
Manifold Learning II:
Laplacian, Diffusion, and

Stochastic Neighbor
Embedding

姚 遠
2023

2

����������������� 6KDUHG�&RQYHUVDWLRQ

KWWSV���SRH�FRP�V�'N�=7J.6�EQI,.�+=D,) ���

ChatGPT

What s̓ manifold?

A manifold is a mathematical concept used in geometry and
topology to describe a space that locally looks like Euclidean
space. In other words, a manifold is a space that is locally flat,
but globally may have a more complicated shape.
Formally, a manifold is a topological space that is locally
homeomorphic to Euclidean space. This means that around
each point in the manifold, there is a neighborhood that can be
mapped onto an open subset of Euclidean space using a
continuous function that preserves certain properties, such as
continuity and differentiability.
Manifolds come in various dimensions, from one-dimensional
curves to higher-dimensional spaces. They have wide-ranging
applications in physics, engineering, computer science, and
other fields. For example, manifolds are used in computer
graphics to represent 3D shapes, in robotics to describe the
configuration space of a robot, and in general relativity to
describe the curvature of spacetime.

About this bot

ChatGPT
This conversation may have been edited by
the sharer. This bot may make incorrect
statements. It does not have knowledge of
events after 2021.

This bot is powered by OpenAI

Poe Try Poe now
Conversation shared 12m ago

Try Poe now

Generative Models in Manifold Learning

Spectral Geometric EmbeddingDimensionality Reduction
Given x1, . . . , xn ∈ M ⊂ RN ,
Find y1, . . . , yn ∈ Rd where d << N

ISOMAP (Tenenbaum, et al, 00)
LLE (Roweis, Saul, 00)
Laplacian Eigenmaps (Belkin, Niyogi, 01)
Local Tangent Space Alignment (Zhang, Zha, 02)
Hessian Eigenmaps (Donoho, Grimes, 02)
Diffusion Maps (Coifman, Lafon, et al, 04)

Related: Kernel PCA (Schoelkopf, et al, 98)

Geometric Methods and Manifold Learning – p. 25

Meta-Algorithm
• Construct a neighborhood graph
• Construct a posi2ve semi-definite kernel
• Find the spectrum decomposi2on

Kernel Spectrum

Recall: ISOMAP
• Construct a neighborhood graph

• Find shortest path (geodesic) distance between
every pair of nodes (points)

• Embed using classical Mul2dimensional Scaling

6

Recall: LLE
• Construct a neighborhood Graph G=(V,E)
• Solve weights

• Compute Embedding

7

2. ISOMAP 57

e.g.2. k-nearest neighbor, (i, j) ⇤ E ⇥ j ⇤ Nk(i), which leads to a directed
graph.

2. Construct a positive semi-definite matrix K (kernel).

3. Eigen-decomposition K = U�UT , then Yd = Ud�
1
2
d , where choose d eigen-

vectors (top or bottom) Ud.

Example 3 (PCA). G is complete, K = ⇥̂n is a covariance matrix.

Example 4 (MDS). G is complete, K = � 1
2HDHT , where Dij = d2(xi, xj).

Example 5 (ISOMAP). G is incomplete.

Dij =

�
d(xi, xj) if (i, j) ⇤ E,

d̂g(xi, xj) if (i, j) ⌅⇤ E.

where d̂g is a graph shorted path. Then

K = �1

2
HDHT .

Note that K is positive semi-definite if and only if D is a squared distance matrix.

Example 6 (LLE). G is incomplete. K = (I �W)T (I �W), where

Wn�n
ij =

�
wij j ⇤ N (i),

0 other’s.

and wij solves the following optimization problem

minP
j wij=1

�Xi �
⇥

j⇥N (i)

wijX̄j�2, X̄j = Xj �Xi.

After obtaining W , compute the global embedding d-by-n embedding matrix Y =
[Y1, . . . , Yn],

min
Y

n⇥

i=1

�Yi �
n⇥

j=1

WijYj�2 = trace((I �W)Y TY (I �W)T).

This is equivalent to find smallest eigenvectors of K = (I �W)T (I �W).

2. ISOMAP

ISOMAP is an extension of MDS, where pairwise euclidean distances between
data points are replaced by geodesic distances, computed by graph shortest path
distances.

(1) Construct a neighborhood graph G = (V,E, dij) such that
V = {xi : i = 1, . . . , n}
E = {(i, j) : if j is a neighbor of i, i.e. j ⇤ Ni}, e.g. k-nearest

neighbors, �-neighbors
dij = d(xi, xj), e.g. Euclidean distance when xi ⇤ Rp

(2) Compute graph shortest path distances
dij = minP=(xi,...,xj)(�xi � xt1�+ . . .+ �xtk�1 � xj�), is the length

of a graph shortest path connecting i and j
Dijkstra’s algorithm (O(kn2 log n)) and Floyd’s Algorithm (O(n3))

2. ISOMAP 57

e.g.2. k-nearest neighbor, (i, j) ⇤ E ⇥ j ⇤ Nk(i), which leads to a directed
graph.

2. Construct a positive semi-definite matrix K (kernel).

3. Eigen-decomposition K = U�UT , then Yd = Ud�
1
2
d , where choose d eigen-

vectors (top or bottom) Ud.

Example 3 (PCA). G is complete, K = ⇥̂n is a covariance matrix.

Example 4 (MDS). G is complete, K = � 1
2HDHT , where Dij = d2(xi, xj).

Example 5 (ISOMAP). G is incomplete.

Dij =

�
d(xi, xj) if (i, j) ⇤ E,

d̂g(xi, xj) if (i, j) ⌅⇤ E.

where d̂g is a graph shorted path. Then

K = �1

2
HDHT .

Note that K is positive semi-definite if and only if D is a squared distance matrix.

Example 6 (LLE). G is incomplete. K = (I �W)T (I �W), where

Wn�n
ij =

�
wij j ⇤ N (i),

0 other’s.

and wij solves the following optimization problem

minP
j wij=1

�Xi �
⇥

j⇥N (i)

wijX̄j�2, X̄j = Xj �Xi.

After obtaining W , compute the global embedding d-by-n embedding matrix Y =
[Y1, . . . , Yn],

min
Y

n⇥

i=1

�Yi �
n⇥

j=1

WijYj�2 = trace((I �W)Y TY (I �W)T).

This is equivalent to find smallest eigenvectors of K = (I �W)T (I �W).

2. ISOMAP

ISOMAP is an extension of MDS, where pairwise euclidean distances between
data points are replaced by geodesic distances, computed by graph shortest path
distances.

(1) Construct a neighborhood graph G = (V,E, dij) such that
V = {xi : i = 1, . . . , n}
E = {(i, j) : if j is a neighbor of i, i.e. j ⇤ Ni}, e.g. k-nearest

neighbors, �-neighbors
dij = d(xi, xj), e.g. Euclidean distance when xi ⇤ Rp

(2) Compute graph shortest path distances
dij = minP=(xi,...,xj)(�xi � xt1�+ . . .+ �xtk�1 � xj�), is the length

of a graph shortest path connecting i and j
Dijkstra’s algorithm (O(kn2 log n)) and Floyd’s Algorithm (O(n3))

2. ISOMAP 57

e.g.2. k-nearest neighbor, (i, j) ⇤ E ⇥ j ⇤ Nk(i), which leads to a directed
graph.

2. Construct a positive semi-definite matrix K (kernel).

3. Eigen-decomposition K = U�UT , then Yd = Ud�
1
2
d , where choose d eigen-

vectors (top or bottom) Ud.

Example 3 (PCA). G is complete, K = ⇥̂n is a covariance matrix.

Example 4 (MDS). G is complete, K = � 1
2HDHT , where Dij = d2(xi, xj).

Example 5 (ISOMAP). G is incomplete.

Dij =

�
d(xi, xj) if (i, j) ⇤ E,

d̂g(xi, xj) if (i, j) ⌅⇤ E.

where d̂g is a graph shorted path. Then

K = �1

2
HDHT .

Note that K is positive semi-definite if and only if D is a squared distance matrix.

Example 6 (LLE). G is incomplete. K = (I �W)T (I �W), where

Wn�n
ij =

�
wij j ⇤ N (i),

0 other’s.

and wij solves the following optimization problem

minP
j wij=1

�Xi �
⇥

j⇥N (i)

wijX̄j�2, X̄j = Xj �Xi.

After obtaining W , compute the global embedding d-by-n embedding matrix Y =
[Y1, . . . , Yn],

min
Y

n⇥

i=1

�Yi �
n⇥

j=1

WijYj�2 = trace((I �W)Y TY (I �W)T).

This is equivalent to find smallest eigenvectors of K = (I �W)T (I �W).

2. ISOMAP

ISOMAP is an extension of MDS, where pairwise euclidean distances between
data points are replaced by geodesic distances, computed by graph shortest path
distances.

(1) Construct a neighborhood graph G = (V,E, dij) such that
V = {xi : i = 1, . . . , n}
E = {(i, j) : if j is a neighbor of i, i.e. j ⇤ Ni}, e.g. k-nearest

neighbors, �-neighbors
dij = d(xi, xj), e.g. Euclidean distance when xi ⇤ Rp

(2) Compute graph shortest path distances
dij = minP=(xi,...,xj)(�xi � xt1�+ . . .+ �xtk�1 � xj�), is the length

of a graph shortest path connecting i and j
Dijkstra’s algorithm (O(kn2 log n)) and Floyd’s Algorithm (O(n3))

3. LOCALLY LINEAR EMBEDDING (LLE) 75

(2) Local fitting:
Pick up a point xi and its neighbors Ni

Compute the local fitting weights

minP
j2Ni wij=1

kxi �

X

j2Ni

wijxjk
2,

which is equivalent to

minP
j2Ni wij=1

k

X

j2Ni

wij(xj � xi)k
2,

that is, finding a linear combination (possibly not unique!) for the sub-
space spanned by {(xj � xi) : j 2 Ni}. This can be done by Lagrange
multiplier method, i.e. solving

min
wij

1

2
k

X

j2Ni

wij(xj � xi)k
2 + �(1 �

X

j2Ni

wij).

Let wi = [wij1 , . . . wijk]T 2 Rk, X̄i = [xj1 �xi, . . . , xjk �xi], and the local
Gram (covariance) matrix Ci(j, k) = hxj �xi, xk�xii, whence the weights
are

(80) wi = �C†
i 1,

where the Lagrange multiplier equals to the following normalization pa-
rameter

(81) � =
1

1TC†
i 1

,

and C†
i is a Moore-Penrose (pseudo) inverse of Ci. Note that Ci is often

ill-conditioned and to find its Moore-Penrose inverse one can use regular-
ization method (Ci + µI)�1 for some µ > 0.

(3) Global alignment
Define a n-by-n weight matrix W :

Wij =

⇢
wij , j 2 Ni

0, otherwise

Compute the global embedding d-by-n embedding matrix Y ,

min
Y

X

i

kyi �

nX

j=1

Wijyjk
2 = trace(Y (I � W)T (I � W)Y T)

In other words, construct a positive semi-definite matrix B = (I �

W)T (I�W) and find d+1 smallest eigenvectors of B, v0, v1, . . . , vd associ-
ated smallest eigenvalues �0, . . . , �d. Drop the smallest eigenvector which
is the constant vector explaining the degree of freedom as translation and
set Y = [v1/

p
(�1), . . . , vd/

p
�d]T .

The benefits of LLE are:

• Neighbor graph: k-nearest neighbors is of O(kn)
• W is sparse: kn/n2 = k/n non-zeroes
• B = (I � W)T (I � W) is guaranteed to be positive semi-definite

Local Tangent Space Alignment
17/48

⇤

�

⇥

⌅

⇧

⌃

Illustration

Find a good approximation of tangent space of curve with discrete points
by minimizing the projections on normal spaces.
— Principal curve/manifold (Hastie-Stuetzle’89, Zha-Zhang’02)

Recall LTSA (Zha-Zhang’02)

4. PRINCIPAL MANIFOLD PURSUIT: LOCAL TANGENT SPACE ALIGNMENT (LTSA) 79

in the spirit of principal curve or principal manifold proposed by Werner Stuetzle
and Trevor Hastie [HS89]. Zhenyue Zhang and Hongyuan Zha (2002) [ZZ02]
propose to use sampled data to find a good approximation of tangent space via local
PCA, then the reconstruction data coordinates tries to preserve such approximate
tangent space at each point to reach a global alignment.

Algorithm 6: LTSA Algorithm

Input: A weighted undirected graph G = (V,E) such that
1 V = {xi 2 Rp : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors

Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rk⇥n of data.
3 Step 1 (local PCA): Compute local SVD on neighborhood of xi, xij 2 N (xi),

X̃
(i) = [xi1 � µi, ..., xik � µi]

p⇥k = Ũ
(i)⌃̃(Ṽ (i))T ,

where µi =
Pk

j=1 xij . Define

Gi = [1/
p
k, Ṽ1

(i)
, ..., Ṽd

(i)
]k⇥(d+1);

4 Step 2 (tangent space alignment): Alignment (kernel) matrix

K
n⇥n =

nX

i=1

SiWiW
T
i S

T
i , W

k⇥k
i = I �GiG

T
i ,

where selection matrix S
n⇥k
i : [xi1 , ..., xik] = [x1, ..., xn]Sn⇥k

i ;
5 Step 3 : Find smallest d + 1 eigenvectors of K and drop the smallest eigenvector,

the remaining d eigenvectors will give rise to a d-embedding.

For each xi in Rd with neighbor Ni of size |Ni| = ki�1, let X(i) = [xj1 , xj2 , . . . , xjki
] 2

Rp⇥ki be the coordinate matrix. Consider the local SVD (PCA)

X̃(i) = [xi1 � µi, ..., xiki
� µi]

p⇥ki = X(i)H = Ũ (i)⌃̃(Ṽ (i))T ,

where H = I �
1
ki

1ki1
T
ki

. Left singular vectors {Ũ (i)
1 , ..., Ũ (i)

d } give an orthonormal
basis of the approximate d-dimensional tangent space at xi. Right singular vectors

(Ṽ (i)
1 , . . . , Ṽ (i)

d) · ⌃̃ 2 Rki⇥d present the d-coordinates of ki samples with respect to
the tangent space basis.

Let Yi 2 Rd⇥ki be the embedding coordinates of the samples in Rd and Li :

Rp⇥d be an estimated basis of the tangent space at xi in Rp. Let ⇥i = Ũ (i)
d ⌃̃d(Ṽ

(i)
d)T 2

Rp⇥ki be the truncated SVD using top d components. LTSA looks for the minimizer
of the following problem

(84) min
Y,L

X

i

kEik
2 =

X

i

����Yi(I �
1

n
11T) � LT

i ⇥i

����
2

.

One can estimate LT
i = Yi(1 �

1
n11T)⇥†

i . Hence it reduces to

(85) min
Y

X

i

kEik
2 =

X

i

����Yi(I �
1

n
11T)(I � ⇥†

i⇥i)

����
2

where I � ⇥†
i⇥i is the projection to the normal space at xi. This is equivalent to

define

Gi = [1/
p

ki, Ṽ1
(i)

, ..., Ṽd
(i)

]ki⇥(d+1),

Recall: Hessian LLE

10

80 5. MANIFOLD LEARNING

a weight matrix,

W ki⇥ki
i = I � GiG

T
i ,

and a positive semi-definite kernel matrix for alignment,

Kn⇥n = � =
nX

i=1

SiWiW
T
i ST

i

where the selection matrix Sn⇥ki
i : [xi1 , ..., xiki

] = [x1, ..., xn]Si. Notice that con-
stant vector is an eigenvector corresponding to the 0 eigenvalue. Hence similar to
the LLE, one can choose bottom d+1 eigenvectors and drop the constant eigenvec-
tor, which gives embedding matrix Y (n⇥d). An error analysis is given in [ZZ09],
which shows that LTSA may recover the global coordinates asymptotically.

Remark. We note that LTSA can be also applied to the situation that we are
given local pairwise distances between samples. Since MDS and PCA are dual to
each other, one can replace the local PCA in the algorithm by local MDS which

leads to the same results as only right singular vectors ˜V (i) are used there.

5. Hessian LLE

Figure 5. Local coordinate system at the origin O = xi.

In LLE, one chooses the weights wij to minimize the following energy

minP
j2Ni wij=1

k

X

j2Ni

wij(xj � xi)k
2.

In the ideal case, if the points x̃j = xj � xi are linearly dependent, then there
is some wij , possibly not unique, such that 0 =

P
j2Ni

wij x̃j . In this local chart
(Figure 5), we have

0 =
X

j2Ni

wij x̃j , and 1 =
X

j2Ni

wij .

For any smooth function y(x), consider its Taylor expansion up to the second order

y(x) = y(0) + xT
ry(0) +

1

2
xT (Hy)(0)x + o(kxk

2).

80 5. MANIFOLD LEARNING

a weight matrix,

W ki⇥ki
i = I � GiG

T
i ,

and a positive semi-definite kernel matrix for alignment,

Kn⇥n = � =
nX

i=1

SiWiW
T
i ST

i

where the selection matrix Sn⇥ki
i : [xi1 , ..., xiki

] = [x1, ..., xn]Si. Notice that con-
stant vector is an eigenvector corresponding to the 0 eigenvalue. Hence similar to
the LLE, one can choose bottom d+1 eigenvectors and drop the constant eigenvec-
tor, which gives embedding matrix Y (n⇥d). An error analysis is given in [ZZ09],
which shows that LTSA may recover the global coordinates asymptotically.

Remark. We note that LTSA can be also applied to the situation that we are
given local pairwise distances between samples. Since MDS and PCA are dual to
each other, one can replace the local PCA in the algorithm by local MDS which

leads to the same results as only right singular vectors ˜V (i) are used there.

5. Hessian LLE

Figure 5. Local coordinate system at the origin O = xi.

In LLE, one chooses the weights wij to minimize the following energy

minP
j2Ni wij=1

k

X

j2Ni

wij(xj � xi)k
2.

In the ideal case, if the points x̃j = xj � xi are linearly dependent, then there
is some wij , possibly not unique, such that 0 =

P
j2Ni

wij x̃j . In this local chart
(Figure 5), we have

0 =
X

j2Ni

wij x̃j , and 1 =
X

j2Ni

wij .

For any smooth function y(x), consider its Taylor expansion up to the second order

y(x) = y(0) + xT
ry(0) +

1

2
xT (Hy)(0)x + o(kxk

2).

80 5. MANIFOLD LEARNING

a weight matrix,

W ki⇥ki
i = I � GiG

T
i ,

and a positive semi-definite kernel matrix for alignment,

Kn⇥n = � =
nX

i=1

SiWiW
T
i ST

i

where the selection matrix Sn⇥ki
i : [xi1 , ..., xiki

] = [x1, ..., xn]Si. Notice that con-
stant vector is an eigenvector corresponding to the 0 eigenvalue. Hence similar to
the LLE, one can choose bottom d+1 eigenvectors and drop the constant eigenvec-
tor, which gives embedding matrix Y (n⇥d). An error analysis is given in [ZZ09],
which shows that LTSA may recover the global coordinates asymptotically.

Remark. We note that LTSA can be also applied to the situation that we are
given local pairwise distances between samples. Since MDS and PCA are dual to
each other, one can replace the local PCA in the algorithm by local MDS which

leads to the same results as only right singular vectors ˜V (i) are used there.

5. Hessian LLE

Figure 5. Local coordinate system at the origin O = xi.

In LLE, one chooses the weights wij to minimize the following energy

minP
j2Ni wij=1

k

X

j2Ni

wij(xj � xi)k
2.

In the ideal case, if the points x̃j = xj � xi are linearly dependent, then there
is some wij , possibly not unique, such that 0 =

P
j2Ni

wij x̃j . In this local chart
(Figure 5), we have

0 =
X

j2Ni

wij x̃j , and 1 =
X

j2Ni

wij .

For any smooth function y(x), consider its Taylor expansion up to the second order

y(x) = y(0) + xT
ry(0) +

1

2
xT (Hy)(0)x + o(kxk

2).

80 5. MANIFOLD LEARNING

a weight matrix,

W ki⇥ki
i = I � GiG

T
i ,

and a positive semi-definite kernel matrix for alignment,

Kn⇥n = � =
nX

i=1

SiWiW
T
i ST

i

where the selection matrix Sn⇥ki
i : [xi1 , ..., xiki

] = [x1, ..., xn]Si. Notice that con-
stant vector is an eigenvector corresponding to the 0 eigenvalue. Hence similar to
the LLE, one can choose bottom d+1 eigenvectors and drop the constant eigenvec-
tor, which gives embedding matrix Y (n⇥d). An error analysis is given in [ZZ09],
which shows that LTSA may recover the global coordinates asymptotically.

Remark. We note that LTSA can be also applied to the situation that we are
given local pairwise distances between samples. Since MDS and PCA are dual to
each other, one can replace the local PCA in the algorithm by local MDS which

leads to the same results as only right singular vectors ˜V (i) are used there.

5. Hessian LLE

Figure 5. Local coordinate system at the origin O = xi.

In LLE, one chooses the weights wij to minimize the following energy

minP
j2Ni wij=1

k

X

j2Ni

wij(xj � xi)k
2.

In the ideal case, if the points x̃j = xj � xi are linearly dependent, then there
is some wij , possibly not unique, such that 0 =

P
j2Ni

wij x̃j . In this local chart
(Figure 5), we have

0 =
X

j2Ni

wij x̃j , and 1 =
X

j2Ni

wij .

For any smooth function y(x), consider its Taylor expansion up to the second order

y(x) = y(0) + xT
ry(0) +

1

2
xT (Hy)(0)x + o(kxk

2).

80 5. MANIFOLD LEARNING

a weight matrix,

W ki⇥ki
i = I � GiG

T
i ,

and a positive semi-definite kernel matrix for alignment,

Kn⇥n = � =
nX

i=1

SiWiW
T
i ST

i

where the selection matrix Sn⇥ki
i : [xi1 , ..., xiki

] = [x1, ..., xn]Si. Notice that con-
stant vector is an eigenvector corresponding to the 0 eigenvalue. Hence similar to
the LLE, one can choose bottom d+1 eigenvectors and drop the constant eigenvec-
tor, which gives embedding matrix Y (n⇥d). An error analysis is given in [ZZ09],
which shows that LTSA may recover the global coordinates asymptotically.

Remark. We note that LTSA can be also applied to the situation that we are
given local pairwise distances between samples. Since MDS and PCA are dual to
each other, one can replace the local PCA in the algorithm by local MDS which

leads to the same results as only right singular vectors ˜V (i) are used there.

5. Hessian LLE

Figure 5. Local coordinate system at the origin O = xi.

In LLE, one chooses the weights wij to minimize the following energy

minP
j2Ni wij=1

k

X

j2Ni

wij(xj � xi)k
2.

In the ideal case, if the points x̃j = xj � xi are linearly dependent, then there
is some wij , possibly not unique, such that 0 =

P
j2Ni

wij x̃j . In this local chart
(Figure 5), we have

0 =
X

j2Ni

wij x̃j , and 1 =
X

j2Ni

wij .

For any smooth function y(x), consider its Taylor expansion up to the second order

y(x) = y(0) + xT
ry(0) +

1

2
xT (Hy)(0)x + o(kxk

2).

4. HESSIAN LLE 85

In the ideal case, if the points x̃j = xj � xi are linearly dependent, then there
is some wij , possibly not unique, such that 0 =

P
j2Ni

wij x̃j . In this local chart
(Figure 4), we have

0 =
X

j2Ni

wij x̃j , and 1 =
X

j2Ni

wij .

For any smooth function y(x), consider its Taylor expansion up to the second order

y(x) = y(0) + xT
ry(0) +

1

2
xT (Hy)(0)x + o(kxk

2).

Therefore

(I � W)y(0) := y(0) �

X

j2Ni

wijy(x̃j)

⇡ y(0) �

X

j2Ni

wijy(0) �

X

j2Ni

wij x̃
T
j ry(0) �

1

2

X

j2Ni

x̃T
j (Hy)(0)x̃j

= �
1

2

X

j2Ni

x̃T
j (Hy)(0)x̃j .

If function y(x) is a linear transform of the d-coordinates of x in the tangent space
at xi, then the Hessian matrix

(Hy)(0) :=

@2y(x)

@x(i)@x(j)

�

x=0

= 0.

In this case (I � W)y(0) = 0 and y reaches a minimizer.
In other words, the kernel of Hessian operator H has dimension d+1, consisting

the constant function and d linearly independent coordinates. Inspired by such an
observation, Donoho and Grimes [DG03b] proposed Hessian LLE (Eigenmap) in
search of

min
y?1

Z
kHyk

2, kyk = 1.

The basic algorithmic idea is as follows.
1. G is incomplete, often k-nearest neighbour graph.
2. Local SVD on neighbourhood of xi, for xij 2 N (xi),

X̃(i) = [xi1 � µi, ..., xik � µi]
p⇥k = Ũ (i)⌃̃(Ṽ (i))T ,

where µi =
Pk

j=1 xij = 1
kXi1. Here

• Left top singular vectors {Ũ (i)
1 , ..., Ũ (i)

d } give an orthonormal basis of the
approximate tangent space at xi,

• Right top singular vectors [Ṽ (i)
1 , ..., Ṽ (i)

d] are representation coordinates in
the tangent space of local sample points around xi.

3. Null Hessian estimation: define

M = [1, Ṽ1, ..., Ṽd, Ṽ
2
1 , Ṽ1Ṽ2, ..., Ṽd�1Ṽd, Ṽ

2
d] 2 Rk⇥(1+d+(d+1

2))

where ṼiṼj = [ṼikṼjk]T 2 Rk denotes the element-wise product (Hadamard prod-
uct) between vector Ṽi and Ṽj .

Now we perform a Gram-Schmidt Orthogonalization procedure on M , get

Recall: Hessian LLE Alg. (I)

Continued...

82 5. MANIFOLD LEARNING

Then the kernel matrix is defined to be

K =
nX

i=1

S(i)H(i)TH(i)S(i)T
2 Rn⇥n

Find smallest d + 1 eigenvectors of K and drop the smallest eigenvector, the re-
maining d eigenvectors will give rise to a d dimensional embedding of data points.

Algorithm 7: Hessian LLE Algorithm

Input: A weighted undirected graph G = (V,E, d) such that
1 V = {xi 2 Rp : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors

Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rd⇥n of data.
3 Step 1 : Compute local PCA on neighborhood of xi, for,

X̃
(i) = [xi1 � µi, ..., xik � µi]

p⇥k = Ũ
(i)⌃̃(Ṽ (i))T , xij 2 N (xi),

where µi =
Pk

j=1 xij = 1
kXi1;

4 Step 2 : Hessian estimation, assumed d-dimension: define

M = [1, Ṽ1, ..., Ṽk, Ṽ1Ṽ2, ..., Ṽd�1Ṽd] 2 Rk⇥(1+d+(d2))

where ṼiṼj = [ṼikṼjk]
T 2 Rk denotes the elementwise product (Hadamard

product) between vector Ṽi and Ṽj . Now we perform a Gram-Schmidt
Orthogonalization procedure on M , get

M̃ = [1, v̂1, ..., v̂k, ŵ1, ŵ2, ..., ŵ(d2)
] 2 Rk⇥(1+d+(d2))

Define

[H(i)]T = [last

d

2

!
columns of M̃]

k⇥(d2)
.

Step 3 : Define

K =
nX

i=1

S
(i)
H

(i)T
H

(i)
S

(i)T 2 Rn⇥n
, [x1, .., xn]S(i) = [xi1 , ..., xik],

find smallest d + 1 eigenvectors of K and drop the smallest eigenvector, and the
remaining d eigenvectors will give rise to a d-embedding.

5.1. Convergence of Hessian LLE. There are two assumptions for the con-
vergence of ISOMAP:

• Isometry: the geodesic distance between two points on manifolds equals
to the Euclidean distances between intrinsic parameters.

• Convexity: the parameter space is a convex subset in Rd.

Therefore, if the manifold contains a hole, ISOMAP will not faithfully recover
the intrinsic coordinates. Hessian LLE above is provable to find local orthogonal
coordinates for manifold reconstruction, even in nonconvex case. Figure [?] gives
an example.

Donoho and Grimes [DG03b] relaxes the conditions above into the following
ones.

• Local Isometry: in a small enough neighborhood of each point, geodesic
distances between two points on manifolds are identical to Euclidean dis-
tances between parameter points.

5. HESSIAN LLE 81

Therefore

(I � W)y(0) := y(0) �

X

j2Ni

wijy(x̃i)

⇡ y(0) �

X

j2Ni

wijy(0) �

X

j2Ni

wij x̃
T
i ry(0) �

1

2

X

j2Ni

x̃T
i (Hy)(0)x̃i

= �
1

2

X

j2Ni

x̃T
i (Hy)(0)x̃i.

If function y(x) is a linear transform of the d-coordinates of x in the tangent space
at xi, then the Hessian matrix

(Hy)(0) :=

@2y(x)

@x(i)@x(j)

�

x=0

= 0.

In this case (I � W)y(0) = 0 and y reaches a minimizer.
In other words, the kernel of Hessian operator H has dimension d+1, consisting

the constant function and d linearly independent coordinates. Inspired by such an
observation, Donoho and Grimes [DG03b] proposed Hessian LLE (Eigenmap) in
search of

min
y?1

Z
kHyk

2, kyk = 1.

The basic algorithmic idea is as follows.
1. G is incomplete, often k-nearest neighbour graph.
2. Local SVD on neighbourhood of xi, for xij 2 N (xi),

X̃(i) = [xi1 � µi, ..., xik � µi]
p⇥k = Ũ (i)⌃̃(Ṽ (i))T ,

where µi =
Pk

j=1 xij = 1
kXi1. Here

• Left top singular vectors {Ũ (i)
1 , ..., Ũ (i)

d } give an orthonormal basis of the
approximate tangent space at xi,

• Right top singular vectors [Ṽ (i)
1 , ..., Ṽ (i)

d] are representation coordinates in
the tangent space of local sample points around xi.

3. Null Hessian estimation: define

M = [1, Ṽ1, ..., Ṽk, Ṽ1Ṽ2, ..., Ṽd�1Ṽd] 2 Rk⇥(1+d+(d2))

where ṼiṼj = [ṼikṼjk]T 2 Rk denotes the element-wise product (Hadamard prod-
uct) between vector Ṽi and Ṽj .

Now we perform a Gram-Schmidt Orthogonalization procedure on M , get

M̃ = [1, v̂1, ..., v̂k, ŵ1, ŵ2, ..., ŵ(d2)�1] 2 Rk⇥(1+d+(d2))

Define null Hessian by

[H(i)]T = [last

✓
d

2

◆
columns of M̃]k⇥(d2)

,

as the first d + 1 columns of M̃ consists an orthonormal basis for the kernel of
Hessian together with the constant vector.

Define a selection matrix S(i)
2 Rn⇥k which selects those data in N (xi), i.e.

[x1, .., xn]S(i) = [xi1 , ..., xik]

Hessian LLE Algorithm (II)

86 5. MANIFOLD LEARNING

M̃ = [1, v̂1, ..., v̂d, ŵ1, ŵ2, ..., ŵ(d+1
2)] 2 Rk⇥(1+d+(d+1

2))

Define null Hessian by

[H(i)]T = [last

✓
d + 1

2

◆
columns of M̃]k⇥(d+1

2),

as the first d + 1 columns of M̃ consists an orthonormal basis for the kernel of
Hessian together with the constant vector.

Define a selection matrix S(i)
2 Rn⇥k which selects those data in N (xi), i.e.

[x1, .., xn]S(i) = [xi1 , ..., xik]

Then the kernel matrix is defined to be

K =
nX

i=1

S(i)H(i)TH(i)S(i)T
2 Rn⇥n

Find smallest d + 1 eigenvectors of K and drop the smallest eigenvector, the re-
maining d eigenvectors will give rise to a d dimensional embedding of data points.

Algorithm 9: Hessian LLE Algorithm

Input: A weighted undirected graph G = (V,E, d) such that
1 V = {xi 2 Rp : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors

Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rd⇥n of data.
3 Step 1 : Compute local PCA on neighborhood of xi, for,

X̃
(i) = [xi1 � µi, ..., xik � µi]

p⇥k = Ũ
(i)⌃̃(Ṽ (i))T , xij 2 N (xi),

where µi =
P

k

j=1 xij = 1
k
Xi1;

4 Step 2 : Null Hessian estimation: define

M = [1, Ṽ1, ..., Ṽd, Ṽ
2
1 , Ṽ1 � Ṽ2, ..., Ṽd�1 � Ṽd, Ṽ

2
d] 2 Rk⇥(1+d+(d+1

2))

where Ṽi � Ṽj = [ṼikṼjk]
T 2 Rk denotes the elementwise product (Hadamard

product) between vector Ṽi and Ṽj . Now we perform a Gram-Schmidt
Orthogonalization procedure on M , get

M̃ = [1, v̂1, ..., v̂d, ŵ1, ŵ2, ..., ŵ(d+1
2)] 2 Rk⇥(1+d+(d+1

2))

Define

[H(i)]T = [last

d + 1

2

!
columns of M̃]

k⇥(d+1
2).

Step 3 : Define

K =
nX

i=1

S
(i)
H

(i)T
H

(i)
S

(i)T 2 Rn⇥n
, [x1, .., xn]S(i) = [xi1 , ..., xik],

find smallest d + 1 eigenvectors of K and drop the smallest eigenvector, and the
remaining d eigenvectors will give rise to a d-embedding.

Comparisons on Swiss Roll

13

https://
nbviewer.jupyter.or
g/url/
math.stanford.edu/
~yuany/course/
data/
plot_compare_met
hods.ipynb

https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb

Comparisons on Swiss Roll with
a Hole

• mani.m

14

Laplacian LLE (Eigenmap)

15

Laplacian and LLELaplacian and LLE

Ox

x

1

2

3x
∑

wixi = 0

∑

wi = 1

Hessian H. Taylor expansion :

f(xi) = f(0) + xt
i∇f +

1

2
xt

iHxi + o(‖xi‖
2)

(I − W)f(0) = f(0) −
∑

wif(xi) ≈ f(0) −
∑

wif(0) −
∑

i

wix
t
i∇f −

1

2

∑

i

xt
iHxi =

= −
1

2

∑

i

xt
iHxi ≈ −trH = ∆f

Geometric Methods and Manifold Learning – p. 34

when x_i becomes an orthonormal basis…

Laplacian-Beltrami Operator
on ManifoldLaplace-Beltrami operator

2x

1p x

f : Mk → R

expp : TpMk → Mk

∆Mf(p) ≡
∑

i

∂2f(expp(x))

∂x2
i

Orthonormal coordinate system.

Geometric Methods and Manifold Learning – p. 23

Manifold LaplacianManifold Laplacian

Recall ordinary Laplacian in Rk

This maps

f(x1, . . . , xk) →

(

−
k

∑

i=1

∂2f

∂x2
i

)

Manifold Laplacian is the same on the tangent space.

Geometric Methods and Manifold Learning – p. 47

Discrete ApproximationOn the Manifold

smooth map f : M → R

∫

M
‖∇Mf‖2 ≈

∑

i∼j

Wij(fi − fj)
2

Recall standard gradient in Rk of f(z1, . . . , zk)

∇f =

∂f
∂z1

∂f
∂z2

·

·
∂f
∂zk

Geometric Methods and Manifold Learning – p. 44

Stokes TheoremStokes Theorem

A Basic Fact
∫

M
‖∇Mf‖2 =

∫

f · ∆Mf

This is like
∑

i,j

Wij(fi − fj)
2 = fTLf

where
∆Mf is the manifold Laplacian

Geometric Methods and Manifold Learning – p. 46

Discrete Laplacian
Justification

Find y1, . . . , yn ∈ R

min
∑

i,j

(yi − yj)
2Wij

Tries to preserve locality

Geometric Methods and Manifold Learning – p. 40

A Fundamental IdentityDiscrete Laplacian

I Discrete Laplacian
L = D �W

where D = diag(Dii) with Dii :=
P

j Wij .

I Fundamental identity:
X

i,j

Wij(yi � yj)
2 = yT

Ly

X

i,j

Wij(yi � yj)
2 =

X

i,j

Wij(y
2
i + y

2
j � 2yiyj)

=
X

i

y
2
iDii +

X

j

y
2
jDjj � 2

X

i,j

Wijyiyj

= yT
Ly

Laplacian Eigenmap 27

23

Laplacian Eigenmap:
uniform sampling

Laplacian Eigenmap: Uniform Samples

I L1 = 0, so (0,1) is an eigenvalue-eigenvector pair.

I For uniform samples, define Y = [y1, . . . ,yn] 2 Rd⇥n

minY1=0

X

i,j

Wijkyi � yjk2 = trYLYT

subject to YYT = Id

I Eigenvectors of L gives the embedding.

Laplacian Eigenmap 28

24

Laplacian Eigenmap:
non-uniform samplingLaplacian Eigenmap: Nonuniform Samples

I For nonuniform samples, solves

minyT 1=0 yT
Ly

subject to yT
Dy = 1

I Generalized Eigenvectors of Ly = �Dy, or eigenvectors of
normalized Laplacian Ln = D

�1
L, give the embedding.

I This is particularly a case of Di↵usion Map.

Laplacian Eigenmap 29

Laplacian Eigenmaps (I)
[Belkin-Niyogi 2002]

6. LAPLACIAN LLE (EIGENMAP) 85

or generalized eigenvectors

min
yTD1=0

=
yTLy

yTDy
.

A generalized eigenvector v of L are also right eigenvectors of row Markov matrix
P = D�1W . To see this,

* (D � W)v = �Dv , (I � D�1W)v = �v , D�1Wv = (1 � �)v

) Pv = (1 � �)v.

So eigenvectors are the same but only the eigenvalues are translated from � to 1��.
Hence generalized eigenvectors are in fact suggested in [BN03] for Laplacian LLE
which connects to random walk on graphs and di↵usion map to be discussed later.

Algorithm 8: Laplacian Eigenmap

Input: An adjacency graph G = (V,E, d) such that
1 V = {xi : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors,

✏-neighbors
3 dij = d(xi, xj), e.g. Euclidean distance for xi ⇠ xj are in neighbor

Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rk⇥n of data.
4 Step 1 : Choose weights

5 (a) Heat kernel weights (parameter t):

Wij =

(
e
�

kxi�xjk
2

t , i ⇠ j,

0, otherwise.

(b) Simple-minded (t ! 1), Wij = 1 if i and j are connected by an edge and
Wij = 0 otherwise.

6 Step 2 (Eigenmap): Let D = diag(
P

j Wij) and L = D �W . Compute smallest
d + 1 generalized eigenvectors

Lyl = �lDyl, l = 0, 1, . . . , d,

such that 0 = �0 �1 . . . �d. Drop the zero eigenvalue �0 and constant

eigenvector y0, and construct Yd = [y1, . . . , yd] 2 Rn⇥d.

Note that eigenvectors of normalized Laplacian L are related to generalized
eigenvectors of L up to a scaling matrix. This can be seen in the following reasoning.

L� = ��

, D� 1
2 (D � W)D� 1

2 � = ��

, Lv = (D � W)v = �Dv, v = D� 1
2 �

Depending on the meaning of eigenvectors above, we can always choose bot-
tom d + 1 eigenvectors, and dropped the smallest eigenvector (the constant vector
associated with eigenvalue 0) and use the remaining d vectors to construct a d
dimensional embedding of data.

Hessian vs. Laplacian

Note that:

€

Δ(f) = trace H(f)()

62 5. NONLINEAR DIMENSIONALITY REDUCTION

4. Laplacian LLE (Eigenmap)

Consider the graph Laplacian with heat kernels [BN01, BN03]. Define a
weight matrix W = (wij) ⌥ Rn⇥n by

wij =

�
e�

⇥xi�xj⇥
2

t j ⌥ N (i),

0 otherwise.

Let D = diag(
⇥

j⌅Ni
wij) be the diagonal matrix with weighted degree as diagonal

elements.
Define the unnormalized graph Laplacian by

L = D �W,

and the normalized graph Laplacian by

L = D� 1
2 (D �W)D� 1

2 .

Note that eigenvectors of L are also generalized eigenvectors of L up to a scaling
matrix. This can be seen in the following reasoning.

L⇥ = �⇥

⌃ D� 1
2 (D �W)D� 1

2⇥ = �⇥

⌃ Lv = (D �W)v = �Dv, v = D� 1
2⇥

Generalized eigenvectors v of L are also right eigenvectors of row Markov matrix
P = D�1W . (⇥ Pv = �v ⌃ D�1Wv = �v ⌃ (I � D�1W)v = (1 � �)v �
(D �W)v = (1� �)Dv).

Depending on the meaning of eigenvectors above, we can always choose bot-
tom d+ 1 eigenvectors, and dropped the smallest eigenvector (the constant vector
associated with eigenvalue 0) and use the remaining d vectors to construct a d
dimensional embedding of data.

4.1. Convergence of Laplacian Eigenmap. Why choose Laplacian? Con-
sider a linear chain graph,

(df)(i) = fi+1 � fi = [(z � 1)f](i)

d2f = (z � 1)2f = (z2 � 2z + 1)f ⇧ fi+1 � 2fi + fi�1

On graphs, d2f = (D �W)f = Lf

fTLf =
⇤

i⇤j

wij(fi � fj)
2 ⇤ 0 ⌅

⌅
��Mf�2 =

⌅
(trace(fTHf))2

where H = [⌃2/⌃i⌃j] ⌥ Rd⇥d is the Hessian matrix.
Some rigorous results about convergence of Laplacian eigenmaps are given

in [BN08]. Assume that M is a compact manifold with vol(M) = 1. Let the
Laplacian-Beltrami operator

�M : C(M) ⇧ L2(M)

f �⇧ �÷ (�f)

• Laplacian LLE

• Hessian LLE

• Laplacian kernel: const + linear + bilinear
• Hessian kernel: const + linear func2ons

5. HESSIAN LLE 63

Consider the following operator

L̂t,n : C(M) ⇥ C(M)

f ⇧⇥ 1

t(4⇤t)k/2

⇧
⌥

i

e�
⇥y�xi⇥

4t f(y)�
⌥

i

e
⇥y�xi⇥

2

4t f(xi)

⌃

where (L̂t,nf)(y) is a function on M, and

Lt : L2(M) ⇥ L2(M)

f ⇧⇥ 1

t(4⇤t)k/2

��

M
e�

⇥y�x⇥
4t f(y)dx�

�

M
e

⇥y�x⇥2
4t f(x)dx

⇥
.

Then [BN08] shows that when those operators have no repeated eigenvalues,
the spectrum of L̂t,n converges to Lt as n ⇥ ⇤ (variance), where the latter con-
verges to that of �M with a suitable choice of t ⇥ ⇤ (bias). The following gives
a summary.

Theorem 4.1 (Belkin-Niyogi). Assume that all the eigenvalues in consideration
are of multiplicity one. For small enough t, let �̂t

n,i be the i-th eigenvalue of L̂t,n

and v̂tn,i be the corresponding eigenfunction. Let �i and vi be the corresponding
eigenvalue and eigenfunction of �M. Then there exists a sequence tn ⇥ 0 such
that

lim
n⇤⌅

�̂tn
n,i = �i

lim
n⇤⌅

 v̂tnn,i � vi = 0

where the limits are taken in probability.

From above one can see that Laplacian LLE minimizes trace of Hessian. Is
that what you desire? Why not the original Hessian?

5. Hessian LLE

Laplacian Eigenmap looks for coordinate curves

min

�
 ⌦Mf 2, f = 1

while Hessian Eigenmap looks for

min

�
 Hf 2, f = 1

Donoho and Grimes (2003) [DG03b] replaces the graph Laplacian, or the trace
of Hessian matrix, by the whole Hessian. This is because the kernel of Hessian,

⇤
f(y1, . . . , yd) :

⌃2f

⌃yi⌃yj
= 0

⌅

must be constant function or linear functions in yi (i = 1, . . . , d). Therefore this
kernel space is a linear subspace of dimension d+1. Minimizing Hessian will exactly
leads to a basis with constant function and d independent coordinate functions.

1. G is incomplete, often k-nearest neighbor graph.
2. Local SVD on neighborhood of xi, for xij ⌅ N (xi),

X̃(i) = [xi1 � µi, ..., xik � µi]
p⇥k = Ũ (i)⇥̃(Ṽ (i))T ,

Comparisons on Swiss Roll

27

https://
nbviewer.jupyter.or
g/url/
math.stanford.edu/
~yuany/course/
data/
plot_compare_met
hods.ipynb

https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb

Convergence of Laplacian
Eigenmaps

28

Manifold Laplacian EigenvectorsProperties of Laplacian

Eigensystem
∆Mf = λiφi

λi ≥ 0 and λi → ∞

{φi} form an orthonormal basis for L2(M)

∫

‖∇Mφi‖2 = λi

Geometric Methods and Manifold Learning – p. 48Manifold Laplacian is non-compact!

Example: CircleThe Circle: An Example

!

−
d2u

dt2
= λu where u(0) = u(2π)

Eigenvalues are
λn = n2

Eigenfunctions are

sin(nt), cos(nt)

Geometric Methods and Manifold Learning – p. 49

Spherical Harmonics in high-D sphere!

Spectral GrowthEstimating Dimension from Laplacian

λ1 ≤ λ2 . . . ≤ λj ≤ . . .

Then

A +
2

d
log(j) ≤ log(λj) ≤ B +

2

d
log(j + 1)

Example: on S1

λj = j2 =⇒ log(λj) =
2

1
log(j)

(Li and Yau; Weyl’s asymptotics)

Geometric Methods and Manifold Learning – p. 52

Solution of Heat EquationsRecall

Heat equation in Rn:

u(x, t) – heat distribution at time t.
u(x, 0) = f(x) – initial distribution. x ∈ Rn, t ∈ R.

∆Rnu(x, t) =
du

dt
(x, t)

Solution – convolution with the heat kernel:

u(x, t) = (4πt)−
n
2

∫

Rn

f(y)e−
‖x−y‖2

4t dy

Geometric Methods and Manifold Learning – p. 56

Discretization of Heat Eq.
Proof idea (pointwise convergence)
Functional approximation:
Taking limit as t → 0 and writing the derivative:

∆Rnf(x) =
d

dt

[

(4πt)−
n
2

∫

Rn

f(y)e−
‖x−y‖2

4t dy

]

0

∆Rnf(x) ≈ −
1

t
(4πt)−

n
2

(

f(x) −
∫

Rn

f(y)e−
‖x−y‖2

4t dy

)

Empirical approximation:
Integral can be estimated from empirical data.

∆Rnf(x) ≈ −
1

t
(4πt)−

n
2

(

f(x) −
∑

xi

f(xi)e
− ‖x−xi‖

2

4t

)

Geometric Methods and Manifold Learning – p. 57

Some Difficulties for Manifolds
Some difficulties
Some difficulties arise for manifolds:

Do not know distances.
Do not know the heat kernel.

||x!y||

x

y

M
dist (x,y)M

Careful analysis needed.

Geometric Methods and Manifold Learning – p. 58

The Heat Kernel ApproximationThe Heat Kernel

Ht(x, y) =
∑

i e
−λitφi(x)φi(y)

in Rd, closed form expression

Ht(x, y) =
1

(4πt)d/2
e−

‖x−y‖2

4t

Goodness of approximation depends on the gap
∣

∣

∣

∣

Ht(x, y) −
1

(4πt)d/2
e−

‖x−y‖2

4t

∣

∣

∣

∣

Ht is a Mercer kernel intrinsically defined on manifold.
Leads to SVMs on manifolds.

Geometric Methods and Manifold Learning – p. 59

Pointwise ConvergenceFrom graphs to manifolds

f : M → R x ∈ M x1, . . . , xn ∈ M

Graph Laplacian:

Lt
n(f)(x) = f(x)

∑

j

e−
‖x−xj‖

2

t −
∑

j

f(xj)e
−

‖x−xj‖
2

t

Theorem [pointwise convergence] tn = n− 1

k+2+α

lim
n→∞

(4πtn)−
k+2

2

n
Ltn

n f(x) = ∆Mf(x)

Belkin 03, Lafon Coifman 04, Belkin Niyogi 05, Hein et al 05

Geometric Methods and Manifold Learning – p. 50

Convergence of EigenfunctionsFrom graphs to manifolds

Theorem [convergence of eigenfunctions]

lim
t→0,n→∞

Eig[Ltn
n] → Eig[∆M]

Belkin Niyogi 06

Geometric Methods and Manifold Learning – p. 51

Diffusion Map

38

Connection to Markov Chain
• L = D-W
• P = I - D-1L = D-1W is a markov matrix
• v is generalized eigenvector of L: L v = λ D v
• v is also a right eigenvector of P with eigenvalue

1-λ
• P is lumpable iff v is piece-wise constant
• So Laplacian eigenmaps have Markov Chain

interpreta2ons (Diffusion Map), with more
connec2on to topology …

40

Data Graph
• Given	n points	xi,	i=1,…,n,	as	vertices	in	V
• Similarity	weight	between	xi and	xj is	wij=wji,	
e.g.

• Undirected	weighted	graph	G(V,E,W)

86 5. MANIFOLD LEARNING

Algorithm 8: Laplacian Eigenmap

Input: An adjacency graph G = (V,E, d) such that
1 V = {xi : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors,

✏-neighbors
3 dij = d(xi, xj), e.g. Euclidean distance for xi ⇠ xj are in neighbor

Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rk⇥n of data.
4 Step 1 : Choose weights

5 (a) Heat kernel weights (parameter t):

Wij =

(
e
�

kxi�xjk
2

t , i ⇠ j,

0, otherwise.

(b) Simple-minded (t ! 1), Wij = 1 if i and j are connected by an edge and
Wij = 0 otherwise.

6 Step 2 (Eigenmap): Let D = diag(
P

j Wij) and L = D �W . Compute smallest
d + 1 generalized eigenvectors

Lyl = �lDyl, l = 0, 1, . . . , d,

such that 0 = �0 �1 . . . �d. Drop the zero eigenvalue �0 and constant

eigenvector y0, and construct Yd = [y1, . . . , yd] 2 Rn⇥d.

To embed the data on to a d-dimensional Euclidean space, we can always
choose bottom d+1 eigenvectors, drop the smallest eigenvector (the constant vector
associated with eigenvalue 0), and use the remaining d vectors to construct a d
dimensional embedding of data.

6.1. Convergence of Laplacian Eigenmap. Some rigorous results about
convergence of Laplacian eigenmaps are given in [BN08]. Assume that M is a
compact manifold with vol(M) = 1. Let the Laplacian-Beltrami operator

�M : C(M) ! L2(M)

f 7! �div(rf)

Consider the following operator

L̂t,n : C(M) ! C(M)

f 7!
1

t(4⇡t)k/2

X

i

e�
ky�xik

4t f(y) �

X

i

e
ky�xik

2

4t f(xi)

!

where (L̂t,nf)(y) is a function on M, and

Lt : L2(M) ! L2(M)

f 7!
1

t(4⇡t)k/2

✓Z

M
e�

ky�xk
4t f(y)dx �

Z

M
e

ky�xk2
4t f(x)dx

◆
.

Then [BN08] shows that when those operators have no repeated eigenvalues,
the spectrum of L̂t,n converges to Lt as n ! 1 (variance), where the latter con-
verges to that of �M with a suitable choice of t ! 1 (bias). The following gives
a summary.

Theorem 6.1 (Belkin-Niyogi). Assume that all the eigenvalues in consideration
are of multiplicity one. For small enough t, let �̂t

n,i be the i-th eigenvalue of L̂t,n

41

Random Walk on Graphs
• Degree	di =	Σk wik,	D	=	diag(di)
• Random	walk	on	G(V,E,W)
– Transition	probability	P	=	D-1	W	where	pij =	wij/di
– Stationary	distribution	πi ~	di
– primitive	(G	is	connected	with	a	finite	diameter)

– Reversible	wij =	wji πi pij =	πj pji

42

Symmetric Kernel

• P	=	D-1W	is	similar	to	S	=	D-1/2WD-1/2,	as	P	=	D-1/2SD1/2

• S	is	real	symmetric,	whence	eigen-decomposition

43

Spectrum of P
• Eigenvalues of	S	and	P	are	the	same,	so	

• Φ and	Ψ are	right and	left eigenvector	matrix	of	P,	
respectively,	ΦTΨ	=	VTV	=	I

• In	particular,	P	1	=	1,	whence

44

Di↵usion Map

I If P is primitive (any two points can be connected by path of length
no more than the diameter),

1 = �0 � �1 � �2 . . . � �n�1 > �1.

I Di↵usion map embedding at scale ⌧ by dropping the constant
eigenvector �0:

�⌧ (xi) = [�⌧
1�1(i), · · · ,�⌧

n�1�n�1(i)] 2 Rn�1
, ⌧ � 0.

I Laplacian LLE (eigenmap) is just the special case ⌧ = 0 with top
d+ 1 eigenvectors

Laplacian Eigenmap 38

45

Dimensionality Reduction

I �0 = 1 and �0 = 1, so it does not distinguish points

I Threshold by �, for those

|�⌧
i | � 1� �, i = 1, . . . , d,

|�⌧
j | 1� �, j � d+ 1,

I Di↵usion map embedding with dimensionality reduction:

�⌧ (xi) = [�⌧
1�1(i), · · · ,�⌧

n�1�d(i)] 2 Rd
, ⌧ � 0.

I Varying ⌧ or � leads to a multiscale analysis

Laplacian Eigenmap 39

46

Di↵usion Distance

I Define the di↵usion distance between points at scale t

D
t(xi, xj) = k�t(xi)��t(xj)k`2 :=

X

k

�
2t
k (�k(i)� �k(j))

2

!1/2

,

I This is exactly the weighted 2-distance between di↵usion profiles

D
t(xi, xj) = kP t

i⇤ � P
t
j⇤k`2(1/d) :=

nX

k=1

(P (i, k)� P (j, k))2

dk

!1/2

.

Laplacian Eigenmap 40

47

Diffusion Distance Example
1. DIFFUSION MAP AND DIFFUSION DISTANCE 129

Figure 1. Di↵usion Distances dt(A, B) >> dt(B, C) while graph
shortest path dgeod(A, B) ⇠ dgeod(B, C).

Figure 2. Two circles

Figure 3. EX2 single circle

where A1 is a n1 ⇥ n1 matrix, A2 is a n2 ⇥ n2 matrix, n1 + n2 = n.
Notice that the eigenvalue �0 = 1 of A is of multiplicity 2, the two eigenvectors

are �0 = 1n and �
0

0 = [c11Tn1, c21
T
n2]

T c1 6= c2.

Di↵usion Map :

⇢
�1D

t (x1), · · · , �1D
t (xn1) = c1

�1D
t (xn1+1), · · · , �1D

t (xn) = c2

EX2: ring graph. ”single circle”
In this case, W is a circulant matrix

W =

0

BBBBB@

1 1 0 0 · · · 1
1 1 1 0 · · · 0
0 1 1 1 · · · 0
...

...
...

... · · ·
...

1 0 0 0 · · · 1

1

CCCCCA

The eigenvalue of W is �k = cos 2⇡k
n k = 0, 1, · · · , n

2 and the corresponding eigen-

vector is (uk)j = ei
2⇡
n kj j = 1, · · · , n. So we can get �2D

t (xi) = (cos 2⇡kj
n , sin 2⇡kj

n)ct

EX3: order the face. Let

48

General Diffusion MapGeneral Di↵usion Map

I Let kt(x, y) = exp(�kx� yk2/t)

I Define

qt(x) =

Z

M
kt(x, y)q(y)dy

and form the new kernel

k
(↵)
t (x, y) =

kt(x, y)

q
↵
t (x)q

↵
t (y)

.

I Let

d
(↵)
t (x) =

Z

M
k
(↵)
t (x, y)q(y)dy

and define the transition kernel of a Markov chain by

pt,↵(x, y) =
k
(↵)
t (x, y)

d
(↵)
t (x)

.

Laplacian Eigenmap 30

49

General Diffusion Map
General Di↵usion Map

I Define the Markov chain

Pt,↵f(x) =

Z

M
pt,↵(x, y)f(y)q(y)dy.

I Define the Laplacian

Lt,↵ =
I � Pt,↵

t
.

I The bottom eigenvectors of Lt,↵ give the embedding.

Laplacian Eigenmap 31

50

Convergence of General LaplacianConvergence of General Laplacians

Theorem (Coifman-Lafon (2006))
Let M 2 Rp be a compact smooth submanifold, q(x) be a probability
density on M, and �M be the Laplacian-Beltrami operator on M.

lim
t!0

Lt,↵ =
�M(fq1�↵)

q1�↵
� �M(q1�↵))

q1�↵
.

This suggests that

I for ↵ = 1, it converges to the Laplacian-Beltrami operator
limt!0 Lt,1 = �M;

I for ↵ = 1/2, it converges to a Schrödinger operator whose
conjugation leads to a forward Fokker-Planck equation;

I for ↵ = 0, it is the normalized graph Laplacian.

Laplacian Eigenmap 32

51

Comparisons of Manifold Learning
Techniques

• MDS
• PCA
• ISOMAP
• LLE
• Hessian	LLE
• Laplacian LLE
• Diffusion	Map
• Local	Tangent	Space	Alignment
• Matlab codes:	mani.m

Courtesy	of	Todd	Wittman

Comparisons on Swiss Roll

52

Diffussion Map vs.
Stochastic Neighbor Embedding
• In Diffusion Map, it looks for MDS

embedding which preserves diffusion
distances

• SNE considers to find a low-dimensional
Euclidean embedding Y which preserves
the distribution Pi*

53

Di↵usion Distance

I

Dt(xi, xj) := kP t
i⇤ � P t

j⇤k`2(1/d) =
mX

k=1

(P t
ik � P t

jk)
2

dk

LLE 19

Stochastic Neighbor Embedding
• Like diffusion map, consider the conditional probability

that one data point will pick the other data point as its
neighbor

• However, to reconstruct the probability rather than
clusters in embedding:

– Use the pairwise distances in the low-dimensional map to
define the probability that a map point will pick another
map point as its neighbor.

– Compute the Kullback-Leibler divergence between the
probabilities in the high-dimensional and low-
dimensional spaces.

•

54

Di↵usion Distance

I pj|i

Dt(xi, xj) := kP t
i⇤ � P t

j⇤k`2(1/d) =
mX

k=1

(P t
ik � P t

jk)
2

dk

LLE 19

55

A	probabilistic	local	method

• Each	point	in	high-D	has	a	
conditional	probability	of	picking	
each	other	point	as	its	neighbor.

• The	distribution	over	neighbors	is	
based	on	the	high-D	pairwise
distances.
– If	we	do	not	have	coordinates	

for	the	datapoints we	can	use	
a	matrix	of	dissimilarities	
instead	of	pairwise distances.

High-D Space

i

jk

222

222

|
iikde

k

iijde
ijp

s

s

-

-

=

åprobability of picking j
given that you start at i

56

Evaluating	an	arrangement	of	the	data	in	a	low-dimensional	
space	Y

• Give	each	data	point	a	location	
in	the	low- dimensional	space	
Y.
– Evaluate	this	
representation	by	
seeing	how	well	the	
low-D	probabilities	
model	the	high-D	ones.

Low-D Space

i

j

k

2

2

|
ikde

k

ijde
ijq -

-

=

åprobability of picking j
given that you start at i

57

The	cost	function	for	a	low-dimensional	representation

• For	points	where	pij is	large	and	qij	is	small	we	lose	a	lot.
– Nearby	points	in	high-D	really	want	to	be	nearby	in	low-D

• For	points	where	qij is	large	and	pij is	small	we	lose	a	little	
because	we	waste	some	of	the	probability	mass	in	the	Qi
distribution.
– Widely	separated	points	in	high-D	have	a	mild	preference	
for	being	widely	separated	in	low-D.

ijq
ijp

i j
ijpQ

i
iPKLCost i

|

|log|)||(ååå ==

58

Gradient	Descent

• Points	are	pulled		towards	
each	other	if	the	p�s	are	
bigger	than	the	q�s	and	
repelled	if	the	q�s	are	
bigger	than	the	p�s

)()(2 |||| jijiijiji
j

j
i

qpqp
Cost

-+--=
¶
¶ å yy
y

i

j

VISUALIZING DATA USING T-SNE

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.
Data: data set X = {x1,x2, ...,xn},
cost function parameters: perplexity Perp,
optimization parameters: number of iterations T , learning rate η, momentum α(t).
Result: low-dimensional data representation Y (T) = {y1,y2, ...,yn}.
begin

compute pairwise affinities p j|i with perplexity Perp (using Equation 1)
set pi j =

p j|i+pi| j
2n

sample initial solution Y (0) = {y1,y2, ...,yn} from N (0,10−4I)
for t=1 to T do

compute low-dimensional affinities qi j (using Equation 4)
compute gradient δC

δY (using Equation 5)
set Y (t) = Y (t−1) +η δC

δY +α(t)
(
Y (t−1)−Y (t−2))

end
end

is proportional to their pairwise distance in the low-dimensional map, which may cause dissimilar
datapoints to move much too far away from each other.

Taken together, t-SNE puts emphasis on (1) modeling dissimilar datapoints by means of large
pairwise distances, and (2) modeling similar datapoints by means of small pairwise distances. More-
over, as a result of these characteristics of the t-SNE cost function (and as a result of the approximate
scale invariance of the Student t-distribution), the optimization of the t-SNE cost function is much
easier than the optimization of the cost functions of SNE and UNI-SNE. Specifically, t-SNE in-
troduces long-range forces in the low-dimensional map that can pull back together two (clusters
of) similar points that get separated early on in the optimization. SNE and UNI-SNE do not have
such long-range forces, as a result of which SNE and UNI-SNE need to use simulated annealing to
obtain reasonable solutions. Instead, the long-range forces in t-SNE facilitate the identification of
good local optima without resorting to simulated annealing.

3.4 Optimization Methods for t-SNE

We start by presenting a relatively simple, gradient descent procedure for optimizing the t-SNE cost
function. This simple procedure uses a momentum term to reduce the number of iterations required
and it works best if the momentum term is small until the map points have become moderately well
organized. Pseudocode for this simple algorithm is presented in Algorithm 1. The simple algorithm
can be sped up using the adaptive learning rate scheme that is described by Jacobs (1988), which
gradually increases the learning rate in directions in which the gradient is stable.

Although the simple algorithm produces visualizations that are often much better than those
produced by other non-parametric dimensionality reduction techniques, the results can be improved
further by using either of two tricks. The first trick, which we call “early compression”, is to force
the map points to stay close together at the start of the optimization. When the distances between
map points are small, it is easy for clusters to move through one another so it is much easier to
explore the space of possible global organizations of the data. Early compression is implemented
by adding an additional L2-penalty to the cost function that is proportional to the sum of squared

2587

VISUALIZING DATA USING T-SNE

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.
Data: data set X = {x1,x2, ...,xn},
cost function parameters: perplexity Perp,
optimization parameters: number of iterations T , learning rate η, momentum α(t).
Result: low-dimensional data representation Y (T) = {y1,y2, ...,yn}.
begin

compute pairwise affinities p j|i with perplexity Perp (using Equation 1)
set pi j =

p j|i+pi| j
2n

sample initial solution Y (0) = {y1,y2, ...,yn} from N (0,10−4I)
for t=1 to T do

compute low-dimensional affinities qi j (using Equation 4)
compute gradient δC

δY (using Equation 5)
set Y (t) = Y (t−1) +η δC

δY +α(t)
(
Y (t−1)−Y (t−2))

end
end

is proportional to their pairwise distance in the low-dimensional map, which may cause dissimilar
datapoints to move much too far away from each other.

Taken together, t-SNE puts emphasis on (1) modeling dissimilar datapoints by means of large
pairwise distances, and (2) modeling similar datapoints by means of small pairwise distances. More-
over, as a result of these characteristics of the t-SNE cost function (and as a result of the approximate
scale invariance of the Student t-distribution), the optimization of the t-SNE cost function is much
easier than the optimization of the cost functions of SNE and UNI-SNE. Specifically, t-SNE in-
troduces long-range forces in the low-dimensional map that can pull back together two (clusters
of) similar points that get separated early on in the optimization. SNE and UNI-SNE do not have
such long-range forces, as a result of which SNE and UNI-SNE need to use simulated annealing to
obtain reasonable solutions. Instead, the long-range forces in t-SNE facilitate the identification of
good local optima without resorting to simulated annealing.

3.4 Optimization Methods for t-SNE

We start by presenting a relatively simple, gradient descent procedure for optimizing the t-SNE cost
function. This simple procedure uses a momentum term to reduce the number of iterations required
and it works best if the momentum term is small until the map points have become moderately well
organized. Pseudocode for this simple algorithm is presented in Algorithm 1. The simple algorithm
can be sped up using the adaptive learning rate scheme that is described by Jacobs (1988), which
gradually increases the learning rate in directions in which the gradient is stable.

Although the simple algorithm produces visualizations that are often much better than those
produced by other non-parametric dimensionality reduction techniques, the results can be improved
further by using either of two tricks. The first trick, which we call “early compression”, is to force
the map points to stay close together at the start of the optimization. When the distances between
map points are small, it is easy for clusters to move through one another so it is much easier to
explore the space of possible global organizations of the data. Early compression is implemented
by adding an additional L2-penalty to the cost function that is proportional to the sum of squared

2587

59

Data	from	sne	paper Unsupervised
SNE embedding
of the digits 0-4.
Not all the data
is displayed

60

Picking	the	radius	of	the	gaussian	that	
is	used	to	compute	the	p’s

• We	need	to	use	different	radii	in	different	parts	of	the	
space	so	that	we	keep	the	effective	number	of	
neighbors about	constant.	

• A	big	radius	leads	to	a	high	entropy	for	the	distribution	
over	neighbors of	i.

• A	small	radius	leads	to	a	low	entropy.
• So	decide	what	entropy	you	want	and	then	find	the	
radius	that	produces	that	entropy.

• Its	easier	to	specify	2^entropy
– This	is	called	the	perplexity
– It	is	the	effective	number	of	neighbors.

VAN DER MAATEN AND HINTON

a small q j|i to model a large p j|i), but there is only a small cost for using nearby map points to
represent widely separated datapoints. This small cost comes from wasting some of the probability
mass in the relevant Q distributions. In other words, the SNE cost function focuses on retaining the
local structure of the data in the map (for reasonable values of the variance of the Gaussian in the
high-dimensional space, σi).

The remaining parameter to be selected is the variance σi of the Gaussian that is centered over
each high-dimensional datapoint, xi. It is not likely that there is a single value of σi that is optimal
for all datapoints in the data set because the density of the data is likely to vary. In dense regions,
a smaller value of σi is usually more appropriate than in sparser regions. Any particular value of
σi induces a probability distribution, Pi, over all of the other datapoints. This distribution has an
entropy which increases as σi increases. SNE performs a binary search for the value of σi that
produces a Pi with a fixed perplexity that is specified by the user.3 The perplexity is defined as

Perp(Pi) = 2H(Pi),

where H(Pi) is the Shannon entropy of Pi measured in bits

H(Pi) = −∑
j
p j|i log2 p j|i.

The perplexity can be interpreted as a smooth measure of the effective number of neighbors. The
performance of SNE is fairly robust to changes in the perplexity, and typical values are between 5
and 50.

The minimization of the cost function in Equation 2 is performed using a gradient descent
method. The gradient has a surprisingly simple form

δC
δyi

= 2∑
j
(p j|i−q j|i+ pi| j−qi| j)(yi− y j).

Physically, the gradient may be interpreted as the resultant force created by a set of springs between
the map point yi and all other map points y j. All springs exert a force along the direction (yi− y j).
The spring between yi and y j repels or attracts the map points depending on whether the distance
between the two in the map is too small or too large to represent the similarities between the two
high-dimensional datapoints. The force exerted by the spring between yi and y j is proportional to its
length, and also proportional to its stiffness, which is the mismatch (p j|i−q j|i+ pi| j−qi| j) between
the pairwise similarities of the data points and the map points.

The gradient descent is initialized by sampling map points randomly from an isotropic Gaussian
with small variance that is centered around the origin. In order to speed up the optimization and to
avoid poor local minima, a relatively large momentum term is added to the gradient. In other words,
the current gradient is added to an exponentially decaying sum of previous gradients in order to
determine the changes in the coordinates of the map points at each iteration of the gradient search.
Mathematically, the gradient update with a momentum term is given by

Y (t) = Y (t−1) +η
δC
δY +α(t)

(
Y (t−1)−Y (t−2)

)
,

3. Note that the perplexity increases monotonically with the variance σi.

2582

VAN DER MAATEN AND HINTON

a small q j|i to model a large p j|i), but there is only a small cost for using nearby map points to
represent widely separated datapoints. This small cost comes from wasting some of the probability
mass in the relevant Q distributions. In other words, the SNE cost function focuses on retaining the
local structure of the data in the map (for reasonable values of the variance of the Gaussian in the
high-dimensional space, σi).

The remaining parameter to be selected is the variance σi of the Gaussian that is centered over
each high-dimensional datapoint, xi. It is not likely that there is a single value of σi that is optimal
for all datapoints in the data set because the density of the data is likely to vary. In dense regions,
a smaller value of σi is usually more appropriate than in sparser regions. Any particular value of
σi induces a probability distribution, Pi, over all of the other datapoints. This distribution has an
entropy which increases as σi increases. SNE performs a binary search for the value of σi that
produces a Pi with a fixed perplexity that is specified by the user.3 The perplexity is defined as

Perp(Pi) = 2H(Pi),

where H(Pi) is the Shannon entropy of Pi measured in bits

H(Pi) = −∑
j
p j|i log2 p j|i.

The perplexity can be interpreted as a smooth measure of the effective number of neighbors. The
performance of SNE is fairly robust to changes in the perplexity, and typical values are between 5
and 50.

The minimization of the cost function in Equation 2 is performed using a gradient descent
method. The gradient has a surprisingly simple form

δC
δyi

= 2∑
j
(p j|i−q j|i+ pi| j−qi| j)(yi− y j).

Physically, the gradient may be interpreted as the resultant force created by a set of springs between
the map point yi and all other map points y j. All springs exert a force along the direction (yi− y j).
The spring between yi and y j repels or attracts the map points depending on whether the distance
between the two in the map is too small or too large to represent the similarities between the two
high-dimensional datapoints. The force exerted by the spring between yi and y j is proportional to its
length, and also proportional to its stiffness, which is the mismatch (p j|i−q j|i+ pi| j−qi| j) between
the pairwise similarities of the data points and the map points.

The gradient descent is initialized by sampling map points randomly from an isotropic Gaussian
with small variance that is centered around the origin. In order to speed up the optimization and to
avoid poor local minima, a relatively large momentum term is added to the gradient. In other words,
the current gradient is added to an exponentially decaying sum of previous gradients in order to
determine the changes in the coordinates of the map points at each iteration of the gradient search.
Mathematically, the gradient update with a momentum term is given by

Y (t) = Y (t−1) +η
δC
δY +α(t)

(
Y (t−1)−Y (t−2)

)
,

3. Note that the perplexity increases monotonically with the variance σi.

2582

61

Symmetric	SNE

• There	is	a	simpler	version	of	SNE	which	seems	
to	work	about	equally	well.

• Symmetric	SNE	works	best	if	we	use	different	
procedures	for	computing	the	p�s	and	the	q�s
– This	destroys	the	nice	property	that	if	we	embed	
in	a	space	of	the	same	dimension	as	the	data,	the	
data	itself	is	the	optimal	solution.

62

Computing	the	p�s	for	symmetric	SNE

• Each	high	dimensional	point,	i,	
has	a	conditional probability of	
picking	each	other	point,	j,		as	
its	neighbor.

• The	conditional	distribution	
over	neighbors	is	based	on	the	
high-dimensional	pairwise	
distances.

High-D Space

i

jk

222

222

|
iikd

k

iijd

ij

e

ep
s

s

-

-

å
=

probability of picking j
given that you start at i

63

Turning	conditional	probabilities	
into	pairwise	probabilities

To	get	a	symmetric	probability	between	i	and	j	we	sum	the	two	
conditional	probabilities	and	divide	by	the	number	of	points	
(points	are	not	allowed	to	choose	themselves).

This	ensures	that	all	the	pairwise	probabilities	sum	to	1	so	they	
can	be	treated	as	probabilities.	

1
,

=å
ji
ijp

n
pp

p jiij
ij 2

|| +=joint probability of
picking the pair i,j

64

Evaluating	an	arrangement	of	the	points	in	the	low-dimensional	
space

• Give	each	data-point	a	location	
in	the	low- dimensional	space.
– Define	low-dimensional	
probabilities	symmetrically.

– Evaluate	the	representation	
by	seeing	how	well	the	low-D	
probabilities	model	the	high-
D	affinities.

Low-D Space

i

j

k

2

2

kld

lk

ijd

ij
e

eq
-

<

-

å
=

65

The	cost	function	for	a	low-dimensional	representation

• It�s	a	single	KL	instead	of	the	sum	of	one	KL	for	each	
datapoint.

å
<

==
ji ij

ij
ij q

p
pQPKLCost log|)||(

66

The	forces	acting	on	the	low-dimensional	points

• Points	are	pulled		towards	each	
other	if	the	p�s	are	bigger	than	
the	q�s	and	repelled	if	the	q�s	
are	bigger	than	the	p�s
– Its	equivalent	to	having	
springs	whose	stiffnesses	
are	set	dynamically.

)()(2)||(
ijijj

j
i

i
qpQPKL

--=
¶

¶ å yy
y

i

j

extension stiffness

67

68

Why	SNE	does	not	have	gaps	between	classes

• In	the	high-dimensional	space	there	are	many	pairs	of	
points	that	are	moderately	close	to	each	other.
– The	low-D	space	cannot	model	this.	It	doesn�t	have	
enough	room	around	the	edges.

• So	there	are	many	pij�s	that	are	modeled	by	smaller	qij�s.
– This	has	the	effect	of	lots	of	weak	springs	pulling	
everything	together	and	crushing	different	classes	
together	in	the	middle	of	the	space.

• One	solution
– Use	light	tail	Gaussian	kernel	for	high-D	pij but;	
– Heavy	tail	for	low-D	qij

69

t-SNE

• Use	a	heavy	tailed	Student	t-distribution	
(Cauchy)	for	q	which	allows	a	moderate	
distance	in	high-dimensional	space	to	be	
faithfully	represented	by	a	larger	distance	
(push	away)	in	low-dimensional	embedding

21
1

ij
ij d
q

+
µ

70

Gradient	of	t-SNE

VAN DER MAATEN AND HINTON

High−dimensional distance >

Lo
w
−d

im
en

si
on

al
 d

is
ta

nc
e

>

0
2
4
6
8
10
12
14
16
18

(a) Gradient of SNE.

High−dimensional distance >

Lo
w
−d

im
en

si
on

al
 d

is
ta

nc
e

>

−4
−2
0
2
4
6
8
10
12
14

(b) Gradient of UNI-SNE.

High−dimensional distance >

Lo
w
−d

im
en

si
on

al
 d

is
ta

nc
e

>

−1

−0.5

0

0.5

1

(c) Gradient of t-SNE.

Figure 1: Gradients of three types of SNE as a function of the pairwise Euclidean distance between
two points in the high-dimensional and the pairwise distance between the points in the
low-dimensional data representation.

selection of the Student t-distribution is that it is closely related to the Gaussian distribution, as the
Student t-distribution is an infinite mixture of Gaussians. A computationally convenient property
is that it is much faster to evaluate the density of a point under a Student t-distribution than under
a Gaussian because it does not involve an exponential, even though the Student t-distribution is
equivalent to an infinite mixture of Gaussians with different variances.

The gradient of the Kullback-Leibler divergence between P and the Student-t based joint prob-
ability distribution Q (computed using Equation 4) is derived in Appendix A, and is given by

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j)

(
1+‖yi− y j‖2

)−1
. (5)

In Figure 1(a) to 1(c), we show the gradients between two low-dimensional datapoints yi and y j as
a function of their pairwise Euclidean distances in the high-dimensional and the low-dimensional
space (i.e., as a function of ‖xi− x j‖ and ‖yi− y j‖) for the symmetric versions of SNE, UNI-SNE,
and t-SNE. In the figures, positive values of the gradient represent an attraction between the low-
dimensional datapoints yi and y j, whereas negative values represent a repulsion between the two
datapoints. From the figures, we observe two main advantages of the t-SNE gradient over the
gradients of SNE and UNI-SNE.

First, the t-SNE gradient strongly repels dissimilar datapoints that are modeled by a small pair-
wise distance in the low-dimensional representation. SNE has such a repulsion as well, but its effect
is minimal compared to the strong attractions elsewhere in the gradient (the largest attraction in our
graphical representation of the gradient is approximately 19, whereas the largest repulsion is approx-
imately 1). In UNI-SNE, the amount of repulsion between dissimilar datapoints is slightly larger,
however, this repulsion is only strong when the pairwise distance between the points in the low-
dimensional representation is already large (which is often not the case, since the low-dimensional
representation is initialized by sampling from a Gaussian with a very small variance that is centered
around the origin).

Second, although t-SNE introduces strong repulsions between dissimilar datapoints that are
modeled by small pairwise distances, these repulsions do not go to infinity. In this respect, t-SNE
differs from UNI-SNE, in which the strength of the repulsion between very dissimilar datapoints

2586

VAN DER MAATEN AND HINTON

High−dimensional distance >

Lo
w−

di
m

en
sio

na
l d

ist
an

ce
 >

0
2
4
6
8
10
12
14
16
18

(a) Gradient of SNE.

High−dimensional distance >

Lo
w−

di
m

en
sio

na
l d

ist
an

ce
 >

−4
−2
0
2
4
6
8
10
12
14

(b) Gradient of UNI-SNE.

High−dimensional distance >

Lo
w−

di
m

en
sio

na
l d

ist
an

ce
 >

−1

−0.5

0

0.5

1

(c) Gradient of t-SNE.

Figure 1: Gradients of three types of SNE as a function of the pairwise Euclidean distance between
two points in the high-dimensional and the pairwise distance between the points in the
low-dimensional data representation.

selection of the Student t-distribution is that it is closely related to the Gaussian distribution, as the
Student t-distribution is an infinite mixture of Gaussians. A computationally convenient property
is that it is much faster to evaluate the density of a point under a Student t-distribution than under
a Gaussian because it does not involve an exponential, even though the Student t-distribution is
equivalent to an infinite mixture of Gaussians with different variances.

The gradient of the Kullback-Leibler divergence between P and the Student-t based joint prob-
ability distribution Q (computed using Equation 4) is derived in Appendix A, and is given by

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j)

(
1+‖yi− y j‖2

)−1
. (5)

In Figure 1(a) to 1(c), we show the gradients between two low-dimensional datapoints yi and y j as
a function of their pairwise Euclidean distances in the high-dimensional and the low-dimensional
space (i.e., as a function of ‖xi− x j‖ and ‖yi− y j‖) for the symmetric versions of SNE, UNI-SNE,
and t-SNE. In the figures, positive values of the gradient represent an attraction between the low-
dimensional datapoints yi and y j, whereas negative values represent a repulsion between the two
datapoints. From the figures, we observe two main advantages of the t-SNE gradient over the
gradients of SNE and UNI-SNE.

First, the t-SNE gradient strongly repels dissimilar datapoints that are modeled by a small pair-
wise distance in the low-dimensional representation. SNE has such a repulsion as well, but its effect
is minimal compared to the strong attractions elsewhere in the gradient (the largest attraction in our
graphical representation of the gradient is approximately 19, whereas the largest repulsion is approx-
imately 1). In UNI-SNE, the amount of repulsion between dissimilar datapoints is slightly larger,
however, this repulsion is only strong when the pairwise distance between the points in the low-
dimensional representation is already large (which is often not the case, since the low-dimensional
representation is initialized by sampling from a Gaussian with a very small variance that is centered
around the origin).

Second, although t-SNE introduces strong repulsions between dissimilar datapoints that are
modeled by small pairwise distances, these repulsions do not go to infinity. In this respect, t-SNE
differs from UNI-SNE, in which the strength of the repulsion between very dissimilar datapoints

2586

VAN DER MAATEN AND HINTON

High−dimensional distance >

Lo
w
−d

im
en

si
on

al
 d

is
ta

nc
e

>

0
2
4
6
8
10
12
14
16
18

(a) Gradient of SNE.

High−dimensional distance >

Lo
w
−d

im
en

si
on

al
 d

is
ta

nc
e

>

−4
−2
0
2
4
6
8
10
12
14

(b) Gradient of UNI-SNE.

High−dimensional distance >
Lo

w
−d

im
en

si
on

al
 d

is
ta

nc
e

>

−1

−0.5

0

0.5

1

(c) Gradient of t-SNE.

Figure 1: Gradients of three types of SNE as a function of the pairwise Euclidean distance between
two points in the high-dimensional and the pairwise distance between the points in the
low-dimensional data representation.

selection of the Student t-distribution is that it is closely related to the Gaussian distribution, as the
Student t-distribution is an infinite mixture of Gaussians. A computationally convenient property
is that it is much faster to evaluate the density of a point under a Student t-distribution than under
a Gaussian because it does not involve an exponential, even though the Student t-distribution is
equivalent to an infinite mixture of Gaussians with different variances.

The gradient of the Kullback-Leibler divergence between P and the Student-t based joint prob-
ability distribution Q (computed using Equation 4) is derived in Appendix A, and is given by

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j)

(
1+‖yi− y j‖2

)−1
. (5)

In Figure 1(a) to 1(c), we show the gradients between two low-dimensional datapoints yi and y j as
a function of their pairwise Euclidean distances in the high-dimensional and the low-dimensional
space (i.e., as a function of ‖xi− x j‖ and ‖yi− y j‖) for the symmetric versions of SNE, UNI-SNE,
and t-SNE. In the figures, positive values of the gradient represent an attraction between the low-
dimensional datapoints yi and y j, whereas negative values represent a repulsion between the two
datapoints. From the figures, we observe two main advantages of the t-SNE gradient over the
gradients of SNE and UNI-SNE.

First, the t-SNE gradient strongly repels dissimilar datapoints that are modeled by a small pair-
wise distance in the low-dimensional representation. SNE has such a repulsion as well, but its effect
is minimal compared to the strong attractions elsewhere in the gradient (the largest attraction in our
graphical representation of the gradient is approximately 19, whereas the largest repulsion is approx-
imately 1). In UNI-SNE, the amount of repulsion between dissimilar datapoints is slightly larger,
however, this repulsion is only strong when the pairwise distance between the points in the low-
dimensional representation is already large (which is often not the case, since the low-dimensional
representation is initialized by sampling from a Gaussian with a very small variance that is centered
around the origin).

Second, although t-SNE introduces strong repulsions between dissimilar datapoints that are
modeled by small pairwise distances, these repulsions do not go to infinity. In this respect, t-SNE
differs from UNI-SNE, in which the strength of the repulsion between very dissimilar datapoints

2586

t-SNE	allows	more	points	in	moderate	distance	neighbors

71

Two	other	state-of-the-art	dimensionality	
reduction	methods	on	the	6000	MNIST	digits

Isomap Locally Linear Embedding

72

t-SNE	on	the	6000	MNIST	digits

Stochastic Neighbor Embedding
vs. Laplacian Engenmap

• Miguel Carreira-Perpinan (ICML 2010) showed
that the original SNE cost func2on can be
rewriVen so that it is equivalent to Laplacian
Eigenmaps with an extra repulsion term that
spreads out the map points.

• This led to a much faster op2miza2on method.
The fast code is now on the t-SNE webpage

73

74

Stochastic Neighbor EmbeddingStochastic Neighbor Embedding

I The Energy (Loss) function of SNE:

ESNE(X) =
NX

n=1

DKL (PnkQn) =
NX

n,m=1

pnm log
pnm

qnm

where

pnm =
exp

�
�d

2
nm

�
P

n 6=m0 exp (�d
2
nm0)

, pnn = 0

qnm =
exp

⇣
�kyn � ymk2

⌘

P
n 6=m0 exp

⇣
�kyn � ym0k2

⌘

LLE 20

75

Stochastic Neighbor Embedding
vs. Laplacian Eigenmap

Stochastic Neighbor Embedding vs. Laplacian

Embedding

I Expanding the Energy function of SNE and ignoring the terms that
do not depend on y, we have

ESNE(Y) =
NX

n,m=1

pnm kyn � ymk2

+
NX

n=1

log
X

n 6=m

exp
⇣
�kyn � ymk2

⌘

I Laplacian Embedding has energy function:

ELE(Y) =
NX

n,m=1

wnm kyn � ymk2

LLE 21

76

SNE: attraction and repulsion
Stochastic Neighbor Embedding vs. Laplacian

Embedding

I SNE has both the attractive and repulsive terms:

– The attraction term in both SNE and LE:

NX

n,m=1

wnm kyn � ymk2

pulls points toward each other

– The repulsion term

NX

n=1

log
X

n 6=m

exp
�
�kyn � ymk2

�

push away the points leaving each other

LLE 22

77

Elastic EmbeddingElastic Embedding

I Define the Energy for EE, by dropping the log in SNE

EEE(Y;�) =
NX

n,m=1

w
+
nm kyn � ymk2

+ �

NX

n,m=1

w
�
nmexp

⇣
�kyn � ymk2

⌘

where

– the attractive weights: w+
nm = exp

�
� 1

2 k(xn � xm) /�k2
�
(n 6= m)

– the repulsive weights: w�
nm = w̄�

nm kxn � xmk2 and w̄nm = 1
(n 6= m)

– and w+
nn = w�

nn = 0

LLE 23

78

Gradient
Gradient

I The gradient of Energy function of EE:

@EEE

@yn
= 4

NX

m 6=n

wnm (yn � ym)

I Or in matrix form,

G(Y;�) =
@EEE

@Y
= 4Y

⇣
L+ � �eL�

⌘
= 4YL

where we define the a�nities

w̃
�
nm = w

�
nm exp

⇣
�kyn � ymk2

⌘

wnm = w
+
nm � � ew�

nm

and their graph Laplacians L̃ = eD� fW,L = D�W in the usual
way

LLE 24

79

Notes

I L+ is the usual (unnormalised) graph Laplacian that appears in
Laplacian eigenmaps.

I W can be considered a learned a�nity matrix and contains negative
weights for � > 0.

I

LLE 25

Remark

80

The Elastic Embedding Algorithm for Dimensionality Reduction

Spiral Y Embedding X Affinities wnm Lower bounds Upper bounds # iterations

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

0.6

y1

y 2

50 100 150 200
−30

−20

−10

0

10

20

30

n

x
n

50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

n

w
n

m

1 2
0

1

2

3

4
x 10

−5

1 100 200 300 400
10

−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

λ

Figure 2. EE trained with homotopy with a 2D spiral.

EE, λ = 2 · 10−7 EE, λ = 10−6 EE, λ = 10−2 EE, λ = 101 EE, λ = 107

−1 −0.5 0 0.5 1
−0.5

0

0.5

−1 0 1

−1

0

1

−10 −5 0 5 10

−5

0

5

−40 −20 0 20 40

−15

0

15

−100 −50 0 50 100

−50

0

50

True X Laplacian eigenmaps Isomap SNE t-SNE

10 20 30 40 50 60 70 80 90

10

20

30

40

−0.005 0 0.005

−0.01

−0.005

0

0.005

0.01

−15 −10 −5 0 5 10 15

−5

0

5

10

−0.005 0 0.005

−0.005

0

0.005

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

Figure 3. Swiss roll. Top: EE with homotopy; we show X for different λ. Bottom: true X and results with other methods.

the right plot). We used the homotopy method with
80 values of λ from 10−2 to 102. For each λ we ran
the optimisation until the relative function change was
less than 10−3 or we reached 50 iterations. The step
size was 1 nearly always, 0.8 occasionally. The right
plot shows that more iterations are required shortly
after the λ∗

1 bifurcation; occasional spikes in that plot
indicate subsequent bifurcations as new minima arise
and the map changes. The initial X do not unfold
the spiral correctly, but eventually they do, and this
deep minimum is tracked henceforth. As λ increases,
initial local clustering and boundary effects typically
associated with an LE embedding are removed and the
result is a perfectly spaced sequence matching the data
spacing. The initial affinities wnm of eq. (9) are Gauss-
ian, but as λ increases they develop negative lobes and
adopt a Mexican-hat form (the plot shows wnm for
two interior and two extreme points). As λ further
increases (enlarging the map and forcing points to be
equidistant) wnm become much more negative.

Fig. 3 shows the result of EE with a 3D Swiss roll
with N = 2000 points, w+

nm as k-nearest-neighbour
Gaussian affinities and w−

nm = 1 ∀n,m. We set
k = 12, σ = 15 for all methods. The bounds indi-
cate λ∗

1 ∈ [5 · 10−9, 10−8], so we varied λ from 10−7 to
107. After the critical λ∗

1, X expands along the 1D LE
solution and later on the 2D map unfolds. This small-
λ solution globally unfolds the Swiss roll but shows

defects similar to those of spectral methods (local clus-
ters and gaps, boundary effects; see the LE plot). But
these disappear as λ increases; X for λ ∈ [10−1, 101] is
extremely similar to the true X (see also the result of
Isomap, ideally suited to this problem). For very large
λ, in the region of log-growth of the scale (see fig. 1
right), the point-separating prior dominates and the
2D arrangement tends to a round hexagonal grid (that
still preserves the global structure, though). SNE at-
tains a good map, better than LE’s but worse than
EE’s. However, t-SNE does poorly, grouping points
in local clusters that push away from each other. As
noted in the introduction, t-SNE was designed to cor-
rect the map when the its dimension does not match
the intrinsic one (not the case here). Initialising X
from the true X produces similar results for SNE and
t-SNE, indicating this is not just a bad local optimum.
For SNE, perhaps better results would be obtained if

−40 −20 0 20 40
−20

−10

0

10

20

−3

−2

−1

0

−5 0 5 10

−4

−2

0

2

4

6

−3

−2

−1

0

Figure 4. Affinities wnm = w
+
nm − λw

−

nm exp (−‖xn − xm‖2)
learned for a point xn near the centre of the Swiss roll for
λ = 101 (right plot: zoom view).

Swiss Roll Example

Reference
• Tenenbaum, de Silva, and Langford, A Global Geometric Framework for Nonlinear

Dimensionality Reduc2on. Science 290:2319-2323, 22 Dec. 2000.
• Roweis and Saul, Nonlinear Dimensionality Reduc2on by Locally Linear Embedding.

Science 290:2323-2326, 22 Dec. 2000.
• M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduc2on and data

representa2on. Neural Computa2on, 15:1373–1396, 2003.
• D. L. Donoho and C. Grimes. Hessian eigenmaps: New locally linear embedding

techniques for high-dimensional data. PNAS 100 (10): 5591–5596 2003.
• R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W.

Zucker. Geometric diffusions as a tool for harmonic analysis and structure defini2on
of data: Diffusion maps. PNAS 102 (21):7426-7431, 2005.

• M. Hein, J.-Y. Audibert, and U. von Luxburg. From graphs to manifolds - weak and
strong pointwise consistency of graph Laplacians. In P. Auer and R. Meir, editors,
Proc. of the 18th Conf. on Learning Theory (COLT), pages 486–500, Berlin, 2005.
Springer.

• Ulrike von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral
clustering. Ann. Sta2st. Volume 36, Number 2 (2008), 555-586.

Reference
• M. Belkin and P. Niyogi. Convergence of Laplacian Eigenmaps. 2006. Short version

NIPS 2008.
• Singer, Amit. From graph to manifold Laplacian: The convergence rate. Applied and

Computa<onal Harmonic Analysis. 2006.
• Zhenyue Zhang and Hongyuan Zha, Principal Manifolds and Nonlinear Dimension

Reduc2on via Local Tangent Space Alignment, SIAM Journal of Scien2fic Compu2ng,
2002

• Singer, Amit and Hau-Tieng Wu, Vector Diffusion Map and the Connec2on Laplacian.
Communica2ons on Pure and Applied Mathema2cs, 65 (8):1067-1144, 2012.
Matlab VDM codes downloaded at

– hVps://sites.google.com/site/hau2engwu/home/
download

https://sites.google.com/site/hautiengwu/home/download
https://sites.google.com/site/hautiengwu/home/download

Acknowledgement
• Slides stolen from M. Belkin, R. Coifman, G. Hinton, et al.

