Robust Statistical Learning and Generative Adversarial Networks

Yuan YAO HKUST

Chao GAO	Jiyi Lll
U. Chicago	Yale U

Weizhi ZHU HKUST

Cryo-EM Applications:

Hanlin GU (HKUST), Yin XIAN, Xuhui HUANG (HKUST, UW-Madison)

Deep Learning is Notoriously Not Robust!

- Imperceivable adversarial examples are ubiquitous to fail neural networks
- How can one achieve (adversarial) robustness?

Robust Optimization

• Traditional training:

$$\min_{\theta} J_n(\theta, \mathbf{z} = (x_i, y_i)_{i=1}^n)$$

 e.g. square or cross-entropy loss as negative log-likelihood of logit models

• Robust optimization (Madry et al. ICLR'2018):

$$\min_{\theta} \max_{\|\epsilon_i\| \leq \delta} J_n(\theta, \mathbf{z} = (x_i + \epsilon_i, y_i)_{i=1}^n)$$

• robust to any distributions, yet computationally hard

Distributionally Robust Optimization (DRO)

• Distributional Robust Optimization:

 $\min_{\theta} \max_{\epsilon} \mathbb{E}_{\mathbf{z} \sim P_{\epsilon} \in \mathcal{D}}[J_n(\theta, \mathbf{z})]$

- ${\mathcal D}$ is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

 $\mathcal{D} = \{ P_{\epsilon} : W_2(P_{\epsilon}, \text{uniform distribution}) \leq \epsilon \}$

where DRO may be reduced to regularized maximum likelihood estimates (Shafieezadeh-Abadeh, Esfahani, Kuhn, NIPS'2015) that are convex optimizations and tractable

Wasserstein Distributionally Robust Optimization

Wasserstein-DRO:

$$\min_{\theta} \max_{P_{\epsilon}: W_{p}(\mathbb{P}_{\epsilon}, \mathbb{P}_{n}) \leq \epsilon} \mathbb{E}_{z \sim \mathbb{P}_{\epsilon} \in \mathcal{D}}[\ell_{\theta}(z)]$$

where

$$\mathcal{W}_{p}(\mathbb{P},\mathbb{Q}) = \begin{cases} \left(\min_{\gamma \in \Gamma(\mathbb{P},\mathbb{Q})} \left\{ \int_{\mathcal{Z} \times \mathcal{Z}} \mathrm{d}^{p}\left(z, z'\right) \gamma\left(dz, dz'\right) \right\} \right)^{1/p}, & \text{if } 1 \leq p < \infty, \\ \inf_{\gamma \in \Gamma(\mathbb{P},\mathbb{Q})} \{\gamma - \mathrm{esssup}_{\mathcal{Z} \times \mathcal{Z}} \,\mathrm{d}\left(z, z'\right) \}, & \text{if } p = \infty, \end{cases}$$

For a broad class of loss functions, Wasserstein-DRO is asymptotically equivalent to the following regularization problem

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\mathbb{P}_n} \left[\ell_{\theta}(x,y) \right] + \alpha \cdot \left\| \nabla_{(x,y)} \ell_{\theta} \right\|_{\mathbb{P}_n,p_*}$$

where $p_* = \frac{p}{p-1}$ and the penalty term $\|\nabla_{(x,y)}\ell_\beta\|_{\mathbb{P}_n,p_*}$ represents the empirical dual p_* -norm of the gradient of the loss function with respect to the data (input Lipschitz).

> Gao, Kleywegt (2016); Gao, Chen, Kleywegt (2017); Blanchet, Kang, Murphy (2016), et al.

Certified Adversarial Robustness of Lasso

Theorem (Blanchet, Kang, Murphy (2016)) Consider the cost for z = (x, y):

$$c\left((x,y),(x',y')\right) = \begin{cases} \|x-x'\|_p^2 & \text{if } y=y'\\ \infty & \text{if } y\neq y' \end{cases}$$

For $p = \infty$ and linear regression, Wasserstein-DRO is equivalent to SQRT-Lasso:

$$\min_{\beta} \max_{P:W_c(P,P_n) \le \delta} E_P \left(\left(Y - \beta^T X \right)^2 \right)$$
$$= \min_{\beta} \left\{ E_{P_n}^{1/2} \left[\left(Y - \beta^T X \right)^2 \right] + \sqrt{\delta} \|\beta\|_{p_*} \right\}^2$$

where $p_* = \frac{p}{p-1} = 1$.

 Generalized to asymmetric cost (Bregman divergence, Asymmetric Mahalannobis) by Blanchet, Glynn, Hui, Xie (2022)

TV-neighborhood

• Now how about the TV-uncertainty set?

 $\mathcal{D} = \{ P_{\epsilon} : TV(P_{\epsilon}, uniform \text{ distribution}) \leq \epsilon \}?$

• an example from *robust statistics* ...

Huber's Model $X_1, ..., X_n \sim (1 - \epsilon) P_\theta + \epsilon Q$ contamination proportion arbitrary contamination parameter of interest

[Huber 1964]

Example: Financial Fraud

- *P* represent normal transactions
- *Q* represent fraudulent transactions, e.g. money laundering, which is sparse and arbitrarily close to *P*
- Finding *P* and its dual problem in finding *Q*?

An Example

 $X_1, \dots, X_n \sim (1 - \epsilon) N(\theta, I_p) + \epsilon Q.$ how to estimate ?

Medians

1. Coordinatewise median (M-estimator)

$$\hat{\theta} = (\hat{\theta}_j)$$
, where $\hat{\theta}_j = \text{Median}(\{X_{ij}\}_{i=1}^n);$

2. Tukey's median (1975)

$$\hat{\theta} = \arg\max_{\eta \in \mathbb{R}^p} \min_{||u||=1} \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i > u^T \eta\}.$$

Comparisons

	Coordinatewise Median	Tukey's Median
breakdown point	1/2	1/3
statistical precision	$\frac{p}{n}$	$\frac{p}{n}$
(no contamination)		
statistical precision	$\frac{p}{n} + p\epsilon^2$	$\frac{p}{n} + \epsilon^2$: optimal
(with contamination)		[Chen-Gao-Ren'15]
computational complexity	Polynomial	NP-hard
		[Amenta et al. '00]

Note: R-package for Tukey median can not deal with more than 10 dimensions! [https://github.com/ChenMengjie/DepthDescent]

Depth and Statistical Properties

Multivariate Location Depth

$$\left\{\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}\left\{u^{T}X_{i} > u^{T}\eta\right\} \land \frac{1}{n}\sum_{i=1}^{n}\mathbb{I}\left\{u^{T}X_{i} \le u^{T}\eta\right\}\right\}$$

$$= \arg \max_{\eta \in \mathbb{R}^{p}} \min_{||u||=1} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i} > u^{T} \eta\}.$$

[Tukey, 1975]

Regression Depth

model $y|X \sim N(X^T\beta, \sigma^2)$

embedding $Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$

projection $u^T X y | X \sim N(u^T X X^T \beta, \sigma^2 u^T X X^T u)$

$$\left\{\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}\{u^{T}X_{i}(y_{i}-X_{i}^{T}\eta)>0\}\wedge\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}\{u^{T}X_{i}(y_{i}-X_{i}^{T}\eta)\leq0\}\right\}$$

¹⁶ [Rousseeuw & Hubert, 1999]

Tukey's depth is not a special case of regression depth.

Multi-task Regression Depth

 $(X,Y) \in \mathbb{R}^p \times \mathbb{R}^m \sim \mathbb{P}$

 $B \in \mathbb{R}^{p \times m}$

[Mizera, 2002]

Multi-task Regression Depth

$$\mathcal{D}_{\mathcal{U}}(B,\mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P}\left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$$

$$p = 1, X = 1 \in \mathbb{R},$$
$$\mathcal{D}_{\mathcal{U}}(b, \mathbb{P}) = \inf_{u \in \mathcal{U}} \mathbb{P} \left\{ u^T (Y - b) \ge 0 \right\}$$
$$m = 1,$$
$$\mathcal{D}_{\mathcal{U}}(\beta, \mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P} \left\{ u^T X (y - \beta^T X) \ge 0 \right\}$$

Statistical Errors of Multi-task Regression Depth

Estimation Error. For any
$$\delta > 0$$
,
$$\sup_{B \in \mathbb{R}^{p \times m}} |\mathcal{D}(B, \mathbb{P}_n) - \mathcal{D}(B, \mathbb{P})| \le C\sqrt{\frac{pm}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}},$$

with probability at least $1-2\delta$.

Contamination Error.

 $\sup_{B,Q} |\mathcal{D}(B, (1 - \epsilon P_{B^*}) + \epsilon Q) - \mathcal{D}(B, P_{B^*})| \le \epsilon$

Statistical Optimality of Multi-task Regression Depth $(X,Y) \sim P_B$

 $(X_1, Y_1), ..., (X_n, Y_n) \sim (1 - \epsilon)P_B + \epsilon Q$

Theorem [G17]. For some C > 0, $\operatorname{Tr}((\widehat{B} - B)^T \Sigma(\widehat{B} - B)) \leq C\sigma^2 \left(\frac{pm}{n} \lor \epsilon^2\right),$ $\|\widehat{B} - B\|_{\mathrm{F}}^2 \leq C \frac{\sigma^2}{\epsilon^2} \left(\frac{pm}{n} \lor \epsilon^2\right),$

with high probability uniformly over B, Q.

Covariance Matrix

 $X_1, \dots, X_n \sim (1 - \epsilon) N(0, \Sigma) + \epsilon Q.$ how to estimate ?

Covariance Matrix

Covariance Matrix

$$\mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) = \min_{\|u\|=1} \min\left\{\frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 \ge u^T \Gamma u\}, \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 < u^T \Gamma u\}\right\}$$

 $\hat{\Gamma} = \arg \max_{\Gamma \succeq 0} \mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) \qquad \hat{\Sigma} = \hat{\Gamma}/\beta$

Theorem [CGR15]. For some C > 0,

$$\|\hat{\Sigma} - \Sigma\|_{\text{op}}^2 \le C\left(\frac{p}{n} \lor \epsilon^2\right)$$

with high probability uniformly over Σ,Q .

Summary

mean	$\ \cdot\ ^2$	$\frac{p}{n}\sqrt{\epsilon^2}$
reduced rank regression	$\ \cdot\ _{\mathrm{F}}^2$	$\frac{\sigma^2}{\kappa^2} \frac{r(p+m)}{n} \sqrt{\frac{\sigma^2}{\kappa^2} \epsilon^2}$
Gaussian graphical model	$\ \cdot\ ^2_{\ell_1}$	$\frac{s^2 \log(ep/s)}{n} \sqrt{s\epsilon^2}$
covariance matrix	$\ \cdot\ _{\mathrm{op}}^2$	$\frac{p}{n}\sqrt{\epsilon^2}$
sparse PCA	$\ \cdot\ _{\mathrm{F}}^2$	$\frac{s\log(ep/s)}{n\lambda^2}\sqrt{\frac{\epsilon^2}{\lambda^2}}$

Computation

Computational Challenges

$X_1, ..., X_n \sim (1 - \epsilon) N(\theta, I_p) + \epsilon Q.$

Lai, Rao, Vempala Diakonikolas, Kamath, Kane, Li, Moitra, Stewart Balakrishnan, Du, Singh

- Polynomial algorithms are proposed [Diakonikolas et al.'16, Lai et al. 16] of minimax optimal statistical precision
 - needs information on second or higher order of moments
 - some priori knowledge about ϵ

Advantages of Tukey Median

A practically good algorithm?

Generative Adversarial Networks [Goodfellow et al. 2014]

Note: R-package for Tukey median can not deal with more than 10 dimensions [<u>https://github.com/ChenMengjie/</u> <u>DepthDescent</u>]

Robust Learning of Gaussian Distributions

 $(1-\epsilon)N(0_p, I_p) + \epsilon Q$

Q	n	p	ϵ	TV-GAN	JS-GAN	Dimension Halving	Iterative Filtering
$N(0.5*1_p,I_p)$	50,000	100	.2	0.0953 (0.0064)	0.1144 (0.0154)	0.3247 (0.0058)	0.1472 (0.0071)
$N(0.5*1_{\rho},I_{\rho})$	5,000	100	.2	0.1941 (0.0173)	0.2182 (0.0527)	0.3568 (0.0197)	0.2285 (0.0103)
$N(0.5*1_p,I_p)$	50,000	200	.2	0.1108 (0.0093)	0.1573 (0.0815)	0.3251 (0.0078)	0.1525 (0.0045)
$N(0.5*1_{\rho},I_{\rho})$	50,000	100	.05	0.0913 (0.0527)	0.1390 (0.0050)	0.0814 (0.0056)	0.0530 (0.0052)
$N(5*1_p,I_p)$	50,000	100	.2	2.7721 (0.1285)	0.0534 (0.0041)	0.3229 (0.0087)	0.1471 (0.0059)
$N(0.5 * 1_{\rho}, \Sigma)$	50,000	100	.2	0.1189 (0.0195)	0.1148 (0.0234)	0.3241 (0.0088)	0.1426 (0.0113)
Cauchy $(0.5 * 1_p)$	50,000	100	.2	0.0738 (0.0053)	0.0525 (0.0029)	0.1045 (0.0071)	0.0633 (0.0042)

Table: Comparison of various robust mean estimation methods. The smallest error of each case is highlighted in bold.

- Dimension Halving: [Lai et al.'16] https://github.com/kal2000/AgnosticMeanAndCovarianceCode.
- Iterative Filtering: [Diakonikolas et al.'17] https://github.com/hoonose/rgobust-filter.

Robust Learning of Cauchy Distributions

Table 4: Comparison of various methods of robust location estimation under Cauchy distributions. Samples are drawn from $(1 - \epsilon)$ Cauchy $(0_p, I_p) + \epsilon Q$ with $\epsilon = 0.2, p = 50$ and various choices of Q. Sample size: 50,000. Discriminator net structure: 50-50-25-1. Generator $g_{\omega}(\xi)$ structure: 48-48-32-24-12-1 with absolute value activation function in the output layer.

Contamination Q	JS-GAN (G_1)	$JS\text{-}GAN\left(G_2\right)$	Dimension Halving	Iterative Filtering
Cauchy $(1.5 * 1_p, I_p)$	0.0664 (0.0065)	0.0743 (0.0103)	0.3529 (0.0543)	0.1244 (0.0114)
$Cauchy(5.0 * 1_p, I_p)$	0.0480 (0.0058)	0.0540 (0.0064)	0.4855 (0.0616)	0.1687 (0.0310)
$Cauchy(1.5 * 1_p, 5 * I_p)$	0.0754 (0.0135)	0.0742 (0.0111)	0.3726 (0.0530)	0.1220 (0.0112)
$Normal(1.5 * 1_p, 5 * I_p)$	0.0702 (0.0064)	0.0713 (0.0088)	0.3915 (0.0232)	0.1048 (0.0288))

• Dimension Halving: [Lai et al.'16]

https://github.com/kal2000/AgnosticMeanAndCovarianceCode.

 Iterative Filtering: [Diakonikolas et al.'17] https://github.com/hoonose/robust-filter.

f-GAN

Given a strictly convex function f that satisfies f(1) = 0, the f-divergence between two probability distributions P and Q is defined by

$$D_f(P||Q) = \int f\left(\frac{p}{q}\right) dQ.$$
(8)

Let f^* be the convex conjugate of f. A variational lower bound of (8) is

$$D_f(P \| Q) \ge \sup_{T \in \mathcal{T}} \left[\mathbb{E}_P T(X) - \mathbb{E}_Q f^*(T(X)) \right].$$
(9)

where equality holds whenever the class \mathcal{T} contains the function f'(p/q).

[Nowozin-Cseke-Tomioka'16] *f*-GAN minimizes the variational lower bound (9)

$$\widehat{P} = \underset{Q \in \mathcal{Q}}{\operatorname{arg\,min\,sup}} \left[\frac{1}{n} \sum_{i=1}^{n} T(X_i) - \mathbb{E}_Q f^*(T(X)) \right].$$
(10)

with i.i.d. observations $X_1, ..., X_n \sim P$.

From f-GAN to Tukey's Median: f-learning (GLYZ'18)

Consider the special case

$$\mathcal{T} = \left\{ f'\left(\frac{\widetilde{q}}{q}\right) : \widetilde{q} \in \widetilde{\mathcal{Q}} \right\}.$$
(11)

which is tight if $P \in \widetilde{Q}$. The sample version leads to the following *f*-learning

$$\widehat{P} = \underset{Q \in \mathcal{Q}}{\operatorname{arg\,min\,sup}} \left[\frac{1}{n} \sum_{i=1}^{n} f'\left(\frac{\widetilde{q}(X_i)}{q(X_i)}\right) - \mathbb{E}_Q f^*\left(f'\left(\frac{\widetilde{q}(X)}{q(X)}\right)\right) \right].$$
(12)

• If $f(x) = x \log x$, $Q = \widetilde{Q}$, (12) \Rightarrow Maximum Likelihood Estimate

If f(x) = (x - 1)+, then D_f(P||Q) = ¹/₂ ∫ |p - q| is the TV-distance, f*(t) = tI{0 ≤ t ≤ 1}, f-GAN ⇒ TV-GAN
Q = {N(η, I_p) : η ∈ ℝ^p} and Q̃ = {N(η̃, I_p) : ||η̃ - η|| ≤ r}, (12) ^r⇒⁰ Tukey's Median

$$\widehat{\theta} = \underset{\eta}{\operatorname{argmin}} \underset{w,b}{\sup} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + e^{-w^{T}X_{i}-b}} - E_{\eta} \frac{1}{1 + e^{-w^{T}X-b}} \right]$$
$$N(\eta, I_{p})$$

TV-GAN

logistic regression classifier

Theorem [GLYZ18]. For some C > 0, $\|\widehat{\theta} - \theta\|^2 \le C\left(\frac{p}{n} \lor \epsilon^2\right)$ with high probability uniformly over $\theta \in \mathbb{R}^p, Q$.

TV-GAN rugged landscape!

Figure 1: Landscape of TV-GAN objective function $F(\eta, w) = \sup_b [E_P \text{sigmoid}(wX + b) - E_{N(\eta,1)} \text{sigmoid}(wX + b)]$, where b is maximized out for visualization. Samples are drawn from $P = (1 - \epsilon)N(1, 1) + \epsilon N(10, 1)$ with $\epsilon = 0.2$. Left: a surface plot of $F(\eta, w)$. The solid curves are marginal functions for fixed η 's: F(1, w) (red) and F(5, w) (blue), and the dash curves are marginal functions for fixed w's: $F(\eta, -10)$ (orange) and $F(\eta, 10)$ (green). Right: a heatmap of $F(\eta, w)$. It is clear that $\tilde{F}(w) = F(\eta, w)$ has two local maxima for a given η , achieved at $w = +\infty$ and $w = -\infty$. In fact, the global maximum for $\tilde{F}(w)$ has a phase transition from $w = +\infty$ to $w = -\infty$ as η grows. For example, the maximum is achieved at $w = +\infty$ when $\eta = 1$ (blue solid) and is achieved at $w = -\infty$ when $\eta = 5$ (red solid). Unfortunately, even if we initialize with $\eta_0 = 1$ and $w_0 > 0$, gradient ascents on η will only increase the value of η (green dash), and thus as long as the discriminator cannot reach the global maximizer, w will be stuck in the positive half space $\{w : w > 0\}$ and further increase the value of η .

JS-GAN

[Goodfellow et al. 2014] For $f(x) = x \log x - (x+1) \log \frac{x+1}{2}$,

$$\widehat{\theta} = \operatorname*{arg\,min}_{\eta \in \mathbb{R}^{p}} \max_{D \in \mathcal{D}} \left[\frac{1}{n} \sum_{i=1}^{n} \log D(X_{i}) + \mathbb{E}_{\mathcal{N}(\eta, I_{p})} \log(1 - D(X)) \right] + \log 4.$$
(15)

What are \mathcal{D} , the class of discriminators?

• Single layer (no hidden layer):

$$\mathcal{D} = \left\{ D(x) = \operatorname{sigmoid}(w^T x + b) : w \in \mathbb{R}^p, b \in \mathbb{R} \right\}$$

• One-hidden or Multiple layer:

$$\mathcal{D} = \left\{ D(x) = \operatorname{sigmoid}(w^{T}g(X)) \right\}$$

Deep JS-GAN

$$\widehat{\theta} = \operatorname*{argmin}_{\eta \in \mathbb{R}^p} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_\eta \log(1 - T(X)) \right] + \log 4$$

numerical experiment $X_1, ..., X_n \sim (1 - \epsilon)N(\theta, I_p) + \epsilon N(\widetilde{\theta}, I_p)$

JS-GAN

A classifier with hidden layers leads to robustness. Why?

$$\mathsf{JS}_g(\mathbb{P}, \mathbb{Q}) = \max_{w \in \mathbb{R}^d} \left[\mathbb{P}\log \frac{1}{1 + e^{-w^T g(X)}} + \mathbb{Q}\log \frac{1}{1 + e^{w^T g(X)}} \right] + \log 4.$$

Proposition.
$$JS_g(\mathbb{P}, \mathbb{Q}) = 0 \iff \mathbb{P}g(X) = \mathbb{Q}g(X)$$

$$\widehat{\theta} = \operatorname*{argmin}_{\eta \in \mathbb{R}^p} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_\eta \log(1 - T(X)) \right] + \log 4$$

Theorem [GLYZ18]. For a neural network class \mathcal{T} with at least one hidden layer and appropriate regularization, we have

 $\|\widehat{\theta} - \theta\|^2 \lesssim \begin{cases} \frac{p}{n} + \epsilon^2 & \text{(indicator/sigmoid/ramp)} \\ \frac{p\log p}{n} + \epsilon^2 & \text{(ReLUs+sigmoid features)} \end{cases}$

with high probability uniformly over $\theta \in \mathbb{R}^p, Q$.

JS-GAN: Adaptation to Unknown Covariance

unknown X₁, ..., X_n ~ $(1 - \epsilon)N(\theta, \Sigma) + \epsilon Q$ covariance?

$$(\widehat{\theta}, \widehat{\Sigma}) = \operatorname*{argmin}_{\eta, \Gamma} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(\eta, \Gamma)} \log(1 - T(X)) \right]$$

no need to change the discriminator class

Discriminator identifies outliers

- Discriminator helps identify outliers or contaminated samples
- Generator fits uncontaminated portion of true samples

Generalization

Strong Contamination model:

 $X_1, ..., X_n \stackrel{iid}{\sim} P$ for some P satisfying $\mathsf{TV}(P, E(\theta, \Sigma, H)) \leq \epsilon$

$$(\widehat{\theta}, \widehat{\Sigma}, \widehat{H}) = \operatorname*{argmin}_{\eta \in \mathbb{R}^p, \Gamma \in \mathcal{E}_p(M), H \in \mathcal{H}(M')} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n S(T(X_i), 1) + \mathbb{E}_{X \sim E(\eta, \Gamma, G)} S(T(X), 0) \right]$$

We are going to replace the log likelihoods in JS-GAN by some scoring functions

$$\log t \mapsto S(t,1) : [0,1] \to \mathbb{R}$$
$$\log(1-t) \mapsto S(t,0) : [0,1] \to \mathbb{R}$$

that map the probability (likelihood) to some real numbers.

Fisher Consistency: Proper Scoring Rule

With a Bernoulli experiment of probability p observing 1, define the expected score

$$S(t,p) = pS(t,1) + (1-p)S(t,0)$$

Like likelihood functions, as a function of t, we hope that S(t, p) is maximized at t = p

$$\max_t S(t,p) = S(p,p) =: G(p)$$

Such a score is called Proper Scoring Rule.

Savage Representation of Proper Scoring Rule

Lemma (Savage representation)

For a proper scoring rule S(t, p):

- G(t) = S(t,t) is convex
- S(t,0) = G(t) tG'(t)
- S(t,1) = G(t) + (1-t)G'(t)
- -S(t,p) = pS(t,1) + (1-p)S(t,0) = G(t) + G'(t)(p-t)

Divergence

$$D_{\mathcal{T}}(P,Q) = \max_{T \in \mathcal{T}} \left[\frac{1}{2} \mathbb{E}_{X \sim P} S(T(X),1) + \frac{1}{2} \mathbb{E}_{X \sim Q} S(T(X),0) \right] - G(1/2),$$

Proposition 1 Given any regular proper scoring rule $\{S(\cdot, 1), S(\cdot, 0)\}$ and any class $\mathcal{T} \ni \{\frac{1}{2}\}, D_{\mathcal{T}}(P,Q)$ is a divergence function, and

$$D_{\mathcal{T}}(P,Q) \le D_f \left(P \left\| \frac{1}{2}P + \frac{1}{2}Q \right), \tag{4}$$

where f(t) = G(t/2) - G(1/2). Moreover, whenever $\mathcal{T} \ni \frac{dP}{dP+dQ}$, the inequality above becomes an equality.

A scoring rule S is regular if both S(·, 0) and S(·, 1) are real-valued, except possibly that S(0, 1) = −∞ or S(1, 0) = −∞.

Example 1: Log Score and JS-GAN

1. Log Score. The log score is perhaps the most commonly used rule because of its various intriguing properties [31]. The scoring rule with $S(t, 1) = \log t$ and $S(t, 0) = \log(1 - t)$ is regular and strictly proper. Its Savage representation is given by the convex function $G(t) = t \log t + (1 - t) \log(1 - t)$, which is interpreted as the negative Shannon entropy of Bernoulli(t). The corresponding divergence function $D_{\mathcal{T}}(P,Q)$, according to Proposition 3.1, is a variational lower bound of the Jensen-Shannon divergence

$$\mathsf{JS}(P,Q) = \frac{1}{2} \int \log\left(\frac{dP}{dP+dQ}\right) dP + \frac{1}{2} \int \log\left(\frac{dQ}{dP+dQ}\right) dQ + \log 2.$$

Its sample version (13) is the original GAN proposed by [25] that is widely used in learning distributions of images.

Example 2: Zero-One Score and TV-GAN

2. Zero-One Score. The zero-one score $S(t, 1) = 2\mathbb{I}\{t \ge 1/2\}$ and $S(t, 0) = 2\mathbb{I}\{t < 1/2\}$ is also known as the misclassification loss. This is a regular proper scoring rule but not strictly proper. The induced divergence function $D_{\mathcal{T}}(P, Q)$ is a variational lower bound of the total variation distance

$$\mathsf{TV}(P,Q) = P\left(\frac{dP}{dQ} \ge 1\right) - Q\left(\frac{dP}{dQ} \ge 1\right) = \frac{1}{2}\int |dP - dQ|.$$

The sample version (13) is recognized as the TV-GAN that is extensively studied by [21] in the context of robust estimation.

Example 3: Quadratic Score and LS-GAN

3. Quadratic Score. Also known as the Brier score [6], the definition is given by $S(t, 1) = -(1-t)^2$ and $S(t, 0) = -t^2$. The corresponding convex function in the Savage representation is given by G(t) = -t(1-t). By Proposition 2.1, the divergence function (3) induced by this regular strictly proper scoring rule is a variational lower bound of the following divergence function,

$$\Delta(P,Q) = \frac{1}{8} \int \frac{(dP - dQ)^2}{dP + dQ},$$

known as the triangular discrimination. The sample version (5) belongs to the family of least-squares GANs proposed by [39].

Example 4: Boosting Score

4. Boosting Score. The boosting score was introduced by [7] with $S(t,1) = -\left(\frac{1-t}{t}\right)^{1/2}$ and $S(t,0) = -\left(\frac{t}{1-t}\right)^{1/2}$ and has an connection to the AdaBoost algorithm. The corresponding convex function in the Savage representation is given by $G(t) = -2\sqrt{t(1-t)}$. The induced divergence function $D_{\mathcal{T}}(P,Q)$ is thus a variational lower bound of the squared Hellinger distance

$$H^{2}(P,Q) = \frac{1}{2} \int \left(\sqrt{dP} - \sqrt{dQ}\right)^{2}$$

Example 5: Beta Score and new GANs

5. Beta Score. A general Beta family of proper scoring rules was introduced by [7] with $S(t,1) = -\int_t^1 c^{\alpha-1}(1-c)^\beta dc$ and $S(t,0) = -\int_0^t c^\alpha (1-c)^{\beta-1} dc$ for any $\alpha, \beta > -1$. The log score, the quadratic score and the boosting score are special cases of the Beta score with $\alpha = \beta = 0$, $\alpha = \beta = 1$, $\alpha = \beta = -1/2$. The zero-one score is a limiting case of the Beta score by letting $\alpha = \beta \to \infty$. Moreover, it also leads to asymmetric scoring rules with $\alpha \neq \beta$.

Smooth Proper Scores

Assumption (Smooth Proper Scoring Rules)

We assume that

- $G^{(2)}(1/2) > 0$ and $G^{(3)}(t)$ is continuous at t = 1/2;
- Moreover, there is a universal constant $c_0 > 0$, such that $2G^{(2)}(1/2) \ge G^{(3)}(1/2) + c_0$.
 - The condition $2G^{(2)}(1/2) \ge G^{(3)}(1/2) + c_0$ is automatically satisfied by a symmetric scoring rule, because S(t, 1) = S(1 - t, 0)immediately implies that $G^{(3)}(1/2) = 0$.
 - For the Beta score with $S(t,1) = -\int_t^1 c^{\alpha-1}(1-c)^\beta dc$ and $S(t,0) = -\int_0^t c^\alpha (1-c)^{\beta-1} dc$ for any $\alpha, \beta > -1$, it is easy to check that such a c_0 (only depending on α, β) exists as long as $|\alpha \beta| < 1$.

Statistical Optimality

Theorem [GYZ19]. For a neural network class \mathcal{T} with at least one hidden layer and appropriate regularization, we have $\|\widehat{\theta} - \theta\|^2 \leq C\left(\frac{p}{n} \lor \epsilon^2\right),$ $\|\widehat{\Sigma} - \Sigma\|_{op}^2 \leq C\left(\frac{p}{n} \lor \epsilon^2\right),$

Application: Cryo-EM image Denoising

The 2017 Nobel prize in chemistry has been awarded to three scientists (Jacques Dubochet; Joachim Frank from; and Richard Henderson from Switzerland, US & UK, respectively) for developing **cryo-electron microscopy** for the high-resolution structure determination of biomolecules in solution.

Challenges of Cryo-EM image Denoising

- Low signal vs. high noise
- unknown contamination (e.g. ice and so on)
- conformational heterogeneity

Fig. 1: (a) a noisy Cryo-EM image (b) a reference image

GAN jointly trained with AutoEncoder

 $\widehat{\mathcal{L}}_{GAN}(x,\widehat{x}) + \lambda \|x - \widehat{x}\|_p^p,$

- β -GAN facilitates Robust denoising against unknown contaminations
- Joint training with ℓ_p -AutoEncoder stabilizes the minimax training of GANs

Fig. 4: The architectures of (a) discriminator D and (b) generator G, which borrow the residue structure. The input image size (128×128) here is adapted to RNAP dataset, while input image size of EMPIAR-10028 dataset is 256×256 .

Figure: illustration of training stability of β -GAN and β -GAN+autoencoder. Autoencoder can stabilize the training process of GAN.

Synthetic RNA Polymerase (RNAP) dataset

Fig. 3: Five conformations in RNAP heterogeneous dataset, from left to right are close conformation to open conformation of different angles.

Figure: denoised images with different methods (left to right, top to bottom): clean, noisy, BM3D, KSVD, non-local means, CWF, l_1 -Autoencoder, l_2 -Autoencoder, (1, 1)-GAN+ l_1 , (0,0)-GAN+ l_1 , (0.5, 0.5)-GAN+ l_1 , and WGANgp+ l_1 .

Figure: 3D reconstruction (left to right,): clean images, (0.5, 0.5)-GAN+ l_1 , (0.5, 0.5)-GAN+ l_1 under noise contamination, and l_2 -Autoencoder under noise contamination.

	М	ISE	PS	SNR
Method	SNR=0.1	SNR=0.05	SNR=0.1	SNR=0.05
BM3D	3.52e-2	5.87e-2	14.54	12.13
CWF	2.53e-2	9.28e-3	16.06	20.31
l_1 - Autoencoder	3.13e-3	4.02e-3	25.10	23.67
l_2 - Autoencoder	3.16e-3	4.23e-3	25.05	23.80
WGANgp+ l_1	2.95e-3	4.00e-3	25.42	24.06
$(0.5, 0.5)$ -GAN+ l_1	3.01e-3	3.98e-3	25.27	24.07

EMPIAR-10028 dataset: robust denoising under contaminations

Fig. 5: Results for RNAP dataset. (a) is denoised images in different denoised methods (from left to right, top to bottom): Clean, Noisy, BM3D, KSVD, Non-local means, CWF, ℓ_1 -Autoencoder, ℓ_2 -Autoencoder, (1,1)-GAN + ℓ_1 , (0,0)-GAN + ℓ_1 , (.5, .5)-GAN + ℓ_1 and WGANgp + ℓ_1 . (b) and (c) are reconstruction of clean images and (.5, .5)-GAN + ℓ_1 denoised images. (d) is FSC curve of (b) and (c). (e), (f) and (g) are robustness tests of various methods under $\epsilon \in \{0.1, 0.2, 0.3\}$ -proportion contamination in three types of contamination: (e) Type A: replacing the reference images with random noise; (f) Type B: replacing the noisy images with random noise; (g) Type C: replacing both with random noise. (h) and (j) are reconstructions of images with (.5, .5)-GAN + ℓ_1 and ℓ_2 -Autoencoder under type A contamination, respectively, where ℓ_2 -Autoencoder totally fails but (.5, .5)-GAN + ℓ_1 is robust. (i) shows FSC curves of (h) and (j).

Summary

- A family of Generative Adversarial Networks (β -GAN), with a proper network architecture design, may provide statistically optimal robust estimators under TV-ambiguity set of contaminations
 - A minimax-type estimator like Tukey's median, we don't know any M-estimator can provide statistical optimality for arbitrary contamination
 - Discriminators help to identify contaminated outliers while generator adapt to the true distributions
 - Application examples in Robust PCA of S&P500 and Robust Cryo-EM image Denoising

Reference

- Gao, Liu, Yao, Zhu, Robust Estimation and Generative Adversarial Networks, *ICLR 2019*, <u>https://arxiv.org/abs/</u> <u>1810.02030</u>
- Gao, Yao, Zhu, Generative Adversarial Networks for Robust Scatter Estimation: A Proper Scoring Rule Perspective, *Journal of Machine Learning Research*, 21(160):1-48, 2020. <u>https://arxiv.org/abs/1903.01944</u>
- Gu, H., Y. Xian, I. Unarta, and Y. Yao, Generative adversarial networks for robust Cryo-EM image denoting. Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, Springer, to appear. <u>https://arxiv.org/abs/2008.07307</u>

Thank You

