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Optimal Transport Preliminaries Definition

Monge Map

Let P ∈ P(S) and Q ∈ P(S) be two probability distributions defined on a space S ;
c : S × S → [0,∞] is a cost function.
Monge problem:

inf
T (·)

EP [c(X ,T (X ))|T♯P = Q].

✗ May not always exist: if P supports on one point and Q supports on two points:

P(x0) = 1 and Q(y0) = Q(y1) = 1/2.
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Optimal Transport Preliminaries Definition

Definition

Definition (Optimal Transport Cost)

Let P ∈ P(S) and Q ∈ P(S) be two probability distributions defined on a space S ;
c : S × S → [0,∞] is a cost function. Then, the optimal transport cost is defined as

Dc(P ,Q) := inf
π

{
Eπ[c(U ,V )] | π ∈ P(S × S),

π (A× S) = P(A), π (S × B) = Q(B) for every subsets A,B of S
}
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Optimal Transport Preliminaries Definition

Wasserstein Distance, Earth Moving Distance

Let S = Rd and c(x , y) = d(x , y)ρ for some metric function d(·, ·) and ρ ≥ 1,

Wρ(P ,Q) = Dc(P ,Q)1/ρ

is a metric on the probability space. We call it the type-ρ Wasserstein distance. In
particular, if ρ = 1, it is also called the earth moving distance.
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Optimal Transport Preliminaries Discrete Distributions

Discrete Distributions: Duality

Let P support on {x1, x2, . . . , xN} and Q support on {y1, y2, . . . , ym}. Let
P = {px} and Q = {qy} with

∑N
x=1 px =

∑M
y=1 qy = 1, px ≥ 0, qy ≥ 0.

Optimal transport cost is the optimal value of the linear programming:

Dc(P ,Q) = min
πxy≥0

N,M∑
x=1,y=1

c(x , y)πxy (1)

s.t.
N∑

y=1

πxy = px and
N∑

x=1

πxy = qy . (2)

Duality:

Dc(P ,Q) = max
u,v

N∑
x=1

pxux +
M∑
y=1

qyvy (3)

s.t.ux + vy ≤ c(x , y) (4)
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Optimal Transport Preliminaries Discrete Distributions

Discrete Distributions: Optimal Solutions

Primal and dual:

min
πxy≥0

N,M∑
x=1,y=1

c(x , y)πxy s.t.
N∑

y=1

πxy = px and
N∑

x=1

πxy = qy . (P)

max
u,v

N∑
x=1

pxux +
M∑
y=1

qyvy s.t. ux + vy ≤ c(x , y) (D)

The optimal solution satisfies

π∗
xy > 0 ⇒ u∗

x + v ∗
y = c(x , y)

u∗
x = min

y∈{1,2,...,M}
c(x , y)− v ∗

y and v ∗
y = min

x∈{1,2,...,N}
c(x , y)− u∗

x .
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Optimal Transport Preliminaries Discrete Distributions

An Economic Interpretation

Primal and dual:

min
πxy≥0

N,M∑
x=1,y=1

c(x , y)πxy s.t.
N∑

y=1

πxy = px and
N∑

x=1

πxy = qy . (P)

max
u,v

N∑
x=1

pxux +
M∑
y=1

qyvy s.t. ux + vy ≤ c(x , y) (D)

Transfer coal from mines in {x1, x2, . . . , xN} to factories in {y1, y2, . . . , ym}:
Transportation cost is c(x , y);
ux , vy are shadow prices: ux is the price of loading one ton of coal at place x ; and
vy is the price of unloading it at destination y .
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Optimal Transport Preliminaries Discrete Distributions

Pure Assignments and Monge Map

Consider N = M and px = qy = 1/N .

Then, the optimal solution is a permutation σ: an invertible map from
{1, 2, . . . ,N} onto iteself.

π∗
xy =

1

N
I{y = σ(x)}.

The optimal transport problem is equivalent to the Monge problem: T (X ) = σ(X ).
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Optimal Transport Preliminaries Continuous Distributions

Continuous Distributions: Duality

Recall

Dc(P ,Q) = inf
π

{
Eπ[c(U ,V )] | π ∈ P(S × S),

π (A× S) = P(A), π (S × B) = Q(B) for every subsets A,B of S
}

Duality:

Dc(P ,Q) = sup
φ,ψ

∫
φdP +

∫
ψdQ

s.t.φ(x) + ψ(y) ≤ c(x , y).

Proof is based on Sion’s minimax theorem and compactification.
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Optimal Transport Preliminaries Continuous Distributions

2-Wasserstein Distance Between Gaussian Distributions

Cost function c(x , y) = ∥x − y∥22, P = N (µ1,Σ1) and Q = N (µ2,Σ2).

Then, the 2-Wasserstein distance between P and Q is

W 2
2 (P ,Q) = ∥µ1 − µ2∥22 + tr(Σ1) + tr(Σ2)− 2tr

[
(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

]
.

The transportation plan is
x → µ2 + A(x − µ1),

where A = Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 .
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Optimal Transport Preliminaries Continuous Distributions

1-Wasserstein Distance: Duality

c(x , y) = d(x , y);

Duality:

W1(P ,Q) = Dc(P ,Q) = sup
φ

∫
φdP −

∫
φdQ

s.t.φ(x) is 1-Lipschitz with respect to d(·, ·)
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Optimal Transport Preliminaries Continuous Distributions

Total Variation Distance

Total variation distance is a special case of the Wasserstein distance with
c(x , y) = I(x ̸= y);

Dc(P ,Q) = TV (P ,Q).
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Optimal Transport Preliminaries Continuous Distributions

One-Dimensional Case

d = 1, we have

Wρ(P ,Q) =

(∫ 1

0

|F−1
P (s)− F−1

Q (s)|ρds
)1/ρ

,

where FP and FQ are CDFs of measures P and Q.

if ρ = 1 and d = 1, we have

W1(P ,Q) =

∫
R
|FP(s)− FQ(s)|ds,
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Optimization of Optimal Transport
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Optimization of Optimal Transport

Optimization of Optimal Transport: Discrete Case

Discrete case, linear programming: for simplicity, assume N = M

min
πxy≥0

N∑
x=1,y=1

c(x , y)πxy s.t.
N∑

y=1

πxy = px and
N∑

x=1

πxy = qy . (P)

Linear programming time complexity O(N3.5 log(1/ϵ)).

Sinkhorn method [Cuturi, 2013] with time complexity Õ(N2/ϵ2) [Dvurechensky
et al., 2018].
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Optimization of Optimal Transport

Sinkhorn Method

We optimize the following program:

min
πxy≥0

N∑
x=1,y=1

c(x , y)πxy +
1

λ

N∑
i ,j=1

πij log(πij) s.t.
N∑

y=1

πxy = px and
N∑

x=1

πxy = qy .

The solution admits the form:

πλij = ui exp(−λc(i , j))vj .

By Sinkhorn and Knopp’s algorithm [Sinkhorn and Knopp, 1967], we can iteratively
update u and v to arrive

πλ1 = P , (πλ)⊤1 = Q.

.
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Optimization of Optimal Transport

Optimization of Optimal Transport: Semi-Discrete Case

Theorem (Taşkesen et al. [2022])

Computing Wρ(P ,Q) is #P-hard even if P ∼ U[0, 1]d and Q is a two-point distribution.

The complexity class #P is the set of the counting problems associated with the
decision problems in the set NP.

Consequently, a #P problem is at least as hard as its NP counterpart.
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Optimization of Optimal Transport

Computational Optimal Transport
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Statistics of Optimal Transport
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Statistics of Optimal Transport Curse of Dimensionality

Curse of Dimensionality

Let P∗ be a measure on Rd and let Pn be the associated empirical measure, i.e.,
for i.i.d. sample X1,X2, . . . ,Xn,

Pn =
1

n

n∑
i=1

δXi
.

Consistency: Wρ(Pn,P
∗) → 0.

Curse of Dimensionality: E[Wρ(Pn,P
∗)] = O(n−1/d) [Fournier and Guillin, 2015].

If P∗ supports on an m−dimensional manifold of Rd , we have
E[Wρ(Pn,P

∗)] = O(n−1/m) [Weed and Bach, 2019].

CLT [Del Barrio and Loubes, 2019]:

√
n(W 2

2 (Pn,P
∗)− E[W 2

2 (Pn,P
∗)]) ⇒ N (0, σ2).
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Statistics of Optimal Transport Projection

Beating Curse of Dimensionality: Projection

Sliced Wasserestein distance [Bonneel et al., 2015, Kolouri et al., 2016]:

SW ρ
ρ (P ,Q) =

∫
Sd−1

W ρ
ρ (θ♯P , θ♯Q)dθ,

where θ♯P is the push-forward measure:

θ♯P(A) = P({x : θ⊤x ∈ A}), for any Borel set A ∈ R.
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where θ♯P is the push-forward measure:
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Convergence rate: SWρ(Pn,P
∗) = O(n−1/2) [Nadjahi et al., 2019].

Another variance: max-sliced Wasserstein distance [Deshpande et al., 2019]

MSW ρ
ρ (P ,Q) = max

θ∈Sd−1
W ρ
ρ (θ♯P , θ♯Q),
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Statistics of Optimal Transport Projection

Beating Curse of Dimensionality: Subspace Projection

Robust Wasserstein profile function [Si et al., 2020]: consider a function class B

Rn(P∗,Pn) := inf
P
{Dc (P ,Pn) : EP [f (X )] = EP∗ [f (X )] for all f ∈ B}.
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Statistics of Optimal Transport Projection

Beating Curse of Dimensionality: Subspace Projection

Robust Wasserstein profile function [Si et al., 2020]: consider a function class B

Rn(P∗,Pn) := inf
P
{Dc (P ,Pn) : EP [f (X )] = EP∗ [f (X )] for all f ∈ B}.

Duality:
Rn(P∗,Pn) = sup

f ∈LB
{EP∗ [f (X )]− EPn [f

c (X )]},

where f c(x) = supz {f (z)− c(z , x)} and LB is a linear space spanned by the
function class B:

LB =

{
f (·) =

m∑
i=1

λi fi(·) : {fi(·)}mi=1 ⊂ B, λ ∈ Rm, and m ∈ Z+

}
.

Rn = O(n−1/2) under some assumptions of B.
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Statistics of Optimal Transport Smoothness

Beating Curse of Dimensionality: Smoothness

If P∗ is sufficient smooth, i.e., the density of P∗ is in the Besov space B s
p,q, then we

can construct a wavelet estimator based on data such that
EWρ(P̂

w
n ,P

∗) = O
(
n−

1+s
d+2s

)
[Weed and Berthet, 2019].

σ-smooth Wasserstein distance [Nietert et al., 2021]:

W (σ)
ρ (P ,Q) = Wρ(P ∗ Nσ,Q ∗ Nσ),

where P ∗ Nσ(A) =
∫∞
−∞ P(A− t)ϕσ(t)dt and ϕσ(t) is the PDF of the Gaussian

distribution Nσ.

E[W
(σ)
ρ (Pn,P)] = O(n−1/2).
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Statistics of Optimal Transport Smoothness

More Properties of Smooth Wasserstein Distance

W
(σ)
ρ is continuous and monotonically non-increasing in σ ∈ [0,+∞);

limσ→0W
(σ)
ρ (P ,Q) = Wρ(P ,Q);

limσ→+∞ W
(σ)
ρ (P ,Q) = |E[X ]− E[Y ]|, for X ∼ P and Y ∼ Q sub-Gaussian.

The constants in E[W (σ)
ρ (Pn,P)] exhibit an exponential dependence on dimension

d .
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Applications Wasserestein GANs

Wasserstein Generative Adversarial Networks (GANs) [Arjovsky

et al., 2017]

Goal: learn a generative model gθ(·) from data X1,X2, . . . ,Xn sampled from a real
data distribution Pr . We let Pθ be the distribution induced by the generative model
gθ(·).

Minimize Wasserstein distance:

min
θ

W1(Pr ,Pθ) = min
θ

sup
∥f ∥L≤1

EPr [f (x)]− EPθ
[f (x)]

Parametric f (·) to be a neural network:

min
θ

W1(Pr ,Pθ) = min
θ

max
w

{
EPr [fw (x)]− Ez∼p(z)[fw (gθ(z))]

}
Adversarial.
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Applications Wasserestein GANs

Wasserstein GANs Results

(d)

(e)
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Applications Distributionally Robust Optimization

Distributionally Robust Optimization Formulation

Distributionally Robust Optimization (DRO):

inf
β∈Rd

sup
P∈U

EP [ℓ(X ; β)]︸ ︷︷ ︸
worst case expectation

,

U : distributional uncertainty set.

Construction of distributional uncertainty set U :

U = Uδ(Pn) = {P ∈ P(S) : Dc(P ,Pn) ≤ δ}
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Applications Distributionally Robust Optimization

Why DRO?

Statistical errors and overfitting;

Distributional shifts.
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Applications Distributionally Robust Optimization

Strong Duality for DRO

Theorem (Blanchet and Murthy, 2019; Gao and Kleywegt, 2016; Esfahani and Kuhn,
2018)

Suppose c(·) is a nonnegative lower semicontinuous function satisfying c(x , y) = 0 if
and only if x = y and ℓ(·) is upper semicontinuous. Then,

sup
P:Dc (P,Pn)≤δ

EP [ℓ (X ; β)] = inf
λ≥0

f (β, λ),

where
f (β, λ) = λδ + EPn [ℓrob (X ; β, λ)], and

ℓrob (X ; β, λ) := sup
u∈Rd

{ℓ(u; β)− λc(u,X )} .
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Applications Distributionally Robust Optimization

Some DRO Estimators

Square-root LASSO [Belloni, Chernozhukov and Wang 2011]:

ℓ((x , y); β) = ∥y − βTx∥22

Pn =
1

n

n∑
i=1

δ(Xi ,Yi )(dx , dy)

c((x , y), (x ′, y ′)) = ∥x − x ′∥2q +∞ · 1{y ̸= y ′}

DRO is equivalent to the square-root LASSO [Blanchet, Kang and Murthy, 2016;
Gao, Chen and Kleywegt, 2017], (1/p+1/q = 1)

sup
P:Dc (P,Pn)≤δ

EP [ℓ ((X ,Y ); β)] =
(√

EPn [ℓ((X ,Y ); β)] +
√
δ∥β∥p

)2

.

niansi@chicagobooth.edu (ChicagoBooth) Optimal Transport April 17, 2023 35 / 45



Applications Distributionally Robust Optimization

Some DRO Estimators
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Applications Distributionally Robust Optimization

Some DRO Estimators

Regularized logistic regression:

ℓ((x , y); β) = log(1 + exp(−yβTx))

Pn =
1

n

n∑
i=1

δ(Xi ,Yi )(dx , dy)

c((x , y), (x ′, y ′)) = ∥x − x ′∥q +∞ · 1{y ̸= y ′}

DRO is equivalent to the regularized logistic regression [Blanchet, Kang and
Murthy, 2016; Gao, Chen and Kleywegt, 2017; Esfahani and Kuhn, 2015],

sup
P:Dc (P,Pn)≤δ

EP [ℓ ((X ,Y ); β)] = EPn [ℓ((X ,Y ); β)] + δ∥β∥p.
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Some New Advances and Open Problems

Martingale Optimal Transport1

MDc(P ,Q) := inf
π

{
Eπ[c(X ,Y )] | π ∈ P(S × S),Eπ[Y |X ] = X ,

π (A× S) = P(A), π (S × B) = Q(B) for every subsets A,B of S
}

1Guo and Ob lój [2019]
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Some New Advances and Open Problems

Adapted Optimal Transport2

Consider two-period case: P is the joint distribution of (X1,X2) and Q is the joint
distribution of (Y1,Y2),

ADc(P ,Q) := inf
π1

{
Eπ1[c(X1,Y1) + Dc(PX1 ,QY1)] |

π1 (A× S) = P1(A), π1 (S × B) = Q1(B) for every subsets A,B
}
,

where P1,Q1 are the distributions of X1 and Y1 and PX1 ,QY1 are the distributions of X2

and Y2 conditional on X1 and Y1.

2Backhoff et al. [2022]
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Some New Advances and Open Problems

Optimization of Optimal Transport

Can we solve discrete optimal transport in an online fashion for large-scale
problems [Mensch and Peyré, 2020]?

Can we solve semi-discrete or continuous optimal transport approximately under
some structural assumptions?
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Some New Advances and Open Problems

Minimum Wasserstein Distance

Recall the CLT:

√
n(W ρ

ρ (Pn,P
∗)− E[W ρ

ρ (Pn,P
∗)]) ⇒ N (0, σ2).

What can we say about θ̂n:

θ̂n = argmin
θ

Dc(Pn,Pθ)

Curse of Dimensionality?
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Some New Advances and Open Problems

Q&A?

niansi@chicagobooth.edu (ChicagoBooth) Optimal Transport April 17, 2023 42 / 45



Some New Advances and Open Problems

References I
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Gaoyue Guo and Jan Ob lój. Computational methods for martingale optimal transport problems. The
Annals of Applied Probability, 29(6):3311–3347, 2019.

Soheil Kolouri, Serim Park, Matthew Thorpe, Dejan Slepčev, and Gustavo K Rohde. Transport-based
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Arthur Mensch and Gabriel Peyré. Online sinkhorn: Optimal transport distances from sample streams.
Advances in Neural Information Processing Systems, 33:1657–1667, 2020.

Kimia Nadjahi, Alain Durmus, Umut Simsekli, and Roland Badeau. Asymptotic guarantees for learning
generative models with the sliced-wasserstein distance. Advances in Neural Information Processing
Systems, 32, 2019.

niansi@chicagobooth.edu (ChicagoBooth) Optimal Transport April 17, 2023 44 / 45



Some New Advances and Open Problems

References III

Sloan Nietert, Ziv Goldfeld, and Kengo Kato. Smooth p-wasserstein distance: Structure, empirical
approximation, and statistical applications. In International Conference on Machine Learning, pages
8172–8183. PMLR, 2021.

Nian Si, Jose Blanchet, Soumyadip Ghosh, and Mark Squillante. Quantifying the empirical wasserstein
distance to a set of measures: Beating the curse of dimensionality. Advances in Neural Information
Processing Systems, 33:21260–21270, 2020.

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices.
Pacific Journal of Mathematics, 21(2):343–348, 1967.
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