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Methods for Imposing a Geometry

Figure: Define a metric
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Methods for Visualizing a Data Geometry

Methods for Summarizing or Visualizing a Geometry

Figure: Linear projection (PCA, MDS, etc. Euclidean Metric)

Why Topological Methods? 5



Outline Why Topology? Simplicial Complex Persistent Homology

Methods for Visualizing a Data Geometry

Methods for Summarizing or Visualizing a Geometry

Figure: Nonlinear Dimensionality Reduction (ISOMAP, LLE etc. Riemannian
Metric)
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Methods for Visualizing a Data Geometry

Geometric Data Reduction

General method of manifold learning takes the following Spectral
Kernal Embedding approach
• construct a neighborhood graph of data, G
• construct a positive semi-definite kernel on graphs, K
• find global embedding coordinates of data by eigen-decomposition
of K = Y Y T

Geometric reconstruction can be relaxed via Semi-definite
Programming (SDP)

Sometimes ‘distance metric’ is just a similarity measure (nonmetric
MDS, ordinal embedding)

Sometimes coordinates are not a good way to organize/visualize the
data (e.g. d > 3)

Sometimes all that is required is a qualitative view

Why Topological Methods? 7
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Methods for Visualizing a Data Geometry

Methods for Summarizing or Visualizing a Geometry

Figure: Clustering the data
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Methods for Visualizing a Data Geometry

Methods for Summarizing or Visualizing a Geometry

Average Linkage Complete Linkage Single Linkage

Figure: Cluster trees: Average, complete, and single linkage. From Introduction to Statistical
Learning with Applications in R.
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Methods for Visualizing a Data Geometry

Hierarchical Cluster Trees

1 Start with each data point as its own cluster;

2 Repeatedly merge two “closest” clusters, where notions of
“distance” between two clusters are given by:
• Single linkage: closest pair of points
• Complete linkage: furthest pair of points
• Average linkage (several variants):

(i) distance between centroids
(ii) average pairwise distance
(iii) Ward’s method: increase in k-means cost due to merger

Why Topological Methods? 10
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Methods for Visualizing a Data Geometry

Methods for Summarizing or Visualizing a Geometry

Figure: Define a graph or network structure
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Methods for Visualizing a Data Geometry

Topology

Origins of Topology in Math
• Leonhard Euler 1736, Seven Bridges of Königsberg
• Johann Benedict Listing 1847, Vorstudien zur Topologie
• J.B. Listing (orbituary) Nature 27:316-317, 1883. “qualitative geometry
from the ordinary geometry in which quantitative relations chiefly are
treated.”

Why Topological Methods? 12
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Methods for Visualizing a Data Geometry

RNA hairpin folding pathways
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Figure: Jointly with Xuhui Huang, Jian Sun, Greg Bowman, Gunnar Carlsson,
Leo Guibas, and Vijay Pande, JACS’08, JCP’09
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Methods for Visualizing a Data Geometry

Differentiation process from murine embryonic stem cells
to motor neurons

166 Part I Topological Data Analysis

Day 2 Day 6 Day 3 Day 4 Day 5 

Figure 2.31 Over time, embryonic stem cells differentiate into distinct cell types.
These pictures capture the in vitro differentiation of mouse embryonic stem cells
into motor neurons over the course of a week. Embryonic stem cells are marked in
red, and fully differentiated neurons in green. Figure from experiment performed
by Elena Kandror, Abbas Rizvi and Tom Maniatis at Columbia University.
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Figure 2.32 The different regions in the Mapper graph nicely line up with
different points along the differentiation timeline. Source: [431].

Effectively, the issue is that a mismatch between the scale of change in the data
and the width of the overlap of inverse images can give rise to dramatic changes
in the Mapper graph in response to small shifts in filter function or cover. (See
Figure 2.33 for a representative example of this phenomenon.)

There are various different approaches to handling this instability in practice.

Figure: Mapper graph of single cell data, where the different regions in the
Mapper graph nicely line up with different points along the differentiation
timeline. Rizvi et al. Nature Biotechnol. 35.6 (2017), 551-560.
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Methods for Visualizing a Data Geometry

Key elements

Coordinate free representation

Invariance under deformations

Compressed qualitative representation

Why Topological Methods? 15
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Methods for Visualizing a Data Geometry

Topology in continuous spaces

To see points in neighborhood the same requires distortion of
distances, i.e. stretching and shrinking

We do not permit tearing, i.e. distorting distances in a discontinuous
way

Why Topological Methods? 16
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Methods for Visualizing a Data Geometry

Continous Topology

Figure: Homeomorphic
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Methods for Visualizing a Data Geometry

Continuous Topology

Figure: Homeomorphic
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Methods for Visualizing a Data Geometry

Discrete case?

How does topology make sense, in discrete and noisy setting?

Why Topological Methods? 19



Outline Why Topology? Simplicial Complex Persistent Homology

Methods for Visualizing a Data Geometry

Properties of Data Geometry

Fact

We Don’t Trust Large Distances!

In life or social sciences, distance (metric) are constructed using a
notion of similarity (proximity), but have no theoretical backing (e.g.
distance between faces, gene expression profiles, Jukes-Cantor
distance between sequences)

Small distances still represent similarity (proximity), but long
distance comparisons hardly make sense

Why Topological Methods? 20
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Methods for Visualizing a Data Geometry

Properties of Data Geometry

Fact

We Only Trust Small Distances a Bit!

Both pairs are regarded as similar, but the strength of the similarity
as encoded by the distance may not be so significant

Similar objects lie in neighborhood of each other, which suffices to
define topology

Why Topological Methods? 21
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Methods for Visualizing a Data Geometry

Properties of Data Geometry

Fact

Even Local Connections are Noisy, depending on observer’s scale!

Is it a circle, dots, or circle of circles?

To see the circle, we ignore variations in small distance (tolerance
for proximity)

Why Topological Methods? 22



Outline Why Topology? Simplicial Complex Persistent Homology

Methods for Visualizing a Data Geometry

So we need robust topology against metric distortions

Distance measurements are noisy

Physical device like human eyes may ignore differences in proximity
(or as an average effect)

Topology is the crudest way to capture invariants under distortions
of distances

At the presence of noise, one need topology varied with scales

Why Topological Methods? 23
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Methods for Visualizing a Data Geometry

What kind of topology?

Topology studies (global) mappings between spaces

Point-set topology: continuous mappings on open sets

Differential topology: differentiable mappings on smooth manifolds
• Morse theory tells us topology of continuous space can be learned
by discrete information on critical points

Algebraic topology: homomorphisms on algebraic structures, the
most concise encoder for topology

Combinatorial topology: mappings on simplicial (cell) complexes
• Simplicial complex may be constructed from data
• Algebraic, differential structures can be defined here

Why Topological Methods? 24
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Methods for Visualizing a Data Geometry

Topological Data Analysis

What kind of topological information often useful
• 0-homology: clustering or connected components
• 1-homology: coverage of sensor networks; paths in robotic
planning
• 1-homology as obstructions: inconsistency in statistical ranking;
harmonic flow games
• high-order homology: high-order connectivity?

How to compute homology in a stable way?
• simplicial complexes for data representation
• filtration on simplicial complexes
• persistent homology

Why Topological Methods? 25
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Simplicial Complex

Simplicial Complexes for Data Representation

Definition (Simplicial Complex)

An abstract simplicial complex is a collection Σ of subsets of V which is
closed under inclusion (or deletion), i.e. τ ∈ Σ and σ ⊆ τ , then σ ∈ Σ.

Chess-board Complex

Term-document cooccurance complex

Nerve complex

Point cloud data in metric spaces:
• Čech, Rips, Witness complex
• Mayer-Vietoris Blowup

Clique complex in pairwise comparison graphs

Strategic complex in game theory

Simplicial Complex for Data Representation 27
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Simplicial Complex

Chess-board Complex

Definition (Chess-board Complex)

Let V be the positions on a Chess board. Σ collects position subsets of
V where one can place queens (rooks) without capturing each other.

Closedness under deletion: if σ ∈ Σ is a set of “safe” positions, then
any subset τ ⊆ σ is also a set of “safe” positions

Simplicial Complex for Data Representation 28
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Simplicial Complex

Term-Document Co-occurrence Complex

FIG. 3. (i) A simplicial family. (ii) Not a simplicial family.

FIG. 4. The simplexes generated by the rows of the matrix (8).

Example 3. Consider the following matrix

c1 c2 c3 c4 c5

r1 1 0 0 0 0
r2 1 1 1 0 0
r3 0 0 1 1 0
r4 0 0 1 1 0
r5 0 0 0 0 1
r6 0 0 0 0 1

(8)

with six rows r1, r2, . . . , r6 and five columns c1, c2, . . . , c5.
For row r1, the column c1 contains a “1” and the other
columns contain “0.” We associate with r1 a 0-simplex
σ0

(r1)
= (c1). In a similar way, we obtain the following

simplexes for the remaining rows:

σ2
(r2)

= (c1, c2, c3),

σ1
(r3)

= (c3, c4),

σ1
(r4)

= (c3, c4),

σ0
(r5)

= (c5),

σ0
(r6)

= (c5).

(9)

We draw the six simplexes in Figure 4, from which we
see clearly that they do form a simplicial family. However,

the simplexes σ0
(r5)

and σ0
(r6)

are “disconnected” from other
four members. The following definition is used to model this
kind of topological property. We have modified the original
definition of “connectiveness” in Q-analysis to cater for our
present application.

Definition 3. Let " be a simplicial family and d is the highest
dimension of the simplexes in ". Let 0 ≤ q ≤ d be an integer.
We call two simplexes σa and σb in " q-near if they have a
common q-face. We call σa and σb q-connected if there exists
a sequence

σ1, σ2, . . . , σj (10)

of distinct simplexes of ", such that σ1 = σa, σj = σb, and σi

is qi-near to σi+1 for all 1 ≤ i ≤ j − 1, 0 ≤ qi ≤ d an integer,
and q = min{qi}. We call Sequence 10 a q-chain Cab from
σa to σb and the number (j − 1) the length of Cab, denoted
by l(Cab). For all possible q-chains connecting σa to σb with
the same length L, we call the chain with the maximum value
of q = q* the maximal L-chain, denoted by C∗

ab(L). We say
that σa and σb are q*-connected if they are connected by a
maximal chain.

Note that if two simplexes are q-near, then they must be
connected and the length is equal to 1. If there is no chain
connecting two simplexes, then we set the length between
them to ∞. If two simplexes are q-connected, then they also
are (q − 1)-connected for (q − 1) ≥ 0.

Example 4. Referring to Figure 4 of Example 3, the sim-
plexes σ0

(r1)
and σ2

(r2)
are 0-near, σ1

(r3)
and σ1

(r4)
are 1-near, and

σ0
(r5)

and σ0
(r6)

are 0-near. Furthermore, σ0
(r1)

is 0-connected
to σ1

(r3)
and σ1

(r4)
via, respectively, the maximal 2-chains

σ0
(r1)

, σ2
(r2)

, σ1
(r3)

and σ0
(r1)

, σ2
(r2)

, σ1
(r4)

(i.e., q* = 0). However,
σ0

(r5)
and σ0

(r6)
are not connected to any of the other four

simplexes.
A further structure can be defined on a simplicial family,

as follows.

Definition 4. The relation “is q-connected to” on a simplicial
family ", denoted by rq, is an equivalence relation. Let "q

be the set of simplexes in " with dimension greater than
or equal to q, where q = 0, 1, . . . , dim". Then, rq partitions
"q into equivalence classes of q-connected simplexes. These
equivalence classes are called the q-connected components
of ". Let Qq denote the number of q-connected components
in ". The determination of the components and Qq for each
value of q is termed a Q-analysis of ".

Example 5. The result of Q-analysis for the simplicial family
in Example 3 is given in Table 2. Since the highest dimen-
sion of the simplexes is 2, the Q-analysis of the simplicial
family has three levels corresponding to q = 0,1 and 2. The
level q = 2 consists of those simplexes with dimension greater
than or equal to 2; hence, this level contains one simplex
σ2

(r2)
. Next, at the level q = 1, two more simplexes σ1

(r3)
and

σ1
(r4)

come in, which are 1-connected by a chain of length 1
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Left is a term-document co-occurrence matrix

Right is a simplicial complex representation of terms

Connectivity analysis captures more information than Latent
Semantic Index (Li & Kwong 2009)
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Nerve, Reeb Graph, and Mapper

Nerve complex

Definition (Nerve Complex)

Define a cover of X, X = ∪αUα. V = {Uα} and define
Σ = {UI : ∩α∈IUI 6= ∅}.

Closedness under deletion

Can be applied to any topological space X

Simplicial Complex for Data Representation 30



Outline Why Topology? Simplicial Complex Persistent Homology

Nerve, Reeb Graph, and Mapper

Nerve Theorem

Theorem (Nerve Theorem)

Consider the nerve complex of X,

Σ = {UI : ∩α∈IUI 6= ∅, X = ∪αUα}.

If every UI is contractible, then X has the same homotopy type as Σ.

Simplicial Complex for Data Representation 31
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Nerve, Reeb Graph, and Mapper

Nerve complex exampleTopological Mapping

Covering of Circle
Figure: Covering of circle

Simplicial Complex for Data Representation 32
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Nerve, Reeb Graph, and Mapper

Nerve complex exampleTopological Mapping

Covering of Circle

Topological Mapping

Create nodes
Figure: Create nodes

Simplicial Complex for Data Representation 33
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Nerve, Reeb Graph, and Mapper

Nerve complex exampleTopological Mapping

Covering of Circle

Topological Mapping

Create edges
Figure: Create edges, that gives a Nerve complex (graph)
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Nerve, Reeb Graph, and Mapper

Nerve of Seven Bridges of Königsberg

Figure: Nerve graph of Seven Bridges of Könisberg

Simplicial Complex for Data Representation 35
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Nerve, Reeb Graph, and Mapper

Point cloud data

Now given point cloud data X = {x1, . . . , xn}, and a covering
V = {Uα}, where each Uα is a cluster of data

Build a simplicial complex (Nerve) in the same way, but components
replaced by clusters

Simplicial Complex for Data Representation 36
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Nerve, Reeb Graph, and Mapper

Mapping

How to choose coverings?

Create a reference map (or filter) h : X → Z, where Z is a
topological space often with interesting metrics (e.g. R, R2, S1

etc.), and a covering U of Z, then construct the covering of X using
inverse map {h−1Uα}.

Simplicial Complex for Data Representation 37
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Nerve, Reeb Graph, and Mapper

Example: Morse Theory and Reeb graph

a nice (Morse) function: h : X → R, on a smooth manifold X
topology of X reconstructed from level sets h−1(t)

topological of h−1(t) only changes at ‘critical values’

Reeb graph: a simplified version, contracting into points the
connected components in h−1(t)

h

Figure: Construction of Reeb graph; h maps each point on torus to its height.
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Nerve, Reeb Graph, and Mapper

Mapper: from Continuous to Discrete...

a5

a1

b1
a2

a3

b3
a4

b4
b5

b2h

Figure: An illustration of Mapper.

Note:

degree-one nodes contain local minima/maxima;

degree-three nodes contain saddle points (critical points);

degree-two nodes consist of regular points

Simplicial Complex for Data Representation 39
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Nerve, Reeb Graph, and Mapper

Mapper algorithm

[Singh-Memoli-Carlsson. Eurograph-PBG, 2007] Given a data set X ,

choose a filter map h : X → Z, where Z is a topological space such
as R, S1, Rd, etc.

choose a cover Z ⊆ ∪αUα
cluster/partite level sets h−1(Uα) into Vα,β

graph representation: a node for each Vα,β , an edge between
(Vα1,β1 , Vα2,β2) iff Uα1 ∩ Uα2 6= ∅ and Vα1,β1 ∩ Vα2,β2 6= ∅.
extendable to simplicial complex representation.

Note: it extends Reeb Graph from R to general topological space Z; may
lead to a particular implementation of Nerve theorem through filter map
h.
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Nerve, Reeb Graph, and Mapper

In applications.

Reeb graph has found various applications in computational geometry,
statistics under different names.

computer science: contour trees, Reeb graphs

statistics: density cluster trees (Hartigan)

Simplicial Complex for Data Representation 41
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Nerve, Reeb Graph, and Mapper

Reference Mapping

Typical one dimensional filters/mappings:

Density estimators

Measures of data (ec-)centrality: e.g.
∑
x′∈X d(x, x′)p

Geometric embeddings: PCA/MDS, Manifold learning, Diffusion
Maps etc.

Response variable in statistics: progression stage of disease etc.

Simplicial Complex for Data Representation 42
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Applications of Mapper Graph

Example: RNA Tetraloop

Figure: RNA
GCAA-Tetraloop

Biological relevance:

serve as nucleation site for RNA folding

form sequence specific tertiary interactions

protein recognition sites

certain Tetraloops can pause RNA
transcription

Note: simple, but, biological debates over
intermediate states on folding pathways

Simplicial Complex for Data Representation 43
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Applications of Mapper Graph

Debates: Two-state vs. Multi-state Models

(a) 2-state model

(b) multi-state model

2-state: transition state with any one stem
base pair, from thermodynamic experiments
[Ansari A, et al. PNAS, 2001, 98: 7771-7776]

multi-state: there is a stable intermediate
state, which contains collapsed structures,
from kinetic measurements [Ma H, et al. PNAS, 2007,

104:712-6]

experiments: no structural information

computer simulations at full-atom resolution:
• exisitence of intermediate states
• if yes, what’s the structure?
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MD Simulation by Folding@Home

Simulation Box.

[Bowman, Huang, Y., Sun, ... Vijay. JACS, 2008]

2800 SREMD (Serial Replica Exchange Molecular
Dynamics) simulations with RNA hairpin
(5’-GGGCGCAAGCCU-3’)

389 RNA atoms, ∼4000 water and 11 Na+

SREMD random walks in temperature space (56
ladders from 285K to 646K) with molecular dynamic
trajectories

210,000 ns simulations with ∼105,000,000
configurations

Unfortunately, sampling still not converged!

Simplicial Complex for Data Representation 45



Outline Why Topology? Simplicial Complex Persistent Homology
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Dimensionality Reduction using Contact Map

Massive volume and high dimensionality: 100M samples in 12K
Cartesian coordinates ⇒ contact maps as 55-bit string

Samples are not in equilibrium distribution

Looking for a needle in a haystack:
• intermediates/transition states of interests are of low-density
• folded/unfolded states are dominant

G1

G2

U124

G3

C11
3

C4

C102

G5

G91

C6 A7

A8

Figure: Left: NMR structure of the GCAA tetraloop. Right: Contact map.
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Mapper with density filters in biomolecular folding

Reference: Bowman-Huang-Yao et al. J. Am. Chem. Soc. 2008; Yao,
Sun, Huang, et al. J. Chem. Phys. 2009.

densest regions (energy basins) may correspond to metastates (e.g.
folded, extended)

intermediate/transition states on pathways connecting them are
relatively sparse

Therefore with Mapper

clustering on density level sets helps separate and identify
metastates and intermediate/transition states

graph representation reflects kinetic connectivity between states
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Applications of Mapper Graph

A vanilla version

K =




exp(−d11) exp(−d12)
exp(−d21) exp(−d22)

. . .

exp(−dnn)




row sum clustering graph

Figure: Mapper Flow Chart

1 Kernel density estimation h(x) =
∑
iK(x, xi) with Hamming

distance for contact maps

2 Rank the data by h and divide the data into n overlapped sets

3 Single-linkage clustering on each level sets

4 Graphical representation
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Mapper output for Unfolding Pathways
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Figure: Unfolding pathway
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Mapper output for Refolding Pathways
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Applications of Mapper Graph

Example: Progression of Breast Cancer

We study samples of expression data in Rn (n = 262) from 295
breast cancers as well as additional samples from normal breast
tissue.
• The distance metric was given by the correlation between
(projected) expression vectors.
• The filter function used was a measure taking values in R of the
deviation of the expression of the tumor samples relative to normal
controls (l2-eccentrality).
• The cover was overlapping intervals in R.

Two branches of breast cancer progression are discovered.
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Applications of Mapper Graph

Progression of Breast Cancer: l2-eccentrality
Mapping

Diagram of gene expression profiles for breast cancer
M. Nicolau, A. Levine, and G. Carlsson, PNAS 2011

Figure: Monica Nicolau, A. Levine, and Gunnar Carlsson, PNAS’10
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Note: Progression of Breast Cancer

The lower right branch itself has a subbranch (referred to as
c-MYB+ tumors), which are some of the most distinct from normal
and are characterized by high expression of genes including c-MYB,
ER, DNALI1 and C9ORF116. Interestingly, all patients with
c-MYB+ tumors had very good survival and no metastasis.

These tumors do not correspond to any previously known breast
cancer subtype; the grouping seems to be invisible to classical
hierarchical clustering methods.
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Applications of Mapper Graph

Example: differentiation process using single cell data

166 Part I Topological Data Analysis

Day 2 Day 6 Day 3 Day 4 Day 5 

Figure 2.31 Over time, embryonic stem cells differentiate into distinct cell types.
These pictures capture the in vitro differentiation of mouse embryonic stem cells
into motor neurons over the course of a week. Embryonic stem cells are marked in
red, and fully differentiated neurons in green. Figure from experiment performed
by Elena Kandror, Abbas Rizvi and Tom Maniatis at Columbia University.
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Figure 2.32 The different regions in the Mapper graph nicely line up with
different points along the differentiation timeline. Source: [431].

Effectively, the issue is that a mismatch between the scale of change in the data
and the width of the overlap of inverse images can give rise to dramatic changes
in the Mapper graph in response to small shifts in filter function or cover. (See
Figure 2.33 for a representative example of this phenomenon.)

There are various different approaches to handling this instability in practice.
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Differentiation process visualization by Mapper

Over time, undifferentiated embryonic cells become differentiated
motor neurons when retinoic acid and sonic hedgehog (a
differentiation-promoting protein) are applied.

Mapper graph of differentiation process from murine embryonic stem
cells to motor neurons:
• The data generated corresponds to RNA expression profiles from
roughly 2000 single cells.
• The distance metric was provided by correlation between
expression vectors.
• The filter function used was multidimensional scaling (MDS)
projection into R2.
• The cover was overlapping rectangles in R2.
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Mapper Graph of Differentiation Process

166 Part I Topological Data Analysis

Day 2 Day 6 Day 3 Day 4 Day 5 

Figure 2.31 Over time, embryonic stem cells differentiate into distinct cell types.
These pictures capture the in vitro differentiation of mouse embryonic stem cells
into motor neurons over the course of a week. Embryonic stem cells are marked in
red, and fully differentiated neurons in green. Figure from experiment performed
by Elena Kandror, Abbas Rizvi and Tom Maniatis at Columbia University.
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Figure 2.32 The different regions in the Mapper graph nicely line up with
different points along the differentiation timeline. Source: [431].

Effectively, the issue is that a mismatch between the scale of change in the data
and the width of the overlap of inverse images can give rise to dramatic changes
in the Mapper graph in response to small shifts in filter function or cover. (See
Figure 2.33 for a representative example of this phenomenon.)

There are various different approaches to handling this instability in practice.

Figure: The different regions in the Mapper graph nicely line up with different
points along the differentiation timeline. Rizvi et al. Nature Biotechnol. 35.6
(2017), 551-560.
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Example: Brain Tumor 7 Single Cell Expression Data 403
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Figure 7.2 Single cell RNA-seq allows the spatial and temporal study of the struc-
ture of tumors. This is a particular case of a patient with two focal glioblastomas,
on the left and right hemispheres. After surgery and standard treatment, the tumor
reappeared on the left side. Genomic analysis (on the left) shows that the initial
tumors were seeded by two independent, but related clones. The recurrent tumor
was genetically similar to the one on the left. The expression profiles from single
cells from the two foci at diagnosis and the relapse recapitulate the clonal history.
Transcriptionally and genetically, the recurrence resembles the left parental tumor.
A small subset of the cells in the initial left tumor show a similar transcription pro-
file as the recurrent tumor, suggesting that the resistant population originated from
a subclonal population in the original tumor. Source: [320]. From Jin-Ku Lee et
al., Spatiotemporal genomic architecture informs precision oncology in glioblas-
toma, Nature Genetics 49.4 (2017): 594-599. c⃝ 2017. Reprinted with permission
from Springer Nature.

Single cell techniques provide the means to study heterogeneous cell popula-
tions. The following example studies the mutational and transcriptional profile of a
multicentric glioblastoma. Multicentric glioblastomas represent tumors that occur
in multiple discrete areas in the brain. In this particular case, at diagnosis, the tumor
presented two focal points, on the left and on the right brain frontal lobes. After
surgery, chemoradiotherapy, and EGFR targeted therapy, the tumor recurred on
the left side. Different samples were taken from the initial left and right loci and
two samples at recurrence. The history of this tumor was then reconstructed using
genomic sequencing from each of the biopsies. The genetic characterization shows
that the right tumor shares most but not all genetic alterations with the left tumor,
indicating a common origin for the two clones that seeded the left and right tumors.

Figure: A patient with two focal glioblastomas, on the left and right hemispheres. After surgery and standard treatment, the tumor
reappeared on the left side. Genomic analysis shows that the initial tumors were seeded by two independent, but related clones. The
recurrent tumor was genetically similar to the left one. Jin-Ku Lee et al. Nature Genetics 49.4 (2017): 594-599.
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Mapper Graph of Single Cell Seq.

7 Single Cell Expression Data 403
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Figure 7.2 Single cell RNA-seq allows the spatial and temporal study of the struc-
ture of tumors. This is a particular case of a patient with two focal glioblastomas,
on the left and right hemispheres. After surgery and standard treatment, the tumor
reappeared on the left side. Genomic analysis (on the left) shows that the initial
tumors were seeded by two independent, but related clones. The recurrent tumor
was genetically similar to the one on the left. The expression profiles from single
cells from the two foci at diagnosis and the relapse recapitulate the clonal history.
Transcriptionally and genetically, the recurrence resembles the left parental tumor.
A small subset of the cells in the initial left tumor show a similar transcription pro-
file as the recurrent tumor, suggesting that the resistant population originated from
a subclonal population in the original tumor. Source: [320]. From Jin-Ku Lee et
al., Spatiotemporal genomic architecture informs precision oncology in glioblas-
toma, Nature Genetics 49.4 (2017): 594-599. c⃝ 2017. Reprinted with permission
from Springer Nature.

Single cell techniques provide the means to study heterogeneous cell popula-
tions. The following example studies the mutational and transcriptional profile of a
multicentric glioblastoma. Multicentric glioblastomas represent tumors that occur
in multiple discrete areas in the brain. In this particular case, at diagnosis, the tumor
presented two focal points, on the left and on the right brain frontal lobes. After
surgery, chemoradiotherapy, and EGFR targeted therapy, the tumor recurred on
the left side. Different samples were taken from the initial left and right loci and
two samples at recurrence. The history of this tumor was then reconstructed using
genomic sequencing from each of the biopsies. The genetic characterization shows
that the right tumor shares most but not all genetic alterations with the left tumor,
indicating a common origin for the two clones that seeded the left and right tumors.

Simplicial Complex for Data Representation 58



Outline Why Topology? Simplicial Complex Persistent Homology

Applications of Mapper Graph

Note: Mapper Graph

Using Mapper, one can appreciate a more continuous structure that
recapitulates the clonal and genetic history.
• The tumor on the right appears to be transcriptionally distinct
from the left tumor and the recurrence tumor.
• Expression profiles from cells in the recurrence tumor resembled
the originating initial tumor.
• This is an important finding, as it shows a continued progression
at the expression level, with a few cells at diagnosis having a similar
pattern as cells at relapse.
• It also shows that EGFR mutation is a subclonal event, occurring
only in the tumor at diagnosis that is not responsible for the relapse.
So tumors with heterogeneous populations of cells are less sensitive
specific therapies which target a subpopulation..
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Čech, Vietoris-Rips, and Witness Complexes

Čech complex

Definition (Čech Complex Cε)

In a metric space (X, d), define a cover of X, X = ∪αUα where
Uα = Bε(tα) := {x ∈ X : d(x− tα) ≤ ε}. V = {Uα} and define
Σ = {UI : ∩α∈IUI 6= ∅}.

Closedness under deletion

Can be applied to any metric space X

Nerve Theorem: if every UI is contractible, then X has the same
homotopy type as Σ.

Simplicial Complex for Data Representation 60



Outline Why Topology? Simplicial Complex Persistent Homology

Čech, Vietoris-Rips, and Witness Complexes

Example: Čech Complex

Figure: Čech complex of a circle, Cε, covered by a set of balls.
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Vietoris-Rips complex

Čech complex is hard to compute, even in Euclidean space

One can easily compute an upper bound for Čech complex
• Construct a Čech subcomplex of 1-dimension, i.e. a graph with
edges connecting point pairs whose distance is no more than ε.
• Find the clique complex, i.e. maximal complex whose 1-skeleton is
the graph above, where every k-clique is regarded as a k − 1 simplex

Definition (Vietoris-Rips Complex)

Let V = {xα ∈ X}. Define V Rε = {UI ⊆ V : d(xα, xβ) ≤ ε, α, β ∈ I}.
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Example: Rips Complex

Figure: Left: Čech complex gives a circle; Right: Rips complex gives a sphere
S2.
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Generalized Vietoris-Rips for Symmetric Relations

Definition (Symmetric Relation Complex)

Let V be a set and a symmetric relation R = {(u, v)} ⊆ V 2 such that
(u, v) ∈ R⇒ (v, u) ∈ R. Σ collects subsets of V which are in pairwise
relations.

Closedness under deletion: if σ ∈ Σ is a set of related items, then
any subset τ ⊆ σ is a set of related items

Generalized Vietoris-Rips complex beyond metric spaces

E.g. Zeeman’s tolerance space

C.H. Dowker defines simplicial complex for unsymmetric relations
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Sandwich Theorems

Rips is easier to compute than Cech
• even so, Rips is exponential to dimension generally

However Vietoris-Rips CAN NOT preserve the homotopy type as
Cech

But there is still a hope to find a lower bound on homology –

Theorem (“Sandwich”)

V Rε ⊆ Cε ⊆ V R2ε

If a homology group “persists” through Rε → R2ε, then it must
exists in Cε; but not the vice versa.
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A further simplification: Witness complex

Definition (Strong Witness Complex)

Let V = {tα ∈ X}. Define
W s
ε = {UI ⊆ V : ∃x ∈ X,∀α ∈ I, d(x, tα) ≤ d(x, V ) + ε}.

Definition (Week Witness Complex)

Let V = {tα ∈ X}. Define
Ww
ε = {UI ⊆ V : ∃x ∈ X,∀α ∈ I, d(x, tα) ≤ d(x, V−I) + ε}.

V can be a set of landmarks, much smaller than X

Monotonicity: W ∗ε ⊆W ∗ε′ if ε ≤ ε′
But not easy to control homotopy types between W ∗ and X
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Strategic Simplicial Complex for Flow Games
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F 0, 0 2, 3

(a) Battle of the sexes

O F

O 4, 2 0, 0

F 1, 0 2, 3

(b) Modified battle of
the sexes

It is easy to see that these two games have the same pairwise comparisons, which will lead to
identical equilibria for the two games: (O, O) and (F, F ). It is only the actual equilibrium payoffs
that would differ. In particular, in the equilibrium (O, O), the payoff of the row player is increased
by 1.

The usual solution concepts in games (e.g., Nash, mixed Nash, correlated equilibria) are defined
in terms of pairwise comparisons only. Games with identical pairwise comparisons share the same
equilibrium sets. Thus, we refer to games with identical pairwise comparisons as strategically
equivalent games.

By employing the notion of pairwise comparisons, we can concisely represent any strategic-form
game in terms of a flow in a graph. We recall this notion next. Let G = (N, L) be an undirected
graph, with set of nodes N and set of links L. An edge flow (or just flow) on this graph is a function
Y : N × N → R such that Y (p,q) = −Y (q,p) and Y (p,q) = 0 for (p,q) /∈ L [21, 2]. Note that
the flow conservation equations are not enforced under this general definition.

Given a game G, we define a graph where each node corresponds to a strategy profile, and
each edge connects two comparable strategy profiles. This undirected graph is referred to as the
game graph and is denoted by G(G) � (E, A), where E and A are the strategy profiles and pairs
of comparable strategy profiles defined above, respectively. Notice that, by definition, the graph
G(G) has the structure of a direct product of M cliques (one per player), with clique m having
hm vertices. The pairwise comparison function X : E × E → R defines a flow on G(G), as it
satisfies X(p,q) = −X(q,p) and X(p,q) = 0 for (p,q) /∈ A. This flow may thus serve as an
equivalent representation of any game (up to a “non-strategic” component). It follows directly
from the statements above that two games are strategically equivalent if and only if they have the
same flow representation and game graph.

Two examples of game graph representations are given below.

Example 2.2. Consider again the “battle of the sexes” game from Example 2.1. The game graph
has four vertices, corresponding to the direct product of two 2-cliques, and is presented in Figure 2.

(O, O) (O, F )

(F, O) (F, F )

3 2

2

3

Figure 2: Flows on the game graph corresponding to “battle of the sexes” (Example 2.2).

Example 2.3. Consider a three-player game, where each player can choose between two strategies
{a, b}. We represent the strategic interactions among the players by the directed graph in Figure
3a, where the payoff of player i is −1 if its strategy is identical to the strategy of its successor

7

O F

O 3, 2 0, 0

F 0, 0 2, 3

(a) Battle of the sexes

O F

O 4, 2 0, 0

F 1, 0 2, 3

(b) Modified battle of
the sexes

It is easy to see that these two games have the same pairwise comparisons, which will lead to
identical equilibria for the two games: (O, O) and (F, F ). It is only the actual equilibrium payoffs
that would differ. In particular, in the equilibrium (O, O), the payoff of the row player is increased
by 1.

The usual solution concepts in games (e.g., Nash, mixed Nash, correlated equilibria) are defined
in terms of pairwise comparisons only. Games with identical pairwise comparisons share the same
equilibrium sets. Thus, we refer to games with identical pairwise comparisons as strategically
equivalent games.

By employing the notion of pairwise comparisons, we can concisely represent any strategic-form
game in terms of a flow in a graph. We recall this notion next. Let G = (N, L) be an undirected
graph, with set of nodes N and set of links L. An edge flow (or just flow) on this graph is a function
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equivalent representation of any game (up to a “non-strategic” component). It follows directly
from the statements above that two games are strategically equivalent if and only if they have the
same flow representation and game graph.

Two examples of game graph representations are given below.

Example 2.2. Consider again the “battle of the sexes” game from Example 2.1. The game graph
has four vertices, corresponding to the direct product of two 2-cliques, and is presented in Figure 2.
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Example 2.3. Consider a three-player game, where each player can choose between two strategies
{a, b}. We represent the strategic interactions among the players by the directed graph in Figure
3a, where the payoff of player i is −1 if its strategy is identical to the strategy of its successor
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Strategic simplicial complex is the clique complex of pairwise
comparison graph above, inspired by ranking

Every game can be decomposed as the direct sum of potential
games and zero-sum games (harmonic games) (Candogan, Menache,
Ozdaglar and Parrilo 2010)
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Outline

1 Why Topological Methods?
Methods for Visualizing a Data Geometry

2 Simplicial Complex for Data Representation
Simplicial Complex
Nerve, Reeb Graph, and Mapper
Applications of Mapper Graph
Čech, Vietoris-Rips, and Witness Complexes

3 Persistent Homology
Betti Numbers
Betti Number at Different Scales
Applications: H1N1 Evolution, Sensor Network Coverage, Natural
Image Patches
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Betti Numbers

Betti Numbers: the number of i-dim holes
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Betti Numbers

Betti Numbers: the number of i-dim holes

Figure: Sphere: β0 = 1, β1 = 0, β2 = 1, and βk = 0 for k ≥ 3
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Betti Numbers: the number of i-dim holes
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Betti Numbers

Betti Numbers and Homology Groups

Betti numbers are computed as dimensions of Boolean vector spaces
(E. Noether, Z2-homology group)

βi(X) = dimHi(X,Z2), Z2-homology or more general Homology
group associated with any fields or integral domain (e.g. Z, Q, and
R)

Hi(X) is functorial, i.e. continuous mapping f : X → Y induces
linear transformation Hi(f) : Hi(X)→ Hi(Y ), structure preserving

computation is simple linear algebra over fields or integers

data representation by simplicial complexes
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Topology at Different Scales

Is it a circle, dots, or circle of circles?

How to find robust topology at different scales?
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Betti Number at Different Scales

Example I: Persistent Homology of Čech Complexes

Figure: Scale ε1: β0 = 1, β1 = 3
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Betti Number at Different Scales

Example I: Persistent Homology of Čech Complexes

Figure: Scale ε2 > ε1: β0 = 1, β1 = 2. Persistent β0 = 1 and β1 = 1 from ε1
to ε2 suggest that a connected component and a loop are stable topological
features here.
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Betti Number at Different Scales

Example II: Persistence 0-Homology induced by Height
Function

Figure: The birth and death of connected components.
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Betti Number at Different Scales

Example III: Persistent Homology as Online Algorithm to
Track Topology Changements

Figure: The birth and death of simplices.
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Persistent Betti Numbers: Barcodes

Toolbox: JavaPlex (https:
//github.com/appliedtopology/javaplex/wiki/Tutorial)
• Java version of Plex, work with matlab
• Rips, Witness complex, Persistence Homology

Other Choices: Plex 2.5 for Matlab (not maintained any more),
Dionysus (Dimitry Morozov)
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Betti Number at Different Scales

Persistent Homology: Algebraic Characterization

All above gives rise to a filtration of simplicial complex

∅ = Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ . . .

Functoriality of inclusion: there are homomorphisms between
homology groups

0→ H1 → H2 → . . .

A persistent homology is the image of Hi in Hj with j > i.

Persistent Homology 79



Outline Why Topology? Simplicial Complex Persistent Homology

Betti Number at Different Scales

Persistent 0-Homology of Rips Complex

Equivalent to single-linkage clustering or minimal spanning tree

Barcode is the single linkage dendrogram (tree) without labels

Kleinberg’s Impossibility Theorem for clustering: no clustering
algorithm satisfies scale invariance, richness, and consistency

Memoli & Carlsson 2009: single-linkage is the unique persistent
clustering (functorial) with scale invariance

Open Question: but, is persistence the necessity for clustering?

Notes: try matlab command linkage or R hclust for single-linkage
clustering.

Persistent Homology 80



Outline Why Topology? Simplicial Complex Persistent Homology

Applications: H1N1 Evolution, Sensor Network Coverage, Natural Image Patches

Application: Evolutionary Trees

Figure: Are phylogenetic trees good representations for evolution?
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Virus gene reassortment may introduce loops

Figure 5.16 Left: Reassortments in viruses lead to incompatibility between trees. Reticulate network representing the reassortment of
three parental strains. The reticulate network results from merging the three parental phylogenetic trees. Source: [100]. Right: Indeed,
incompatibility between tree topologies inferred from different genes is a criterion used for the identification of events of genomic material
exchange. Here we represent two genes of influenza A virus with different topologies using phylogenetic networks. From Joseph Minhow
Chan, Gunnar Carlsson, and Raúl Rabadán, ‘Topology of viral evolution’, Proceedings of the National Academy of Sciences 110.46 (2013):
18566–18571. Reprinted with Permission from Proceedings of the National Academy of Sciences.
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Influenza

290 Part II Biological Applications

between ferrets, suggesting that human to human transmission of H7N9 has most
likely already occurred [548]. These outbreaks underscore the need for further
investigation into the mechanisms of viral evolution and the adaptation of animal
viruses to humans.

Influenza viruses are enveloped and nearly 100 nm in diameter. Their genome is
13,000 bases long and is composed of eight segments of single-stranded antisense
RNA (Figure 5.14). Each segment encodes one or two viral genes. Antisense RNA
is the complement of the RNA that codes for proteins; thus it cannot be directly
translated into functional protein. In order for the influenza genome to express
protein, positive-sense strands must be produced from the template of the antisense
strands. Further complexity arises when the virus attempts to make new virions,
the infectious particles that allow the virus to be transmitted outside of the host
cell. The replicating virus must duplicate its original antisense RNA and, in order
to do so, it must polymerize new strands of ribonucleotides complementary to the
template of the positive-sense RNA. Influenza carries its own polymerase complex,
which it uses for all of its RNA replication; in fact, the three longest genes of
influenza (PB2, PB1, PA) code for the three proteins directly involved in replicating
genomic material. The polymerase complex interacts directly with viral RNA and
the nucleoproteins (NPs) that attach to it. An RNA segment, together with a copy

hemagglutinin

neuraminidase

PB2
PB1

PA
HA
NP
NA

M
NS

matrix

ion channel

Figure 5.14 Influenza A is an antisense single-stranded RNA virus whose genome
is composed of eight different segments containing one or two genes per segment.
This virus contains an envelope borrowed from the infected cell that expressed
two viral proteins, hemagglutinin and neuraminidase. When circulating viruses
co-infect the same cell, new viruses can be created that contain segments from
both parents. This phenomenon, called reassortment, can lead to dramatic adapta-
tions to novel environments, and it is thought to be one of the contributing factors
to human influenza pandemics.
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Origins of H1N1-2009

294 Part II Biological Applications
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Figure 5.15 Origins of H1N1 2009 pandemic virus. Using phylogenetic trees,
the history of the HA gene of the 2009 H1N1 pandemic virus was reconstructed.
It was related to viruses that circulated in pigs potentially since the 1918 H1N1
pandemic. These viruses had diverged since that date into various independent
strains, infecting humans and swine. Major reassortments between strains led to
new sets of segments from different sources. In 1998, triple reassortant viruses
were found infecting pigs in North America. These triple reassortant viruses
contained segments that were circulating in swine, humans and birds. Further
reassortment of these viruses with other swine viruses created the ancestors of this
pandemic. Until this day, it is unclear how, where or when these reassortments hap-
pened. Source: [506]. From New England Journal of Medicine, Vladimir Trifonov,
Hossein Khiabanian, and Raúl Rabadán, Geographic dependence, surveillance,
and origins of the 2009 influenza A (H1N1) virus, 361.2, 115–119. c⃝ 2009
Massachusetts Medical Society. Reprinted with permission from Massachusetts
Medical Society.
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Figure 5.15 Origins of H1N1 2009 pandemic virus. Using phylogenetic trees,
the history of the HA gene of the 2009 H1N1 pandemic virus was reconstructed.
It was related to viruses that circulated in pigs potentially since the 1918 H1N1
pandemic. These viruses had diverged since that date into various independent
strains, infecting humans and swine. Major reassortments between strains led to
new sets of segments from different sources. In 1998, triple reassortant viruses
were found infecting pigs in North America. These triple reassortant viruses
contained segments that were circulating in swine, humans and birds. Further
reassortment of these viruses with other swine viruses created the ancestors of this
pandemic. Until this day, it is unclear how, where or when these reassortments hap-
pened. Source: [506]. From New England Journal of Medicine, Vladimir Trifonov,
Hossein Khiabanian, and Raúl Rabadán, Geographic dependence, surveillance,
and origins of the 2009 influenza A (H1N1) virus, 361.2, 115–119. c⃝ 2009
Massachusetts Medical Society. Reprinted with permission from Massachusetts
Medical Society.

Figure: Origins of H1N1 2009 pandemic virus. Using phylogenetic trees, the history of the HA gene of the 2009 H1N1 pandemic
virus was reconstructed. It was related to viruses that circulated in pigs potentially since the 1918 H1N1 pandemic. These viruses had
diverged since that date into various independent strains, infecting humans and swine. Major reassortments between strains led to new
sets of segments from different sources. In 1998, triple reassortant viruses were found infecting pigs in North America. These triple
reassortant viruses contained segments that were circulating in swine, humans and birds. Further reassortment of these viruses with other
swine viruses created the ancestors of this pandemic. Until this day, it is unclear how, where or when these reassortments happened.
Source: [506]. From New England Journal of Medicine, Vladimir Trifonov, Hossein Khiabanian, and Raúl Rabadán, Geographic
dependence, surveillance, and origins of the 2009 influenza A (H1N1) virus, 361.2, 115–119.
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When Persistent Betti-0 meets Pylogenetic Trees
5 Evolution, Trees, and Beyond 297
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Figure 5.17 In case of vanishing higher dimensional homology, zero dimen-
sional homology generates trees. When applied to only one gene of influenza
A, in this case hemagglutinin, the only significant homology occurs in dimen-
sion zero (panel A). The barcode represents a summary of a clustering procedure
(panel B), that recapitulates the known phylogenetic relation between different
hemagglutinin types (panel C). Source: [100]. From Joseph Minhow Chan, Gun-
nar Carlsson, and Raúl Rabadán, ‘Topology of viral evolution’, Proceedings of
the National Academy of Sciences 110.46 (2013): 18566–18571. Reprinted with
Permission from Proceedings of the National Academy of Sciences.

higher homology, the zero dimensional homology closely follows the traditional
tree structure.

However, when studying the persistent homology for several genes at the same
time, large numbers of homology classes appear at dimensions one and higher,
indicating pervasive reassortments. By looking in detail at the cycles in higher
dimensional homologies, we can attribute these cycles to different biological
processes that violate tree-like assumptions: homoplasies, recombinations or reas-
sortments. If several sequences generate a large non-trivial class, a reassortment
event likely took place among the ancestors of these isolates [100]. We can gen-
erate useful statistics based on barcode information; for instance, we can estimate
how often different combinations of the eight segments cosegregate in an effort to
identify preferences among the potential combinations. As an example, we rarely
see cycles form with the segments that interact to form the polymerase complex
PA, PB1, PB2, NP, indicating that these segments tend to cosegregate [100]. This

Figure: In case of vanishing higher dimensional homology, zero dimen- sional homology generates trees. When applied to only one
gene of influenza A, in this case hemagglutinin, the only significant homology occurs in dimen- sion zero (panel A). The barcode
represents a summary of a clustering procedure (panel B), that recapitulates the known phylogenetic relation between different
hemagglutinin types (panel C). Source: [100]. From Joseph Minhow Chan, Gunnar Carlsson, and Raúl Rabadán, ‘Topology of viral
evolution’, Proceedings of the National Academy of Sciences 110.46 (2013): 18566–18571.

Persistent Homology 85



Outline Why Topology? Simplicial Complex Persistent Homology

Applications: H1N1 Evolution, Sensor Network Coverage, Natural Image Patches

Whole Genomic Persistent Betti Numbers

Figure 5.18 Influenza evolves through mutations and reassortment. When the persistent homology approach is applied to finite metric
spaces derived from only one segment, up to small noise, the homology is zero dimensional suggesting a tree-like process (left). However,
when different segments are put together, the structure is more complex revealing non-trivial homology at different dimensions (right). 3105
influenza whole genomes were analyzed. Data from isolates collected between 1956 to 2012; all influenza A subtypes.
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Two modes in persistent β1 distributions suggest intra-
and inter-subtypes

5 Evolution, Trees, and Beyond 299

Figure 5.19 Co-reassortment of viral segments as structure in persistent homol-
ogy diagrams. Left: The non-random cosegregation of influenza segments was
measured by testing a null model of equal reassortment. Significant cosegregation
was identified within PA, PB1, PB2, NP, consistent with the cooperative func-
tion of the polymerase complex. Source: [100]. Right: The persistence diagram
for whole-genome avian flu sequences revealed bimodal topological structure.
Annotating each interval as intra- or inter-subtype clarified a genetic barrier to
reassortment at intermediate scales. From Joseph Minhow Chan, Gunnar Carls-
son, and Raúl Rabadán, ‘Topology of viral evolution’, Proceedings of the National
Academy of Sciences 110.46 (2013): 18566–18571. Reprinted with Permission
from Proceedings of the National Academy of Sciences.

finding is consistent with the cooperative functioning of these proteins, which
engenders negative selection against new combinations that do not cooperate as
effectively (Figure 5.19).

In addition, each of the sequenced viruses (isolates) comes with information
of where and when the virus was isolated, together with the hemagglutinin and
neuraminidase subtype. Under the assumption that smaller cycles in the non-trivial
homology classes are in some way closer genetically, one can also infer when and
where the event took place and what the types of the parental strains were. Other
relevant information is provided by the birth and death times of the class which
provide information about how genetically distant parental viruses were. Numbers
associated to one and higher dimensional classes (birth, death and size of bars in
the barcode diagram) provide a useful way to summarize the type of event. The size
of the bars associated to non-zero homology classes is also indicative of the type of
reassortment events that could occur. The persistence diagram for whole genomes
of avian flu sequences reveals bimodal topological structure (Figure 5.19, right).
In other words, there are smaller bars and larger bars. Inspection of generators
of different bars immediately reveals two types of reassortment processes. Small
bars are generated by mixing of viruses that are closely related, belonging to the

Figure: Co-reassortment of viral segments as structure in persistent homol- ogy diagrams. Left: The non-random cosegregation of
influenza segments was measured by testing a null model of equal reassortment. Significant cosegregation was identified within PA, PB1,
PB2, NP, consistent with the cooperative func- tion of the polymerase complex. Source: [100]. Right: The persistence diagram for
whole-genome avian flu sequences revealed bimodal topological structure. Annotating each interval as intra- or inter-subtype clarified a
genetic barrier to reassortment at intermediate scales. From Joseph Minhow Chan, Gunnar Carlsson, and Raúl Rabadán, ‘Topology of viral
evolution’, Proceedings of the National Academy of Sciences 110.46 (2013): 18566–18571.
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Application: Sensor Network Coverage by Persistent
Homology

V. de Silva and R. Ghrist (2005) Coverage in sensor networks via
persistent homology.

Ideally sensor communication can be modeled by Rips complex
• two sensors has distance within a short range, then two sensors
receive strong signals;
• two sensors has distance within a middle range, then two sensors
receive weak signals;
• otherwise no signals
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Sandwich Theorem

Theorem (de Silva-Ghrist 2005)

Let X be a set of points in Rd and Cε(X) the Čech complex of the cover
of X by balls of radius ε/2. Then there is chain of inclusions

Rε′(X) ⊂ Cε(X) ⊂ Rε(X) whenever
ε

ε′
≥

√
2d

d+ 1
.

Moreover, this ratio is the smallest for which the inclusions hold in
general.

Note: this gives a sufficient condition to detect holes in sensor network
coverage

Čech complex is hard to compute while Rips is easy;

If a hole persists from Rε′ to Rε, then it must exists in Cε.
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Persistent 1-Homology in Rips Complexes

Figure: Left: Rε′ ; Right: Rε. The middle hole persists from Rε′ to Rε.
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Application: Natural Image Statistics

G. Carlsson, V. de Silva, T. Ishkanov, A. Zomorodian (2008) On the
local behavior of spaces of natural images, International Journal of
Computer Vision, 76(1):1-12.

An image taken by black and white digital camera can be viewed as
a vector, with one coordinate for each pixel

Each pixel has a “gray scale” value, can be thought of as a real
number (in reality, takes one of 255 values)

Typical camera uses tens of thousands of pixels, so images lie in a
very high dimensional space, call it pixel space, P
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Natural Image Statistics

D. Mumford: What can be said about the set of images I ⊆ P one
obtains when one takes many images with a digital camera?

Lee, Mumford, Pedersen: Useful to study local structure of
images statistically
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Natural Image Statistics

Figure: 3× 3 patches in images
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Natural Image Statistics

Lee-Mumford-Pedersen [LMP] study only high contrast patches.

Collect: 4.5M high contrast patches from a collection of images
obtained by van Hateren and van der Schaaf

Normalize mean intensity by subtracting mean from each pixel value
to obtain patches with mean intensity = 0

Puts data on an 8-D hyperplane, ≈ R8

Furthermore, normalize contrast by dividing by the norm, so obtain
patches with norm = 1, whence data lies on a 7-D ellipsoid, ≈ S7
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Natural Image Statistics: Primary Circle

High density subsets M(k = 300, t = 0.25):
Codensity filter: dk(x) be the distance from x to its k-th nearest
neighbor
• the lower dk(x), the higher density of x
Take k = 300, the extract 5, 000 top t = 25% densest points, which
concentrate on a primary circle
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Natural Image Statistics: Three Circles

Take k = 15, the extract 5, 000 top 25% densest points, which
shows persistent β1 = 5, 3-circle model
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Natural Image Statistics: Three Circles

Generators for 3 circles
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Natural Image Statistics: Klein Bottle
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Natural Image Statistics: Klein Bottle Model
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