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PCA

I Let X ∈ Rp×n be a data matrix. Classical PCA looks for a matrix
decomposition

X = L+ E

where

– L is of low-rank (e.g.at most rank k),

– error matrix E has a small Frobenius norm, which is usually the case
for Gaussian noise
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PCA

I Classical PCA solves

min ‖X − L‖ (1)

subject to rank(L) ≤ k

where the norm here is any unitary invariant matrix norms, e.g.

– Schatten’s p-norm ‖M‖p = (
∑
i σi(M)p)1/p (p ≥ 1) when M

admits the Singular Value Decomposition (SVD) M = USV T with
S = diag(σ1, . . . , σk, . . . ) (p = 2 is the Frobenius norm, p = 1 is the
nuclear norm, and p =∞ gives the spectral norm).

– SVD provides a solution with L =
∑
i≤k σiuiv

T
i where

X =
∑
i σiuiv

T
i (σ1 ≥ σ2 ≥ . . .).
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PCA is sensitive to outliers

I However, if some outliers exists, i.e. there are a small amount of
sample points which are largely deviated from the main population
of samples, the classical PCA is well-known very sensitive to such
outliers.

Figure: Classical PCA is sensitive to outliers
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Robust PCA

I To address this issue, Robust PCA looks for the following
decomposition instead

X = L+ S

where

– L is a low rank matrix;

– S is a sparse matrix.
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Example: rank-1 spike model

Example (Spike model)

I In the spike signal model,

X = αu+ σεε, α ∼ N (0, σ2
u) and ε ∼ N (0, Ip).

– X is thus subject to the following normal distribution N (0,Σ) where

Σ = σ2
uuu

T + σ2
ε I.

– So Σ = L+ S has such a rank-sparsity structure with

L = σ2
uuu

T , S = σ2
ε I.
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Example: Surveillance video

Example (Surveillance Video Decomposition)

Figure: Surveillance video as a rank-sparse model: Left = low-rank (middle) +
sparse (right)
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Example: Gaussian Graphical Model

Example (Gaussian Graphical Model)
Let X = [X1, . . . , Xp]

T ∼ N (0,Σ) be multivariate Gaussian random
variables.

I The following characterization holds

Xi and Xj are conditionally independent given other variables

⇔ (Σ−1)ij = 0

We denote it by Xi ⊥ Xj |X−i,−j .

I Let G = (V,E) be a undirected graph where V represent p random
variables and

(i, j) 6∈ E ⇔ xi ⊥ xj |xk (k 6∈ {i, j}).

G is called a (Gaussian) graphical model of X.
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Example: Gaussian Graphical Model (continued)

I Divide the random variables into observed and hidden (a few)
variables X = (Xo, Xh)T (in semi-supervised learning, labeled vs.
unlabeled, respectively) and

Σ =

[
Σoo Σoh
Σho Σhh

]
and Q = Σ−1 =

[
Qoo Qoh
Qho Qhh

]
I The following Schur Complement equation holds for covariance

matrix of observed variables

Σ−1
oo = Qoo +QohQ

−1
hhQho.

Note that

– Observable variables are often conditional independent given hidden
variables, so Qoo is expected to be sparse;

– Hidden variables are of small number, so QohQ
−1
hhQho is of low-rank.
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Example: Gaussian Graphical Model (continued)

I In semi-supervised learning, Xo is labeled data and Xh is unlabeled.
The labeled points are of small number, and the unlabeled points
should be as much conditionally independent as possible to each
other given labeled points. This implies that the labels should be
placed on those most “influential” points.
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Robust PCA

I In Robust PCA, the purpose is to solve

min ‖X − L‖0 (2)

s.t. rank(L) ≤ k

where ‖A‖0 = #{Aij 6= 0}.

I However both the objective function and the constraint are
non-convex, whence it is NP-hard to solve in general.

I In practice, one often uses alternative optimization.

I Here we introduce convex relaxation.
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Convex Relaxation

I The simplest convex relaxations:

‖S‖0 := #{Sij 6= 0} ⇒ ‖S‖1 (3)

rank(L) := #{σi(L) 6= 0} ⇒ ‖L‖∗ =
∑
i

σi(L), (4)

where ‖L‖∗ is called the nuclear norm of L, which has a
semi-definite representation

‖L‖∗ = min
1

2
(tr(W1) + tr(W2))

s.t.

[
W1 L
LT W2

]
� 0.
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Robust PCA via SDP

I The relaxed Robust PCA problem can be solved by the following
Semi-Definite Programming (SDP).

min ‖L‖∗ + λ‖S‖1 (5)

s.t. L+ S = A,

which is equivalent to

min
1

2
(tr(W1) + tr(W2)) + λ‖S‖1 (6)

s.t. Lij + Sij = Xij , (i, j) ∈ E[
W1 L
LT W2

]
� 0
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Matlab codes

I The Matlab codes (testRPCA.m) realized the SDP algorithm above
by CVX (http://cvxr.com/cvx).

I Typically CVX only solves SDP problem of small sizes (say matrices
of size less than 100). Specific matlab tools have been developed to
solve large scale RPCA, which can be found at
http://perception.csl.uiuc.edu/matrix-rank/home.html.

I Stephen Boyd’s website contains ADMM algorithm compared with
CVX: http://web.stanford.edu/~boyd/papers/prox_algs/
matrix_decomp.html

Robust PCA 16

testRPCA.m
http://cvxr.com/cvx
http://perception.csl.uiuc.edu/matrix-rank/home.html
http://web.stanford.edu/~boyd/papers/prox_algs/matrix_decomp.html
http://web.stanford.edu/~boyd/papers/prox_algs/matrix_decomp.html


ADMM

I For SDP problem

min ‖E‖2F + γ2‖S‖1 + γ3‖L‖∗ (7)

s.t. L+ S + E = A,

I Augmented Lagrangian:

L(E,L, S;B)

= ‖E‖2F + γ2‖S‖1 + γ3‖L‖∗ + . . .

−〈B,A− L− S − E〉+
ρ

2
‖A− L− S − E‖2F (8)

I ADMM in Stephen Boyd’s version: http://web.stanford.edu/

~boyd/papers/prox_algs/matrix_decomp.html
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ADMM

I initialization: λ = 1, λ = 1/ρ, X0
1 = X0

2 = X0
3 = B0 = 0m×n

I for k = 0, 1, 2, . . .

Xk+1
1 =

1

1 + λ
(Xk

1 −Bk), (9a)

Xk+1
2 = prox‖x‖1(Xk

2 −Bk, λγ2), (9b)

Xk+1
3 = prox‖M‖∗(X

k
3 −Bk, λγ3), (9c)

Bk+1 = Bk +
1

3
(Xk+1

1 +Xk+1
2 +Xk+1

3 −A), (9d)

where proxh(z, c) = minx
1
2‖x− z‖

2
F + ch(x).

I return E = Xk
1 , S = Xk

2 , L = Xk
3 .
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Question

How does SDP work?
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Exact Recovery Theory

I A fundamental question about Robust PCA is: given X = L0 + S0

with low-rank L and sparse S, under what conditions that one can
recover X by solving SDP in (5)?
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Exact Recovery Theory

I It is necessary to assume that

– the low-rank matrix L0 can not be sparse;

– the sparse matrix S0 can not be of low-rank.
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Exact Recovery Theory

I Such an assumption can be characterized using the following
algebraic language. Define

T (L0) = {UAT +BV T : ∀A,B ∈ Rn×p, L0 = USV T }

which is the tangent space at L0 varying in the same column and
row spaces of L0, and

Ω(S0) = {S : supp(S) ⊆ supp(S0)},

which is the tangent space at S0 varying within the same support of
S0. The assumptions above are equivalent to say that tangent
spaces T (L0) and Ω(S0) are transversal with only intersection at 0,

Transversality: T (L0)
⋂

Ω(S0) = {0}.
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Exact Recovery Theory

I The following two incoherence constants measure the “diffusive
behaviours” of sparse (low-rank) matrices onto low-rank (sparse)
opponents.

µ(S0) = max
S∈Ω(S0),‖S‖∞≤1

‖S‖2

ξ(L0) = max
L∈T (L0),‖L‖2≤1

‖L‖∞
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Exact Recovery Theory

I V. Chandrasekaran, S. Sanghavi, P.A. Parrilo, and A. Willsky (2011)
showed the following uncertainty principle, for any matrix M ,
µ(M) · ξ(M) ≥ 1. In addition,

– For identifiability, a sufficient condition holds

µ(S0) · ξ(L0) < 1⇒ T (L0)
⋂

Ω(S0) = {0}.

– Moreover, the following deterministic recovery conditions is shown
for SDP

µ(S0) · ξ(L0) < 1/6⇒ SDP (5) recovers L0 and S0.
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Incoherence Condition

I Probabilistic recovery conditions are given by Candes and Recht
(2009). Assume that L0 ∈ Rn×n = UΣV T and r = rank(L0).
Incoherence condition (Candes-Recht (2009)): there exists a
µ ≥ 1 such that for all ei = (0, . . . , 0, 1, 0, . . . , 0)T ,

‖UT ei‖2 ≤
µr

n
, ‖V T ei‖2 ≤

µr

n
,

and
|UV T |2ij ≤

µr

n2
.

I These conditions, roughly speaking, ensure that the singular vectors
are not sparse, i.e. well-spread over all coordinates and won’t
concentrate on some coordinates.

– The incoherence condition holds if |Uij |2 ∨ |Vij |2 ≤ µ/n. In fact, if
U represent random projections to r-dimensional subspaces with
r ≥ logn, we have maxi ‖UT ei‖2 � r/n.

– To meet the second condition, we simply assume that the sparsity
pattern of S0 is uniformly random.
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Probabilistic Recovery Theorem

Theorem (Candes-Recht (2009))
Assume the following holds,

1. L0 is n-by-n with rank(L0) ≤ ρrnµ−1(log n)−2,

2. S0 is uniformly sparse of cardinality m ≤ ρsn2.

Then with probability 1−O(n−10), (6) with λ = 1/
√
n is exact, i.e. its

solution L̂ = L0 and Ŝ = S0.
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Remark

I Note that if L0 is a rectangular matrix of n1 × n2, the same holds
with λ = 1/

√
max(n1, n2).

I The result can be generalized to 1−O(n−β) for β > 0.

I Extensions and improvements of these results to incomplete
measurements can be found in (Candes-Tao (2010); Gross (2011)),
which solves the following SDP problem.

min ‖L‖∗ + λ‖S‖1 (10)

s.t. Lij + Sij = Xij , (i, j) ∈ Ωobs.
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Probabilistic Recovery with Missing Values

Theorem
Assume the following holds,

1. L0 is n-by-n with rank(L0) ≤ ρrnµ−1(log n)−2,

2. Ωobs is a uniform random set of size m = 0.1n2,

3. each observed entry is corrupted with probability τ ≤ τs.
Then with probability 1−O(n−10), (6) with λ = 1/

√
0.1n is exact, i.e.

its solution L̂ = L0. The same conclusion holds for rectangular matrices
with λ = 1/

√
max dim. All these results hold irrespective to the

magnitudes of L0 and S0.
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Matrix Completion

I When there are no sparse perturbation in optimization problem (10),
the problem becomes the classical Matrix Completion problem with
uniformly random sampling:

min ‖L‖∗ (11)

s.t. Lij = L0
ij , (i, j) ∈ Ωobs.

I Assumed the same condition as before, Candes and Tao (2010) gives
the following result: solution to SDP (11) is exact with probability
at least 1− n−10 if m ≥ µnr loga n where a ≤ 6, which can be
improved by Gross (2011) to be near-optimal

m ≥ µnr log2 n.
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Phase Transitions or Random Matrix Completion

I Take L0 = UV T as a product of n× r i.i.d. N (0, 1) random
matrices. There is a phase transition of successful recovery
probability over sparsity ratio ρs = m/n2 and low rank ratio r/n.
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Phase Transitions of Random Matrix Completion

Figure: Phase Transitions in Probability of Successful Recovery
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Phase Transitions

I White color indicates the probability equals to 1 and black color
corresponds to the probability being 0. A sharp phase transition
curve can be seen in the pictures. (a) and (b) respectively use
random signs and coherent signs in sparse perturbation, where (c) is
purely matrix completion with no perturbation. Increasing successful
recovery can be seen from (a) to (c).
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Sparse PCA

I Recall that classical PCA is to solve

max xTΣx

s.t. ‖x‖2 = 1

which gives the maximal variation direction of covariance matrix Σ.

I What if only a few coordinates in x are nonzeros in PCA? For
example, in human genomics, only a few genes influence a certain
disease.

Sparse PCA 35



A Convex Relaxation of PCA by SDP

I Note that xTΣx = tr(Σ(xxT )). Classical PCA can thus be relaxed
as follows after dropping the rank-1 constraint,

max tr(ΣX)

s.t. tr(X) = 1

X � 0

The optimal solution gives a rank-1 X along the first principal
component.

I A recursive application of the algorithm may lead to top k principal
components. That is, one first to find a rank-1 approximation of Σ
and extract it from Σ0 = Σ to get Σ1 = Σ−X, then pursue the
rank-1 approximation of Σ1, and so on.
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Sparse PCA

I Now we are looking for sparse principal components, i.e.
#{Xij 6= 0} are small. Using 1-norm convex relaxation, we have the
following SDP formulation by d’Aspremont, El Ghaoui, Jordan,
Lanckriet (2007) for Sparse PCA

max tr(ΣX)− λ‖X‖1
s.t. tr(X) = 1

X � 0
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Matlab Codes for Sparse PCA

I The Matlab codes (testSPCA.tex) realized the SDP algorithm
above by CVX (http://cvxr.com/cvx).

I Python package scikit-learn includes:
http://scikit-learn.org/stable/modules/generated/

sklearn.decomposition.SparsePCA.html
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Other Approaches to Sparse PCA

I There are many other algorithms for sparse PCA, e.g. regression
with LASSO (Hui Zou; Trevor Hastie; Robert Tibshirani (2006)),
alternative nonconvex optimization etc.

I A recent survey: Hui Zou; Lingzhou Xue (2018). ”A Selective
Overview of Sparse Principal Component Analysis”. Proceedings of
the IEEE. 106 (8): 13111320.

Sparse PCA 39



Outline

Recall: PCA as a Matrix Decomposition

Robust PCA

Exact Recovery Theories for RPCA
Deterministic Exact Recovery: Identifiability
Probabilistic Exact Recovery

Sparse PCA

Introduction of SDP with a Comparison to LP

Graph Realization: MDS with Uncertainty

Introduction of SDP with a Comparison to LP 40



Linear Programming: Primal Problem

I LP (Linear Programming): for x ∈ Rn and c ∈ Rn,

min cTx (12)

s.t. Ax = b

x ≥ 0

This is the primal linear programming problem.
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Linear Programming: Primal Problem

I SDP (Semi-definite Programming): for X,C ∈ Rn×n

min C •X =
∑
i,j

cijXij (13)

s.t. Ai •X = bi, for i = 1, · · · ,m
X � 0

I In SDP, nonnegative variables x is replaced by positive semi-definite
matrices X.

I In SDP, the inner product between vectors cTx in LP will change to
Hadamard inner product (denoted by •) between matrices.
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From Primal to Dual

I Linear programming has a dual problem via the Lagrangian.

I The Lagrangian of the primal problem is

max
µ≥0,y

min
x
Lx;y,µ = cTx+ yT (b−Ax)− µTx

which implies that

∂L

∂x
= c−AT y − µ = 0

⇐⇒ c−AT y = µ ≥ 0

=⇒ max
µ≥0,y

L = max
µ≥0,y

yT b

which leads to the following dual problem.
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Linear Programming: Dual Problem

I LD (Dual Linear Programming):

max bT y (14)

s.t. µ = c−AT y ≥ 0
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Semi-Definite Programming: Dual Problem

I SDD (Dual Semi-definite Programming):

max bT y (15)

s.t. S = C −
m∑
i=1

Aiyi � 0 =: C − 〈A, y〉

where

A =

 A1

...
Am

 and y =

 y1

...
ym
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Weak Duality

I Define the feasible set of primal and dual problems are
Fp = {X � 0;Ai •X = bi} and
Fd = {(y, S) : S = C −

∑
i yiAi � 0}, respectively.

Theorem (Weak Duality of SDP)
If Fp 6= ∅,Fd 6= ∅, then

C •X ≥ bT y,

for ∀X ∈ Fp and ∀(y, S) ∈ Fd.

I The week duality says that the primal value is always an upper
bound of dual value. The gap, γ = C •X − bT y > 0, is called the
duality gap.
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Strong Duality

Theorem (Strong Duality SDP)
Assume the following hold,

1. Fp 6= ∅,Fd 6= ∅;
2. At least one feasible set has an interior.

Then X∗ is optimal iff

1. X∗ ∈ Fp
2. ∃(y∗, S∗) ∈ Fd

s.t. C •X∗ = bT y∗ or X∗S∗ = 0 (note: in matrix product)
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Remark

I The strong duality says that the existence of an interior point
ensures the vanishing duality gap between primal value and dual
value, as well as the complementary conditions hold. In this case, to
check the optimality of a primal variable, it suffices to find a dual
variable which meets the complementary condition with the primal.
This is often called the witness method.

I The existence of an interior solution implies the complementary
condition of optimal solutions. Under the complementary condition,
we have

rank(X∗) + rank(S∗) ≤ n

for every optimal primal X∗ and dual S∗.

Introduction of SDP with a Comparison to LP 48



Outline

Recall: PCA as a Matrix Decomposition

Robust PCA

Exact Recovery Theories for RPCA
Deterministic Exact Recovery: Identifiability
Probabilistic Exact Recovery

Sparse PCA

Introduction of SDP with a Comparison to LP

Graph Realization: MDS with Uncertainty

Graph Realization: MDS with Uncertainty 49



Recall: MDS

I Recall that in classical MDS, given all pairwise distances
dij = ‖xi − xj‖2 among a set of points xi ∈ Rp ( i = 1, 2, · · · , n)
whose coordinates are unknown, our purpose is to find
yi ∈ Rk(k ≤ p) such that

min

n∑
i,j=1

(
‖yi − yj‖2 − dij

)2
. (16)
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MDS with Incomplete and Uncertain Information

I What about the following scenarios?

– Noisy perturbations: dij → d̃ij = dij + εij

– Incomplete measurments: only partial pairwise distance
measurements are available on an edge set of graph, i.e. G = (V,E)
and dij is given when (i, j) ∈ E (e.g. xi and xj in a neighborhood).

– Anchors: sometimes we may fixed the locations of some points called
anchors, e.g. in sensor network localization (SNL) problem.

I In other words, we are looking for MDS on graphs with partial and
noisy information, often called Graph Realization.

Graph Realization: MDS with Uncertainty 51



Semi-Definite Relaxation of MDS

Lemma
The quadratic constraint

‖yi − yj‖2 = d2
ij , (i, j) ∈ E

has a semi-definite relaxation:
Z1:k,1:k = I
(0; ei − ej)(0; ei − ej)T • Z = d2

ij , (i, j) ∈ E

Z =

[
Ik Y
Y T X

]
� 0.

where • denotes the Hadamard inner product, i.e.
A •B :=

∑n
i,j=1AijBij .
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Proof of Lemma

I Denote Y = [y1, · · · , yn]k×n where yi ∈ Rk, and

ei = (0, 0, · · · , 1, 0, · · · , 0) ∈ Rn.

I Then we have

‖yi − yj‖2 = (yi − yj)T (yi − yj) = (ei − ej)TY TY (ei − ej)

Set X = Y TY , which is symmetric and positive semi-definite. Then

‖Yi − Yj‖2 = (ei − ej)(ei − ej)T •X.

So
‖Yi − Yj‖2 = d2

ij ⇔ (ei − ej)(ei − ej)T •X = d2
ij

which is linear with respect to X.
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Proof of Lemma (continued)

I Now we relax the constrain X = Y TY to

X � Y TY ⇐⇒ X − Y TY � 0.

Through Schur Complement Lemma we know

X − Y TY � 0⇐⇒
[

I Y
Y T X

]
� 0

I We may define a new variable

Z ∈ Sk+n, Z =

[
Ik Y
Y T X

]
which gives the result.
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SD Relaxations of MDS

I Given anchors ak (k = 1, . . . , s) with known coordinates, find xi
such that

– ‖xi − xj‖2 = d2ij where (i, j) ∈ Ex and xi are unknown locations

– ‖ak − xj‖2 = d̂kj
2

where (k, j) ∈ Ea and ak are known locations

I We can exploit the following SD relaxation:

– (0; ei − ej)(0; ei − ej)T • Z = dij for (i, j) ∈ Ex,

– (ai; ej)(ai; ej)
T • Z = d̂ij for (i, j) ∈ Ea,

both of which are linear with respect to Z.

I The constraints with equalities of d2
ij can be replaced by inequalities

such as ≤ d2
ij(1 + ε) (or ≥ d2

ij(1− ε)). This is a system of linear
matrix inequalities with positive semidefinite variable Z.
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Dual Problem

I The SDD associated with the primal problem above is

min I • V +
∑
i,j∈Ex

wijdij +
∑
i,j∈Ea

ŵij d̂ij (17)

s.t.

S =

(
V 0
0 0

)
+
∑
i,j∈Ex

wijAij +
∑
i,j∈Ea

ŵijÂij � 0

where
Aij = (0; ei − ej)(0; ei − ej)T

Âij = (ai; ej)(ai; ej)
T .
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Remark on Dual Problem

I The variables wij is the stress matrix on edge between unknown
points i and j and ŵij is the stress matrix on edge between anchor i
and unknown point j.

I The dual is always feasible, as V = 0, yij = 0 for all (i, j) ∈ Ex and
wij = 0 for all (i, j) ∈ Ea is a feasible solution.
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Example: Protein 3D Structure Reconstruction

I Here we show an example of using SDP to find 3-D coordinates of a
protein molecule based on noisy pairwise distances for atoms in
ε-neighbors. We use matlab package SNLSDP by Kim-Chuan Toh,
Pratik Biswas, and Yinyu Ye, downladable at
http://www.math.nus.edu.sg/~mattohkc/SNLSDP.html.

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

Refinement: RMSD = 5.33e−01

nf = 0.1,  λ = 1.0e+00

(a) (b)

I Matlab: testSNL.m
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Question

I A crucial theoretical question is to ask, when X = Y TY holds such
that SDP embedding Y gives the same answer as the classical MDS?
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Question

I Such SDP has the following rank properties:

A. maximal rank solutions X∗ or S∗ exist;
B. minimal rank solutions X∗ or S∗ exist;
C. if complementary condition X∗S∗ = 0 holds, then

rank(X∗) + rank(S∗) ≤ n with equality holds iff strictly
complementary condition holds, whence
rank(S∗) ≥ n− k ⇒ rank(X∗) ≤ k.
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Question

I Strong duality of SDP tells us that an interior point feasible solution
in primal or dual problem will ensure the complementary condition
and the zero duality gap. Now we assume that dij = ‖xi − xj‖
precisely for some unknown xi ∈ Rk. Then the primal problem is
feasible with Z = (Ik;Y )T (Ik;Y ). Therefore the complementary
condition holds and the duality gap is zero. In this case, assume that
Z∗ is a primal feasible solution of SDP embedding and S∗ is an
optimal dual solution, then

1. rank(Z∗) + rank(S∗) ≤ k + n and rank(Z∗) ≥ k
⇒ rank(S∗) ≤ n;

2. rank(Z∗) = k ⇐⇒ X = Y TY .

I It follows that if an optimal dual S∗ has rank n, then every primal
solution Z∗ has rank k, which ensures X = Y TY . Therefore it
suffices to find a maximal rank dual solution S∗ whose rank is n.
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Universal Rigidity

Definition (Universal Rigidity (UR) or Unique Localization
(UL))

∃!yi ∈ Rk ↪→ Rl where l ≥ k s.t. d2
ij = ‖yi − yj‖2, d̂ij

2
= ‖ak − yj‖2.

I It simply says that there is no nontrivial extension of yi ∈ Rk in Rl

satisfying d2
ij = ‖yi − yj‖2 and d̂ij

2
= ‖(ak; 0)− yj‖2.
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Graph Realization with Universal Rigidity

(A) (Schoenberg 1938) G is complete =⇒ UR

(B) (So-Ye 2007) G is incomplete: UR ⇐⇒ SDP has a maximal rank
solution rank(Z∗) = k.
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Graph Realization Theorem

Theorem (So-Ye (2007))
The following statements are equivalent.

1. The graph is universally rigid or has a unique localization in Rk.

2. The max-rank feasible solution of the SDP relaxation has rank k;

3. The solution matrix has X = Y TY or tr(X − Y TY ) = 0.

Moreover, the localization of a UR instance can be computed
approximately in a time polynomial in n, k, and the accuracy log(1/ε).
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Noisy Graph Realization

I In practice, we often meet problems with noisy measurements
αd2

ij ≥ d̃2
ij ≤ βd2

ij .

I If we relax the constraint ‖yi − yj‖2 = d2
ij or equivalently

Ai •X = bi to inequalities, we can achieve arbitrarily small rank
solution.

I To see this, assume that for i = 1, . . . ,m, we replace

AiX = bi 7→ αbi ≤ AiX ≤ βbi,

where β ≥ 1 > α > 0.
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Noisy Graph Realization Theorem

Theorem (So, Ye, and Zhang (2008))
For every d ≥ 1, there is a SDP solution X̂ � 0 with rank rank(X̂) ≤ d,
if the following holds,

β =


1 +

18 ln 2m

d
1 ≤ d ≤ 18 ln 2m

1 +

√
18 ln 2m

d
d ≥ 18 ln 2m

α =


1

e(2m)2/d
1 ≤ d ≤ 4 ln 2m

max

{
1

e(2m)2/d
, 1−

√
4 ln 2m

d

}
d ≥ 4 ln 2m
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Remark

I Note that α, β are independent to n.

I Arbitrary dimension d ≥ 1 embedding is achievable as long as
distortion levels β and α are properly chosen.
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Summary

I We have introduced semi-definite programming (relaxations) to the
following problems

– Robust PCA

– Sparse PCA

– Graph Realization as MDS with Uncertainy

I Many spectral methods allow SDP relaxations with powerful
theoretical guarantees.
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