, y) is

fully specified. The classification problem is to find a function T (X) 2 [0, 1] that forecasts

the probability of y = 1 given X. With a proper scoring rule {S(·, 1), S(·, 0)}, it is natural

to consider the following cost function for the task,

E [yS(T (X), 1) + (1� y)S(T (X), 0)]

=
1

2
EX⇠PS(T (X), 1) +

1

2
EX⇠QS(T (X), 0).

Then, one can find a good classification rule T (·) by maximizing the above objective over

T 2 T . This leads to the following definition of a divergence function,

DT (P,Q) = max
T2T


1

2
EX⇠PS(T (X), 1) +

1

2
EX⇠QS(T (X), 0)

�
�G(1/2), (3)

where G(·) is the convex function in the Savage representation of the proper scoring rule.

The definition (3) can be understood as a variational lower bound of some f -divergence.

Given a convex function f(·) that satisfies f(1) = 0, recall that the definition of the f -

divergence between P and Q is given by

Df (PkQ) =

Z
f

✓
dP

dQ

◆
dQ.

6

Generative Adversarial Nets for Robust Scatter Estimation: A Proper Scoring Rule Perspective

Proposition 1 Given any regular proper scoring rule {S(·, 1), S(·, 0)} and any class T 3�
1
2

 
, DT (P,Q) is a divergence function, and

DT (P,Q)  Df

⇣
P
���
1

2
P +

1

2
Q
⌘
, (4)

where f(t) = G(t/2) � G(1/2). Moreover, whenever T 3
dP

dP+dQ , the inequality above

becomes an equality.

Proof Suppose T 3
�
1
2

 
, then DT (P,Q) � 1

2S(1/2, 1) +
1
2S(1/2, 0) �G(1/2) = 0. When

P = Q, we have DT (P,Q)  maxt2[0,1] [G(t)�G(1/2)� (t� 1/2)G0(t)]  0 by the convex-

ity of G(·), and therefore DT (P,Q) = 0, which implies it is a divergence function. Since

{S(·, 1), S(·, 0)} is a proper scoring rule, p(x)S(T (x), 1) + q(x)S(T (x), 0) is maximized at

T (x) = p(x)
p(x)+q(x) . Thus,

DT (P,Q) 
1

2
EX⇠PS

✓
dP

dP + dQ
(X), 1

◆
+

1

2
EX⇠QS

✓
dP

dP + dQ
(X), 0

◆
�G(1/2)

=
1

2
EX⇠PG

✓
dP

dP + dQ
(X)

◆
+

1

2
EX⇠QG

✓
dP

dP + dQ
(X)

◆
�G(1/2)

= Df

⇣
P
���
1

2
P +

1

2
Q
⌘
,

and obviously the inequality above becomes an equality when T 3
dP

dP+dQ .

It is worth noting that Df

⇣
P
���1
2P + 1

2Q
⌘
is in general not symmetric with respect to

P and Q. However, when the regular proper scoring rule is symmetric in the sense that

S(t, 1) = S(1� t, 0), we have G(t) = G(1� t), or equivalently, f(t) = f(2� t), in which case

the corresponding f -divergence satisfies

Df

⇣
P
���
1

2
P +

1

2
Q
⌘
= Df

⇣
Q
���
1

2
P +

1

2
Q
⌘
,

and is symmetric.

2.4 Variational Lower Bounds and GANs

The variational form of the divergence function makes it easy to define a sample version

of (3). Replacing EX⇠P in (3) by the empirical measure, we have a divergence function

between 1
n

Pn
i=1 �Xi and Q, which is a useful objective function for statistical estimation.

Given a class of probability measures Q, the induced estimator of P is defined by

bP = argmin
Q2Q

max
T2T

"
1

n

nX

i=1

S(T (Xi), 1) + EX⇠QS(T (X), 0)

#
. (5)

We drop the term �G(1/2) in (3) because it is a constant that does not a↵ect the definition

of (5). The formula (5) has an interpretation of a minimax game between two players. The

7

Regular Proper Scoring Rule

I A scoring rule S is regular if both S(·, 0) and S(·, 1) are real-valued,
except possibly that S(0, 1) = �1 or S(1, 0) = �1.

I We can exploit the following SD relaxation:
– (0; ei � ej)(0; ei � ej)

T • Z = dij for (i, j) 2 Ex,

– (ai; ej)(ai; ej)
T • Z = cdij for (i, j) 2 Ea,

both of which are linear with respect to Z.

I The constraints with equalities of d2ij can be replaced by inequalities
such as  d

2
ij(1 + ✏) (or � d

2
ij(1� ✏)). This is a system of linear

matrix inequalities with positive semidefinite variable Z.
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Example 1: Log Score and 
JS-GAN

between 1
n

Pn
i=1 �Xi and Q, which is a useful objective function for statistical estimation.

Given a class of probability measures Q, the induced estimator of P is defined by

bP = argmin
Q2Q

max
T2T

"
1

n

nX

i=1

S(T (Xi), 1) + EX⇠QS(T (X), 0)

#
. (13)

We drop the term �G(1/2) in (11) because it is a constant that does not a↵ect the definition

of (13). The formula (13) has an interpretation of a minimax game between two players. The

goal of the first player is to find the best discriminator T that learns whether a sample is from

the empirical distribution or the model distribution Q. The second player is to find a model

distribution Q as close to the empirical distribution as possible so that the first player cannot

tell the di↵erence. In the context of deep learning, both the discriminator class T and the

generator class Q are modeled by neural networks, and (13) is recognized as the technique

of Generative Adversarial Nets proposed by [25]. The relation between GANs and proper

scoring rules is discovered by [42] in the context of learning implicit models.

3.5 Examples

1. Log Score. The log score is perhaps the most commonly used rule because of its various

intriguing properties [31]. The scoring rule with S(t, 1) = log t and S(t, 0) = log(1 �

t) is regular and strictly proper. Its Savage representation is given by the convex

function G(t) = t log t+ (1� t) log(1� t), which is interpreted as the negative Shannon

entropy of Bernoulli(t). The corresponding divergence function DT (P,Q), according to

Proposition 3.1, is a variational lower bound of the Jensen-Shannon divergence

JS(P,Q) =
1

2

Z
log

✓
dP

dP + dQ

◆
dP +

1

2

Z
log

✓
dQ

dP + dQ

◆
dQ+ log 2.

Its sample version (13) is the original GAN proposed by [25] that is widely used in

learning distributions of images.

2. Zero-One Score. The zero-one score S(t, 1) = 2I{t � 1/2} and S(t, 0) = 2I{t < 1/2} is

also known as the misclassification loss. This is a regular proper scoring rule but not

strictly proper. The induced divergence function DT (P,Q) is a variational lower bound

of the total variation distance

TV(P,Q) = P

✓
dP

dQ
� 1

◆
�Q

✓
dP

dQ
� 1

◆
=

1

2

Z
|dP � dQ|.

The sample version (13) is recognized as the TV-GAN that is extensively studied by

[21] in the context of robust estimation.

3. Quadratic Score. Also known as the Brier score [6], the definition is given by S(t, 1) =

�(1 � t)2 and S(t, 0) = �t2. The corresponding convex function in the Savage repre-

sentation is given by G(t) = �t(1� t). By Proposition 3.1, the divergence function (11)

13
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Example 2: Zero-One Score 
and TV-GAN

between 1
n

Pn
i=1 �Xi and Q, which is a useful objective function for statistical estimation.

Given a class of probability measures Q, the induced estimator of P is defined by

bP = argmin
Q2Q

max
T2T

"
1

n

nX

i=1

S(T (Xi), 1) + EX⇠QS(T (X), 0)

#
. (13)

We drop the term �G(1/2) in (11) because it is a constant that does not a↵ect the definition

of (13). The formula (13) has an interpretation of a minimax game between two players. The

goal of the first player is to find the best discriminator T that learns whether a sample is from

the empirical distribution or the model distribution Q. The second player is to find a model

distribution Q as close to the empirical distribution as possible so that the first player cannot

tell the di↵erence. In the context of deep learning, both the discriminator class T and the

generator class Q are modeled by neural networks, and (13) is recognized as the technique

of Generative Adversarial Nets proposed by [25]. The relation between GANs and proper

scoring rules is discovered by [42] in the context of learning implicit models.

3.5 Examples

1. Log Score. The log score is perhaps the most commonly used rule because of its various

intriguing properties [31]. The scoring rule with S(t, 1) = log t and S(t, 0) = log(1 �

t) is regular and strictly proper. Its Savage representation is given by the convex

function G(t) = t log t+ (1� t) log(1� t), which is interpreted as the negative Shannon

entropy of Bernoulli(t). The corresponding divergence function DT (P,Q), according to

Proposition 3.1, is a variational lower bound of the Jensen-Shannon divergence

JS(P,Q) =
1

2

Z
log

✓
dP

dP + dQ

◆
dP +

1

2

Z
log

✓
dQ

dP + dQ

◆
dQ+ log 2.

Its sample version (13) is the original GAN proposed by [25] that is widely used in

learning distributions of images.

2. Zero-One Score. The zero-one score S(t, 1) = 2I{t � 1/2} and S(t, 0) = 2I{t < 1/2} is

also known as the misclassification loss. This is a regular proper scoring rule but not

strictly proper. The induced divergence function DT (P,Q) is a variational lower bound

of the total variation distance

TV(P,Q) = P

✓
dP

dQ
� 1

◆
�Q

✓
dP

dQ
� 1

◆
=

1

2

Z
|dP � dQ|.

The sample version (13) is recognized as the TV-GAN that is extensively studied by

[21] in the context of robust estimation.

3. Quadratic Score. Also known as the Brier score [6], the definition is given by S(t, 1) =

�(1 � t)2 and S(t, 0) = �t2. The corresponding convex function in the Savage repre-

sentation is given by G(t) = �t(1� t). By Proposition 3.1, the divergence function (11)

13
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Example 3: Quadratic Score 
and LS-GAN

3. Quadratic Score. Also known as the Brier score [6], the definition is given by S(t, 1) =

�(1 � t)2 and S(t, 0) = �t2. The corresponding convex function in the Savage repre-

sentation is given by G(t) = �t(1� t). By Proposition 2.1, the divergence function (3)

induced by this regular strictly proper scoring rule is a variational lower bound of the

following divergence function,

�(P,Q) =
1

8

Z
(dP � dQ)2

dP + dQ
,

known as the triangular discrimination. The sample version (5) belongs to the family

of least-squares GANs proposed by [39].

4. Boosting Score. The boosting score was introduced by [7] with S(t, 1) = �
�
1�t
t

�1/2
and

S(t, 0) = �

⇣
t

1�t

⌘1/2
and has an connection to the AdaBoost algorithm. The corre-

sponding convex function in the Savage representation is given by G(t) = �2
p
t(1� t).

The induced divergence function DT (P,Q) is thus a variational lower bound of the

squared Hellinger distance

H2(P,Q) =
1

2

Z ⇣p
dP �

p
dQ

⌘2
.

5. Beta Score. A general Beta family of proper scoring rules was introduced by [7] with

S(t, 1) = �
R 1
t c↵�1(1� c)�dc and S(t, 0) = �

R t
0 c

↵(1� c)��1dc for any ↵,� > �1. The

log score, the quadratic score and the boosting score are special cases of the Beta score

with ↵ = � = 0, ↵ = � = 1, ↵ = � = �1/2. The zero-one score is a limiting case of the

Beta score by letting ↵ = � ! 1. Moreover, it also leads to asymmetric scoring rules

with ↵ 6= �.

2.6 TV-GAN and The Matrix Depth Function

With the zero-one loss, (5) is specialized as

bP = argmin
Q2Q

max
T2T

"
1

n

nX

i=1

I{T (Xi) � 1/2}+ EX⇠QI{T (X) < 1/2}

#
. (6)

We also consider a variation of (6) defined by

bP = argmin
Q2Q

max
T2TQ

"
1

n

nX

i=1

I{T (Xi) � 1/2}+ EX⇠QI{T (X) < 1/2}

#
. (7)

The subtle di↵erence of (7) compared with (6) is the dependence of the discriminator class

on Q. In fact, both (7) and (6) can be regarded as the minimizers of variational lower bounds

of the total variation distance. The connection between (7) and various depth functions in

robust estimation was discussed in an f -Learning framework by [22].

8
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Example 4: Boosting Score

3. Quadratic Score. Also known as the Brier score [6], the definition is given by S(t, 1) =

�(1 � t)2 and S(t, 0) = �t2. The corresponding convex function in the Savage repre-

sentation is given by G(t) = �t(1� t). By Proposition 2.1, the divergence function (3)

induced by this regular strictly proper scoring rule is a variational lower bound of the

following divergence function,

�(P,Q) =
1

8

Z
(dP � dQ)2

dP + dQ
,

known as the triangular discrimination. The sample version (5) belongs to the family

of least-squares GANs proposed by [39].

4. Boosting Score. The boosting score was introduced by [7] with S(t, 1) = �
�
1�t
t

�1/2
and

S(t, 0) = �

⇣
t

1�t

⌘1/2
and has an connection to the AdaBoost algorithm. The corre-

sponding convex function in the Savage representation is given by G(t) = �2
p

t(1� t).

The induced divergence function DT (P,Q) is thus a variational lower bound of the

squared Hellinger distance

H2(P,Q) =
1

2

Z ⇣p
dP �

p
dQ

⌘2
.

5. Beta Score. A general Beta family of proper scoring rules was introduced by [7] with

S(t, 1) = �
R 1
t c↵�1(1� c)�dc and S(t, 0) = �

R t
0 c

↵(1� c)��1dc for any ↵,� > �1. The

log score, the quadratic score and the boosting score are special cases of the Beta score

with ↵ = � = 0, ↵ = � = 1, ↵ = � = �1/2. The zero-one score is a limiting case of the

Beta score by letting ↵ = � ! 1. Moreover, it also leads to asymmetric scoring rules

with ↵ 6= �.

2.6 TV-GAN and The Matrix Depth Function

With the zero-one loss, (5) is specialized as

bP = argmin
Q2Q

max
T2T

"
1

n

nX

i=1

I{T (Xi) � 1/2}+ EX⇠QI{T (X) < 1/2}

#
. (6)

We also consider a variation of (6) defined by

bP = argmin
Q2Q

max
T2TQ

"
1

n

nX

i=1

I{T (Xi) � 1/2}+ EX⇠QI{T (X) < 1/2}

#
. (7)

The subtle di↵erence of (7) compared with (6) is the dependence of the discriminator class

on Q. In fact, both (7) and (6) can be regarded as the minimizers of variational lower bounds

of the total variation distance. The connection between (7) and various depth functions in

robust estimation was discussed in an f -Learning framework by [22].

8
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Example 5: Beta Score and 
new GANs

3. Quadratic Score. Also known as the Brier score [6], the definition is given by S(t, 1) =

�(1 � t)2 and S(t, 0) = �t2. The corresponding convex function in the Savage repre-

sentation is given by G(t) = �t(1� t). By Proposition 2.1, the divergence function (3)

induced by this regular strictly proper scoring rule is a variational lower bound of the

following divergence function,

�(P,Q) =
1

8

Z
(dP � dQ)2

dP + dQ
,

known as the triangular discrimination. The sample version (5) belongs to the family

of least-squares GANs proposed by [39].

4. Boosting Score. The boosting score was introduced by [7] with S(t, 1) = �
�
1�t
t

�1/2
and

S(t, 0) = �

⇣
t

1�t

⌘1/2
and has an connection to the AdaBoost algorithm. The corre-

sponding convex function in the Savage representation is given by G(t) = �2
p
t(1� t).

The induced divergence function DT (P,Q) is thus a variational lower bound of the

squared Hellinger distance

H2(P,Q) =
1

2

Z ⇣p
dP �

p
dQ

⌘2
.

5. Beta Score. A general Beta family of proper scoring rules was introduced by [7] with

S(t, 1) = �
R 1
t c↵�1(1� c)�dc and S(t, 0) = �

R t
0 c

↵(1� c)��1dc for any ↵,� > �1. The

log score, the quadratic score and the boosting score are special cases of the Beta score

with ↵ = � = 0, ↵ = � = 1, ↵ = � = �1/2. The zero-one score is a limiting case of the

Beta score by letting ↵ = � ! 1. Moreover, it also leads to asymmetric scoring rules

with ↵ 6= �.

2.6 TV-GAN and The Matrix Depth Function

With the zero-one loss, (5) is specialized as

bP = argmin
Q2Q

max
T2T

"
1

n

nX

i=1

I{T (Xi) � 1/2}+ EX⇠QI{T (X) < 1/2}

#
. (6)

We also consider a variation of (6) defined by

bP = argmin
Q2Q

max
T2TQ

"
1

n

nX

i=1

I{T (Xi) � 1/2}+ EX⇠QI{T (X) < 1/2}

#
. (7)

The subtle di↵erence of (7) compared with (6) is the dependence of the discriminator class

on Q. In fact, both (7) and (6) can be regarded as the minimizers of variational lower bounds

of the total variation distance. The connection between (7) and various depth functions in

robust estimation was discussed in an f -Learning framework by [22].

8
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Smooth Proper Scores

52

Smooth Proper Scoring Rule

Assumption (Smooth Proper Scoring Rules)
We assume that

I G
(2)(1/2) > 0 and G

(3)(t) is continuous at t = 1/2;

I Moreover, there is a universal constant c0 > 0, such that
2G(2)(1/2) � G

(3)(1/2) + c0.

– The condition 2G(2)(1/2) � G(3)(1/2) + c0 is automatically satisfied
by a symmetric scoring rule, because S(t, 1) = S(1� t, 0)
immediately implies that G(3)(1/2) = 0.

– For the Beta score with S(t, 1) = �
R 1

t
c↵�1(1� c)�dc and

S(t, 0) = �
R t

0
c↵(1� c)��1dc for any ↵,� > �1, it is easy to check

that such a c0 (only depending on ↵,�) exists as long as
|↵� �| < 1.

– A scoring rule S is regular if both S(·, 0) and S(·, 1) are real-valued,
except possibly that S(0, 1) = �1 or S(1, 0) = �1.Proper Scoring Rules 49



Statistical Optimality

Theorem [GYZ19]. For a neural network 
class     with at least one hidden layer and 
appropriate regularization, we have 

Note that the generator class is {N(⌘,�) : ⌘ 2 Rp,� 2 Ep(M)} compared with the centered

class in (19).

We also introduce a general discriminator class of deep neural nets. We first define a

sigmoid bottom layer

Gsigmoid =
�
g(x) = sigmoid(uTx+ b) : u 2 Rp, b 2 R

 
.

Then, with G
1(B) = Gsigmoid, we inductively define

G
l+1(B) =

8
<

:g(x) = ReLU

0

@
X

h�1

vhgh(x)

1

A :
X

h�1

|vh|  B, gh 2 G
l(B)

9
=

; .

Note that the neighboring two layers are connected via ReLU activation functions. Finally,

the network structure is defined by

T
L(, B) =

(
T (x) = sigmoid

0

@
X

j�1

wjgj(x)

1

A :
X

j�1

|wj |  , gj 2 G
L(B)

)
. (30)

This is a neural network class that consists of L hidden layers. When L = 1, (30) recovers

the definition of the class (25).

Theorem 5.1. Consider the estimator (29) that is induced by a regular proper scoring rule

that satisfies Condition 4.1. The discriminator class T = T
L(, B) is specified by (30).

Assume p
n + ✏2  c for some su�ciently small constant c > 0. Set 1  L = O(1), 1  B =

O(1), and  = O
⇣q

p
n + ✏

⌘
. Then, under the data generating process (27), we have

kb✓ � ✓k2  C
⇣ p
n
_ ✏2

⌘
,

kb⌃� ⌃k2op  C
⇣ p
n
_ ✏2

⌘
,

with probability at least 1� e�C0(p+n✏2) uniformly over all ✓ 2 Rp and all k⌃kop  M = O(1).

The constants C,C 0 > 0 are universal.

6 Elliptical Distributions

One of the most important statistical properties of the depth-based estimator (18) is its

ability to adapt to general elliptical distributions [9]. In this section, we show that the same

property can also be achieved by robust estimators induced by proper scoring rules.

Definition 6.1 ([18]). A random vector X 2 Rp follows an elliptical distribution if and only

if it has the representation X = ✓+ ⇠AU , where ✓ 2 Rp and A 2 Rp⇥r are model parameters.

The random variable U is distributed uniformly on the unit sphere {u 2 Rp : kuk = 1} and

⇠ � 0 is a random variable in R independent of U . The vector ✓ and the matrix ⌃ = AAT

are called the location and the scatter of the elliptical distribution.

21

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

JSg(P,Q) = max
w2Rd


P log

1

1 + e�wT g(X)
+Q log

1

1 + ewT g(X)

�
+ log 4.

JSg(P,Q) = 0 () Pg(X) = Qg(X)

kb✓ � ✓k2 .

8
><

>:

p

n
+ ✏2

p

n
+ ✏

b✓ = argmin

✓2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ ✓

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2  C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃
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The 2017 Nobel prize in chemistry has been awarded to three scientists (Jacques Dubochet; Joachim Frank from; and Richard 
Henderson from Switzerland, US & UK, respectively) for developing cryo-electron microscopy for the high-resolution 
structure determination of biomolecules in solution.

54

Application: Cryo-EM 
image Denoising



• Low signal vs. high noise  

• unknown contamination (e.g. ice and so on) 

• conformational heterogeneity

55

Challenges of Cryo-EM 
image Denoising

Generative Adversarial Networks for Robust Cryo-EM Image Denoising 3

widely applied in the image denoising problem (Tran et al. (2020); Tripathi et al. (2018); Yang et al.
(2018); Chen et al. (2018); Dong et al. (2020)).

Recently, Gao et al. (2019, 2020) showed that a general family of GANs (�-GANs, including JS-
GAN and TV-GAN) enjoyed robust reconstruction when the data sets contain outliers under Huber
contamination models (Huber (1992)). In this case, observed samples are drawn from a complex
distribution, which is a mixture of contamination distribution and real data distribution. A particular
example is provided by Cryo-Electron Microscopy (Cryo-EM) imaging, where the original noisy images
are likely contaminated with outliers as broken or non-particles. The main challenges of Cryo-EM
image denoising are summarized in the subsequent section.

Challenges of Cryo-EM Image Denoising

The Cryo-Electron Microscopy (Cryo-EM) has become one of the most popular techniques to resolve
the atomic structure. In the past, Cryo-EM was limited to large complexes or low-resolution models.
Recently the development of new detector hardware has dramatically improved the resolution in Cryo-
EM (Kühlbrandt (2014)), which made Cryo-EM widely used in a variety of research fields. Di↵erent
from X-ray crystallography (Warren (1990)), Cryo-EM had the advantage of preventing the recrys-
tallization of inherent water and re-contamination. Also, Cryo-EM was superior to Nuclear Magnetic
Resonance spectroscopy (Wüthrich (1986)) in solving macromolecules in the native state. In addition,
both X-ray crystallography and Nuclear Magnetic Resonance spectroscopy required large amounts of
relatively pure samples, whereas Cryo-EM required much fewer samples (Bai et al. (2015)). For this
celebrated development of Cryo-EM for the high-resolution structure determination of biomolecules
in solution, the Nobel Prize in Chemistry in 2017 was awarded to three pioneers in this field (Shen
(2018)).

Fig. 1: (a) a noisy Cryo-EM image (b) a reference image

However, it is a computational challenge in processing raw Cryo-EM images, due to heterogeneity
in molecular conformations and high noise. Macromolecules in natural conditions are usually het-
erogeneous, i.e., multiple metastable structures might coexist in the experimental samples (Frank



GAN jointly trained with 
AutoEncoder

• -GAN facilitates Robust denoising against unknown contaminations 

• Joint training with -AutoEncoder stabilizes the minimax training of GANs

β

ℓp

56
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stabilize the training and avoid the mode collapse. In particular, Autoencoder can help stabilize GAN
during training, without which the training processes of GAN are often oscillating and sometimes
collapsed due to the presence of high noise.

Compared with the autoencoder, �-GAN can further help denoising by exploiting common in-
formation in similar samples during distribution training. In GAN, the divergence or Wasserstein
distance between the reference image set and the denoised image set is minimized. The similar images
can therefore help boost signals for each other.

For these considerations, a combined loss is proposed with both �-GAN and Autoencoder recon-
struction loss,

bLGAN (x, bx) + �kx� bxkpp, (17)

where p 2 {1, 2} and � � 0 is a trade-o↵ parameter for `p reconstruction loss. Algorithm 1 summarizes
the procedure of joint training of Autoencoder and GAN, which will be denoted as “GAN+`p” in the
experimental section depending on the proper choice of GAN and p. The main algorithm is shown in
Algorithm 1.

Algorithm 1 Joint training of (↵,�)-GAN and `p-Autoencoder.
Input:
1. (↵,�) for S(t, 1) = �

R 1
t c↵�1

(1� c)�dc, S(t, 0) = �
R t
0 c↵(1� c)��1

dc

or S(t, 1) = t, S(t, 0) = �t for WGAN

2. � regularization parameter of the `p-Autoencoder

3. kd number of iterations for discriminator, kg number of iterations for generator

4. ⌘d learning rate of discriminator, ⌘g learning rate of generator

5. ! weights of discriminator, ✓ weights of generator

1: for number of training iterations do
2: • Sample minibatch of m examples {(x(1), y(1)), . . . , (x(m), y(m)

)} from reference-noisy image pairs.

3: for k = 1, 2..., kd do
4: • Update the discriminator by gradient ascent:

5: g!  � 1
m

Pm
i=1r! [S(D!(xi), 1) + S(D!(G✓(yi)), 0) + µ(k 5x̃ D!(x̃i)k2 � 1)

2
]

where µ > 0 for WGANgp only;

6: !  � ! + ⌘dg!
7: end for
8: for k = 1, 2..., kg do
9: • Update the generator by gradient descent:

10: g✓  � 1
m

Pm
i=1r✓[S(D!(G✓(yi)), 0) + �|G✓(yi)� xi|p], p 2 {1, 2} ;

11: ✓  � ✓ � ⌘gg!
12: end for
13: end for

Return:Denoised image: bxi = G✓(yi)

Stability of combining Autoencoder into GAN

We illustrate that Autoencoder is indispensable to GANs in stabilizing the training in the joint training
of Autoencoder and GAN scheme.

As an illustration, Fig. 2 shows the comparison of training a JS-GAN and a joint JS-GAN +
`1-Autoencoder. Training and test mean square error curves are plotted against iteration numbers
in the RNAP data under SNR = 0.1 as Fig. 2. It shows that JS-GAN training su↵ers from drastic
oscillations while joint training of JS-GAN + `1-Autoencoder exhibits a stable process. In fact, with
the aid of Autoencoder here, one does not need the popular “logD trick” in JS-GAN.

Generative Adversarial Networks for Robust Cryo-EM Image Denoising 13

Fig. 4: The architectures of (a) discriminator D and (b) generator G, which borrow the residue
structure. The input image size (128⇥ 128) here is adapted to RNAP dataset, while input image size
of EMPIAR-10028 dataset is 256⇥ 256.

– (PSNR) Similarly, the Peak Signal-to-Noise Ratio (PSNR) between the reference image x and
the denoised image bx whose pixel value range is [0, t] (1 by default), is defined by

PSNR := 10 log10
t
2

1
d1d2

Pd1

i=1

Pd2

j=1(x(i, j)� bx(i, j))2
.

The larger is the PSNR, the better the denoising result is.
– (SSIM) The third criterion is the Structural Similarity Index Measure (SSIM) between reference

image x and denoised image bx is defined in Wang et al. (2004),

SSIM =
(2µxµbx + c1)(2�x�bx + c2)(�xbx + c3)

(µ2
x + µ2

bx + c1)(�2
x + �2

bx + c2)(�x�bx + c3)
.

where µx (µbx) and �x (�bx) are the mean and variance of x (bx), respectively, �xbx is covariance
of x and bx, c1 = K1L

2, c2 = K2L
2, c3 = c2

2 three variables to stabilize the division with weak
denominator (K1 = 0.01, K2 = 0.03 by default), L is the dynamic range of the pixel-value (1 by
default). The value SSIM of lies in [0, 1], where the closer it is to 1, the better the result is.

Although these metrics are widely used in image denoising, they might not be the best metrics
for Cryo-EM images. In Appendix “Influence of the regularization parameter: �”, it shows an
example that the best-reconstructed images perhaps do not meet the best MSE/PSNR/SSIM metrics.

Figure: illustration of training stability of β-GAN and β-
GAN+autoencoder.  Autoencoder can stabilize the training 
process of GAN. 



Synthetic RNA Polymerase 
(RNAP) dataset 

•

Figure: 3D reconstruction (left to right,): clean images, (0.5, 0.5)-
GAN+ !", (0.5, 0.5)-GAN+ !" under noise contamination, and !#-
Autoencoder under noise contamination.

MSE PSNR

Method SNR=0.1 SNR=0.05 SNR=0.1 SNR=0.05

BM3D 3.52e-2 5.87e-2 14.54 12.13

CWF 2.53e-2 9.28e-3 16.06 20.31

!"- Autoencoder 3.13e-3 4.02e-3 25.10 23.67

!#- Autoencoder 3.16e-3 4.23e-3 25.05 23.80

WGANgp+ $% 2.95e-3 4.00e-3 25.42 24.06

(0.5, 0.5)-GAN+ $% 3.01e-3 3.98e-3 25.27 24.07
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Figure: denoised images with different methods (left to right, top to
bottom): clean, noisy, BM3D, KSVD, non-local means, CWF, !"-
Autoencoder, !#- Autoencoder, (1, 1)-GAN+ !", (0,0)-GAN+ !", (0.5,
0.5)-GAN+ !", and WGANgp+ !".
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Training data size is 25000 paired images(noisy and reference images), Test data to calculate the
MSE, PSNR and SSIM is another 1500 paired images.

Fig. 3: Five conformations in RNAP heterogeneous dataset, from left to right are close conformation
to open conformation of di↵erent angles.

EMPIAR-10028: Real Dataset

This is a real-world experimental dataset that was firstly studied in: the Plasmodium falciparum 80S
ribosome dataset (EMPIAR-10028) (Wong et al. (2014)). They recover the Cryo-EM structure of
the cytoplasmic ribosome from the human malaria parasite, Plasmodium falciparum, in complex with
emetine, an anti-protozoan drug, at 3.2Å resolution. Ribosome is the essential enzyme that translates
RNA to protein molecules, the second step of central dogma. The inhibition of ribosome activity of
Plasmodium falciparum would e↵ectively kill the parasite (Wong et al. (2014)). We can regard this
dataset to have homogeneous property. This dataset contains 105247 noisy particles with an image
size of 360⇥ 360 pixels. In order to decrease the complexity of the computing, we pick up the center
square of each image with a size of 256 ⇥ 256, since the surrounding area of the image is entirely
useless that does not lose information in such a preprocessing. Then the 256⇥ 256 images are fed as
the input of the G✓-network (Fig. 4). Since the GAN-based method needs clean images as reference,
we prepare their clean counterparts in the following way: we first use cryoSPARC1.0 (Punjani et al.
(2017)) to build a 3.2A resolution volume and then rotate the 3D-volume by the Euler angles obtained
by cryoSPARC to get projected 2D-images. The training data size we pick is 19500, and the test data
size is 500.

Evaluation Method

We exploit the following three metrics to determine whether the denoising result is good or not.
They are the Mean Square Error (MSE), the Peak Signal-to-Noise Ratio (PSNR) and the Structural
Similarity Index Measure (SSIM).

– (MSE) For images of size d1 ⇥ d2, the Mean Square Error (MSE) between the reference image x

and the denoised image bx is defined as,

MSE :=
1

d1d2

d1X

i=1

d2X

j=1

(x(i, j)� bx(i, j))2.

The smaller is the MSE, the better the denoising result is.



EMPIAR-10028 dataset: robust 
denoising under contaminations
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Fig. 5: Results for RNAP dataset. (a) is denoised images in di↵erent denoised methods (from left
to right, top to bottom): Clean, Noisy, BM3D, KSVD, Non-local means, CWF, `1-Autoencoder, `2-
Autoencoder, (1,1)-GAN + `1, (0, 0)-GAN + `1, (.5, .5)-GAN + `1 and WGANgp + `1. (b) and (c)
are reconstruction of clean images and (.5, .5)-GAN + `1 denoised images. (d) is FSC curve of (b)
and (c). (e), (f) and (g) are robustness tests of various methods under ✏ 2 {0.1, 0.2, 0.3}-proportion
contamination in three types of contamination: (e) Type A: replacing the reference images with random
noise; (f) Type B: replacing the noisy images with random noise; (g) Type C: replacing both with
random noise. (h) and (j) are reconstructions of images with (.5, .5)-GAN + `1 and `2-Autoencoder
under type A contamination, respectively, where `2-Autoencoder totally fails but (.5, .5)-GAN + `1

is robust. (i) shows FSC curves of (h) and (j).

reason is that the `2 Autoencoder and WGANgp method are confused by the wrong reference images
so that they can not learn the mapping from data distribution to reference distribution accurately.
(3) In the type C, the standard deviations of the five best models are larger compared the other two
types. The contamination of both noisy y and clean x images influence the the stability of model more
than the other two types.

Furthermore, we take an example in type A contamination with ✏ = 0.1 for 3D reconstruction.
The 3D reconstruction in denoised images with (.5, .5)-GAN + `1 and l2-Autoencoder are shown in
Fig. 5(h) and (j), and related FSC curve is Fig. 5(i). Specifically, on the one hand, the blue FSC
curve of `2-Autoencoder doesn’t drop, which leads to the worse reconstruction; on the other hand,
the red FSC curve of (.5, .5)-GAN + `1 drops quickly but begins to rise again, whose reason is that
some unclear detail of structure mixed angular information in reconstruction. When applying 0.143
cuto↵ criterion (dashed line in FSC curve), the resolution of (.5, .5)-GAN + `1 is about 4Å. Although
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Summary
• A family of Generative Adversarial Networks ( -GAN), with a proper 

network architecture design, may provide statistically optimal 
robust estimators under TV-ambiguity set of contaminations 

• A minimax-type estimator like Tukey’s median, we don’t know 
any M-estimator can provide statistical optimality for arbitrary 
contamination 

• Discriminators help to identify contaminated outliers while 
generator adapt to the true distributions 

• Application examples in Robust PCA of S&P500 and Robust 
Cryo-EM image Denoising

β
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