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PCA and MDS

I Data matrix: X = [x1, . . . , xn] ∈ Rp×n

– Centering: Y = XH, where H = I − 1
n
11T

I Singular Value Decomposition Y = USV T , S = diag(σj),
σ1 ≥ σ2 ≥ . . . ≥ σmin(n,p)

– PCA is given by top-k SVD (Sk, Uk): Uk = (u1, . . . , uk) ∈ Rp×k,
with embedding coordinates UkSk

– MDS is given by top-k SVD (Sk, Vk): Vk = (v1, . . . , vk) ∈ Rn×k,
with embedding coordinates VkSk

– Kernel PCA (MDS): for K � 0, Kc = HKHT , Kc = UΛUT gives

MDS embedding UkΛ
1/2
k ∈ Rn×k
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Computational Concerns: Big Data and High

Dimensionality

I Big Data: n is large

– Downsample for approximate PCA:

Σ̂n′ =
1

n′

n′∑
i=1

(xi − µ̂n′)(xi − µ̂n′)T , Σ̂n′ = UΛUT

– Nyström Approximation for MDS: Vk = (v1, . . . , vk) ∈ Rn×k (we’ll
come to this in Manifold Learning - ISOMAP)

I High Dimensionality: p is large

– Random Projections for PCA: RXH = Ũ S̃Ṽ T with random matrix
Rd×p (today): Ũk = (ũ1, . . . , ũk) ∈ Rd×k

– Perturbation of MDS: Ṽk = (ṽ1, . . . , ṽk) ∈ Rn×k
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Random Projections: Examples

I R = [r1, · · · , rk], ri ∼ U(Sd−1), e.g. ri = (ai1, · · · , aid)/ ‖ ai ‖
aik ∼ N(0, 1)

I R = A/
√
k Aij ∼ N(0, 1)

I R = A/
√
k Aij =

{
1 p = 1/2

−1 p = 1/2

I R = A/
√
k/s Aij =


1 p = 1/(2s)

0 p = 1− 1/s

−1 p = 1/(2s)

where s = 1, 2,
√
d, d/ log d, etc.
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Example: Human Genomics Diversity Project

I Now consider a SNPs (Single Nucleid Polymorphisms) dataset in
Human Genome Diversity Project (HGDP),

http://www.cephb.fr/en/hgdp_panel.php

– Data matrix of n-by-p for n = 1, 064 individuals around the world
and p = 644, 258 SNPs.

– Each entry in the matrix has 0, 1, 2, and 9, representing “AA”,
“AC”, “CC”, and “missing value”, respectively.

– After removing 21 rows with all missing values, we are left with a
matrix X of size 1, 043× 644, 258.
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Original MDS (PCA)

I Projection of 1,043 persons on the top-2 MDS (PCA) coordinates.

– Define

K = HXXTH = UΛUT , H = I − 1

n
11T

which is a positive semi-define matrix as centered Gram matrix
whose eigenvalue decomposition is given by UΛUT .

– Take the first two eigenvectors
√
λiui (i = 1, . . . , 2) as the

projections of n individuals.
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Figure: Original MDS (PCA)

Projection of 1,043 individuals on the top-2 MDS principal components,
shows a continuous trajectory of human migration in history: human
origins from Africa, then migrates to the Middle East, followed by one
branch to Europe and another branch to Asia, finally spreading into
America and Oceania.
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Random Projection MDS (PCA)

I To reduce the computational cost due to the high dimensionality
p = 644, 258, we randomly select (without replacement)
{ni, i = 1, . . . , k} from 1, . . . , p with equal probability. Let
R ∈ Rk×p is a Bernoulli random matrix satisfying:

Rij =

{
1/k j = ni,

0 otherwise.

Now define
K̃ = H(XRT )(RXT )H

whose eigenvectors leads to new principal components of MDS.
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Figure: Comparisons of Random Projected MDS with

Original One

Figure: (Left) Projection of 1043 individuals on the top 2 MDS principal
components. (Middle) MDS computed from 5,000 random columns. (Right)
MDS computed from 100,000 random columns. Pictures are due to Qing
Wang.
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Question

How does the Random Projection
work?
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General MDS

I Given pairwise distances dij between n sample points, MDS aims to
find Y := [yi]

n
i=1 ∈ Rk×n such that the following sum of square is

minimized,

min
Y=[y1,...,yn]

∑
i,j

(‖yi − yj‖2 − d2
ij)

2 (1)

subject to
n∑
i=1

yi = 0

i.e. the total distortion of distances is minimized.
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Metric MDS

I When dij = ‖xi − xj‖ is exactly given by the distances of points in
Euclidean space xi ∈ Rp, classical (metric) MDS defines a positive
semidefinite kernel matrix K = − 1

2HDH where D = (d2
ij) and

H = I − 1
n11

T . Then, the minimization (1) is equivalent to

min
Y ∈Rk×n

‖Y TY −K‖2F (2)

i.e. the total distortion of distances is minimized by setting the
column vectors of Y as the eigenvectors corresponding to k largest
eigenvalues of K.
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MDS toward Minimal Total Distortion

I The main features of MDS are the following.

– MDS looks for Euclidean embedding of data whose total or average
metric distortion are minimized.

– MDS embedding basis is adaptive to the data, e.g. as a function of
data via spectral decomposition.

I Can we have a tighter control on metric distortions, e.g. uniform
distortion control?
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Uniformly Almost-Isometry?

I What if a uniform control on metric distortion: there exists a
ε ∈ (0, 1), such that for every (i, j) pair,

(1− ε) ≤ ‖yi − yj‖
2

d2
ij

≤ (1 + ε)?

It is a uniformly almost isometric embedding or a Lipschitz mapping
from metric space X to Y.

I An beautiful answer is given by Johnson-Lindenstrauss Lemma, if X
is an Euclidean space (or more generally Hilbert space), that Y can
be a subspace of dimension k = O(log n/ε2) via random projections
to obtain an almost isometry with high probability.
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Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)
For any 0 < ε < 1 and any integer n, let k be a positive integer such that

k ≥ (4 + 2α)(ε2/2− ε3/3)−1 lnn, α > 0.

Then for any set V of n points in Rp, there is a map f : Rp → Rk such
that for all u, v ∈ V

(1− ε) ‖ u− v ‖2≤‖ f(u)− f(v) ‖2≤ (1 + ε) ‖ u− v ‖2 (3)

Such a f in fact can be found in randomized polynomial time, e.g.
f(x) = Rx with random matrix R. In fact, inequalities (3) holds with
probability at least 1− 1/nα.
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Remark

I Almost isometry is achieved with a uniform metric distortion bound
(Bi-Lipschitz bound), with high probability, rather than average
metric distortion control;

I The mapping is universal, rather than being adaptive to the data.

I The theoretical basis of this method was given as a lemma by
Johnson and Lindenstrauss (1984) in the study of a Lipschitz
extension problem in Banach space.

I In 2001, Sanjoy Dasgupta and Anupam Gupta, gave a simple proof
of this theorem using elementary probabilistic techniques in a
four-page paper. Below we are going to present a brief proof of
Johnson-Lindenstrauss Lemma based on the work of Sanjoy
Dasgupta, Anupam Gupta, and Dimitris Achlioptas.
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Note

I The distributions of the following two events are identical:

unit vector was randomly projected to k-subspace

⇐⇒ random vector on Sp−1 fixed top-k coordinates.

Based on this observation, we change our target from random
k-dimensional projection to random vector on sphere Sp−1.

– Let xi ∼ N(0, 1) (i = 1, · · · , p), and X = (x1, · · · , xp), then
Y = X/‖x‖ ∈ Sp−1 is uniformly distributed.

– Fixing top-k coordinates, we get
z = (x1, · · · , xk, 0, · · · , 0)T /‖x‖ ∈ Rp. Let L = ‖z‖2 and µ := k/p.
Note that E ‖(x1, · · · , xk, 0, · · · , 0)‖2 = k = µ ·E ‖x‖2.

– The following lemma shows that L is concentrated around µ.
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Key Lemma

Lemma
For any k < p, there hold

(a) if β < 1 then

Prob[L ≤ βµ] ≤ βk/2
(

1 +
(1− β)k

p− k

)(p−k)/2

≤ exp

(
k

2
(1− β + lnβ)

)
(b) if β > 1 then

Prob[L ≥ βµ] ≤ βk/2
(

1 +
(1− β)k

p− k

)(p−k)/2

≤ exp

(
k

2
(1− β + lnβ)

)
Here µ = k/p.
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Proof of Johnstone-Lindenstrauss Lemma

I If p ≤ k,the theorem is trivial.

I Otherwise take a random k-dimensional subspace S, and let v′i be
the projection of point vi ∈ V into S, then setting L = ‖v′i − v′j‖2
and µ = (k/p)‖vi − vj‖2 and applying Lemma 1(a), we get that

Prob[L ≤ (1− ε)µ] ≤ exp

(
k

2
(1− (1− ε) + ln(1− ε))

)
≤ exp

(
k

2
(ε− (ε+

ε2

2
))

)
,

by ln(1− x) ≤ −x− x2/2 for 0 ≤ x < 1

= exp

(
−kε

2

4

)
≤ exp(−(2 + α) lnn),

for k ≥ 4(1 + α/2)(ε2/2)−1 lnn

=
1

n2+α
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Proof of Johnstone-Lindenstrauss Lemma (continued)

I Similarly, we can apply Lemma 1(b) to get

Prob[L ≥ (1 + ε)µ] ≤ exp

(
k

2
(1− (1 + ε) + ln(1 + ε))

)
≤ exp

(
k

2
(−ε+ (ε− ε2

2
+
ε3

3
))

)
,

by ln(1 + x) ≤ x− x2/2 + x3/3 for x ≥ 0

= exp

(
−k

2
(ε2/2− ε3/3)

)
≤ exp(−(2 + α) lnn),

for k ≥ 4(1 + α/2)(ε2/2− ε3/3)−1 lnn

=
1

n2+α

I
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Proof of Johnstone-Lindenstrauss Lemma (continued)

I Now set the map f(x) =

√
d

k
x′ =

√
d

k
(x1, . . . , xk, 0, . . . , 0). By the

above calculations, for some fixed pair i, j, the probability that the
distortion

‖f(vi)− f(vj)‖2

‖vi − vj‖2

does not lie in the range [(1− ε), (1 + ε)] is at most 2
n(2+α) . Using

the trivial union bound with

(
n

2

)
pairs, the chance that some pair

of points suffers a large distortion is at most:(
n

2

)
2

n(2+α)
=

1

nα

(
1− 1

n

)
≤ 1

nα
.

Hence f has the desired properties with probability at least 1− 1

nα
.

This gives us a randomized polynomial time algorithm.
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Proof of Lemma 1

I For Lemma 1(a),

Prob(L ≤ βµ) =Prob

(
k∑
i=1

x2
i ≤ βµ(

p∑
i=1

x2
i )

)

=Prob

(
βµ

p∑
i=1

x2
i −

k∑
i=1

x2
i ≥ 0

)

=Prob

[
exp

(
tβµ

p∑
i=1

x2
i − t

k∑
i=1

x2
i

)
≥ 1

]
, (t > 0)

≤E

[
exp

(
tβµ

p∑
i=1

x2
i − t

k∑
i=1

x2
i

)]
(by Markov’s inequality)
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Proof of Lemma 1 (continued)

r.h.s. =Πk
i=1 E exp(t(βµ− 1)x2

i )Π
p
i=k+1 E exp(tβµx2

i )

=(E exp(t(βµ− 1)x2))k(E exp(tβµx2))p−k

=(1− 2t(βµ− 1))−k/2(1− 2tβµ)−(p−k)/2 =: g(t)

where the last equation uses the fact that if X ∼ N (0, 1), then

E[esX
2

] =
1√

(1− 2s)
,

for −∞ < s < 1/2.
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Proof of Lemma 1 (continued)

I Now we will refer to last expression as g(t).

– The last line of derivation gives us the additional constraints that
tβµ ≤ 1/2 and t(βµ− 1) ≤ 1/2, and so we have 0 < t < 1/(2βµ).

– Now to minimize g(t), which is equivalent to maximize

h(t) = 1/g(t) = (1− 2t(βµ− 1))k/2(1− 2tβµ)(p−k)/2

in the interval 0 < t < 1/(2βµ). Setting the derivative h′(t) = 0, we
get the maximum is achieved at

t0 =
1− β

2β(p− βk)

Hence we have

h(t0) =

(
p− k
p− kβ

)(p−k)/2(
1

β

)k/2
,

and this is exactly what we need.

I Similar derivation is for the proof of Lemma 1 (b).
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Locality Sensitive Hashing (LSH)

I (M.S. Charikar 2002) A locality sensitive hashing scheme is a
distribution on a family F of hash functions operating on a
collection of objects, such that for two objects x, y

Prob
h∈F

[h(x) = h(y)] = sim(x, y)

where sim(x, y) ∈ [0, 1] is some similarity function defined on the
collection of objects.

I Such a scheme leads to efficient (sub-linear) algorithms for
approximate nearest neighbor search and clustering.
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LSH via Random Projections

I (Goemans and Williamson (1995); Charikar (2002)) Given a
collection of vectors in Rd, we consider the family of hash functions
defined as follows: We choose a random vector ~r from the
d-dimensional Gaussian distribution (i.e. each coordinate is drawn
the 1-dimensional Gaussian distribution). Corresponding to this
vector ~r, we define a hash function h~r as follows:

h~r(~u) = sign(~r · ~u) =

{
1 if ~r · ~u ≥ 0
−1 if ~r · ~u < 0

Then for vectors ~u and ~v

Pr [h~r(~u) = h~r(~v)] = 1− θ(~u,~v)

π
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Compressed Sensing

I Compressive sensing can be traced back to 1950s in signal
processing in geography. Its modern version appeared in LASSO
(Tibshirani, 1996) and Basis Pursuit (Chen-Donoho-Saunders,
1998), and achieved a highly noticeable status after 2005 due to the
work by Candes and Tao et al.

I The basic problem of compressive sensing can be expressed by the
following under-determined linear algebra problem. Assume that a
signal x∗ ∈ Rp is sparse with respect to some basis (measurement
matrix) A ∈ Rn×p or A ∈ Rn×p where n < p, given measurement
b = Ax∗ = Ax∗ ∈ Rn, how can one recover x∗ by solving the linear
equation system

Ax = b? (4)
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Sparsity

I As n < p, it is an under-determined problem, whence without
further constraint, the problem does not have an unique solution. To
overcome this issue, one popular assumption is that the signal x∗ is
sparse, namely the number of nonzero components
‖x∗‖0 := #{x∗i 6= 0 : 1 ≤ i ≤ p} is small compared to the total
dimensionality p. Figure below gives an illustration of such sparse
linear equation problem.

Figure: Illustration of Compressive Sensing (CS). A is a rectangular matrix
with more columns than rows. The dark elements represent nonzero
elements while the light ones are zeroes. The signal vector x∗, although
high dimensional, is sparse.
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P0

Without loss of generality, we assume each column of design matrix
A = [A1, . . . , Ap] has being standardized, that is, ‖Aj‖2 = 1 ,
j = 1, ..., p .

I With such a sparse assumption above, a simple idea is to find the
sparsest solution satisfying the measurement equation:

(P0) min ‖x‖0 (5)

s.t. Ax = b.

I This is an NP-hard combinatorial optimization problem.
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A Greedy Algorithm: Orthogonal Matching Pursuit

Input A, b.

Output x.

initialization: r0 = b , x0 = 0 , S0 = ∅.
repeat if ‖rt‖2 > ε,

1. jt = argmax1≤j≤p | 〈Aj , rt−1〉 |.
2. St = St−1 ∪ jt.
3. xt = argminx∈Rp‖b−AStx‖.
4. rt = b−Axt.

return xt.

I Stephane Mallat and Zhifeng Zhang (1993), choose the column of
maximal correlation with residue, as the steepest descent in residue.

I Joel Tropp (2004) shows that OMP recovers x∗ under the
Incoherence condition; Tony Cai and Lie Wang (2011) extended it to
noisy cases.
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Basis Pursuit (BP): P1

I A convex relaxation of (5) is called Basis Pursuit
(Chen-Donoho-Saunders, 1998),

(P1) min ‖x‖1 :=
∑
|xi| (6)

s.t. Ax = b.

This is a tractable linear programming problem.

I Now a natural problem arises, under what conditions the linear
programming problem (P1) has the solution exactly solves (P0),
i.e. exactly recovers the sparse signal x∗ ?

– Donoho and Huo (2001) proposed Incoherence condition; Joel Tropp
(2004) shows that BP recovers x∗ under the Incoherence condition.
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Illustration

Figure shows different projections of a sparse vector x∗ under l0, l1 and
l2, from which one can see in some cases the convex relaxation (6) does
recover the sparse signal solution in (5).

Figure: Comparison between different projections. Left: projection of x∗ under
‖ · ‖0; middle: projection under ‖ · ‖1 which favors sparse solution; right:
projection under Euclidean distance.
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Basis Pursuit De-Noising (BPDN)

I When measurement noise exists, i.e. b = Ax∗ + ε with bound ‖ε‖2,
the following Basis Pursuit De-Noising (BPDN) are used instead

(BPDN) min ‖x‖1 (7)

s.t. ‖Ax− b‖2 ≤ ε.

It’s a convex quadratic programming problem.

I Similarly, Jiang-Yao-Liu-Guibas (2012) considers `∞-noise:

min ‖x‖1
s.t. ‖Ax− b‖∞ ≤ ε.

This is a linear programming problem.
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LASSO

Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani,
1996) solves the following problem for noisy measurement:

(LASSO) min
x∈Rp

‖Ax− b‖22 + λ‖x‖1 (8)

I A convex quadratic programming problem.

I Yu-Zhao (2006), Lin-Yuan (2007), Wainwright (2009) show the
model selection consistency (support recovery of x∗) of LASSO
under the Irrepresentable condition.
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Dantzig Selector

The Dantzig Selector (Candes and Tao (2007)) is proposed to deal with
noisy measurement b = Ax∗ + ε:

min ‖x‖1 (9)

s.t. ‖AT (Ax− b)‖∞ ≤ λ

I A linear programming problem, more scalable than convex quadratic
programming (LASSO) for large scale problems.

I Bickel, Ritov, Tsybakov (2009) show that Dantzig Selector and
LASSO share similar statistical properties.
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Differential Inclusion: Inverse Scaled Spaces (ISS)

Differential inclusion:

ρ̇t =
1

n
AT (b−Axt), (10a)

ρt ∈ ∂‖xt‖1. (10b)

starting at t = 0 and ρ0 = β0 = 0.

I Replace ρ
t in KKT condition of LASSO by dρ

dt ,

ρt
t

=
1

n
AT (b−Axt), t =

1

λ

to achieve unbiased estimator x̂t when it is sign-consistent.
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Differential Inclusion: Inverse Scaled Spaces (ISS)

(more)

I Burger-Gilboa-Osher-Xu (2006) (in image recovery it recovers the
objects in an inverse-scale order as t increases (larger objects appear
in xt first))

I Osher-Ruan-Xiong-Yao-Yin (2016) shows that its solution is a
debiasing regularization path, achieving model selection consistency
under nearly the same conditions of LASSO.

– Note: if x̂τ is sign consistent sign(x̂τ ) = sign(x∗), then
x̂τ = x∗ + (ATA)−1AT ε which is unbiased.

– However for LASSO, if x̂λ is sign consistent sign(x̂λ) = sign(x∗),
then x̂λ = x∗−λ(ATA)−1 sign(x∗) + (ATA)−1AT ε which is biased.
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Example: Regularization Paths of LASSO vs. ISS

Figure: Diabetes data (Efron et al.’04) and regularization paths are different,
yet bearing similarities on the order of parameters being nonzero
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Linearized Bregman Iterations

A damped dynamics below has a continuous solution xt that converges
to the piecewise-constant solution of (10) as κ→∞.

ρ̇t +
ẋt
κ

= −∇x`(xt), (11a)

ρt ∈ ∂Ω(xt), (11b)

Its Euler forward discretization gives the Linearized Bregman Iterations
(LBI, Osher-Burger-Goldfarb-Xu-Yin 2005) as

zk+1 = zk − α∇x`(xk), (12a)

xk+1 = κ · proxΩ(zk+1), (12b)

where zk+1 = ρk+1 + xk+1

κ , the initial choice z0 = x0 = 0 (or small
Gaussian), parameters κ > 0, α > 0, ν > 0, and the proximal map
associated with a convex function Ω is defined by

proxΩ(z) = arg min
x

1

2
‖z − x‖2 + Ω(x).
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Uniform Recovery Conditions

I Under which conditions we can recover arbitrary k-sparse x∗ ∈ Rp
by those algorithms, for k = |supp(x∗)| � n < p?

I Now we turn to several conditions presented in literature, under
which the algorithms above can recover x∗. Below AS denotes the
columns of A corresponding to the indices in S = supp(x∗); A∗

denotes the conjugate of matrix A, which is AT if A is real.
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Uniform Recovery Conditions: a) Uniqueness

a) Uniqueness. The following condition ensures the uniqueness of
k-sparse x∗ satisfying b = Ax∗:

A∗SAS ≥ rI, for some r > 0,

without which one may have more than one k-sparse
solutions in solving b = ASx, losing identifiability.
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Uniform Recovery Conditions: b) Incoherence

b) Incoherence. Donoho-Huo (2001) shows the following sufficient
condition

µ(A) := max
i 6=j
| 〈Ai, Aj〉 | <

1

2k − 1
,

for sparse recovery by BP, which is later improved by
Elad-Bruckstein (2001) to be

µ(A) <

√
2− 1

2

k
.

This condition is numerically verifiable, so the simplest
condition.
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Uniform Recovery Conditions: c) Irrepresentable

c) Irrepresentable condition. It is also called the Exact Recovery
Condition (ERC) by Joel Tropp (2004), which shows that
under the following condition

M =: ‖A∗ScAS(A∗SAS)−1‖∞ < 1,

both OMP and BP recover x∗.

I This condition is unverifiable since the true support set S is
unknown.

I “Irrepresentable” is due to Yu and Zhao (2006) for proving LASSO’s
model selection consistency under noise, based on the fact that the
regression coefficients of Aj ∼ ASβ + ε for j ∈ Sc, are the row
vectors of A∗ScAS(A∗SAS)−1, suggesting that columns of AS can
not be linearly represented by columns of ASc .
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Incoherence vs. Irrepresentable

I Tropp (2004) also shows that Incoherence condition is strictly
stronger than the Irrepresentable condition in the following sense:

µ <
1

2k − 1
⇒M ≤ kµ

1− (k − 1)µ
< 1. (13)

I On the other hand, Tony Cai et al. (2009, 2011) shows that the
Irrepresentable and the Incoherence condition are both tight in the
sense that if it fails, there exists data A, x∗, and b such that sparse
recovery is not possible.
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Uniform Recovery Conditions: d) Restricted Isometry

Property

d) Restricted-Isometry-Property (RIP) For all k-sparse x ∈ Rp,
∃δk ∈ (0, 1), s.t.

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22.

I This is the most popular condition by Candes-Romberg-Tao (2006).

I Although RIP is not easy to be verified, Johnson-Lindestrauss
Lemma says some suitable random matrices will satisfy RIP with
high probability.
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Restricted Isometry Property for Uniform Exact

Recovery

Candes (2008) shows that under RIP, uniqueness of P0 and P1 can be
guaranteed for all k-sparse signals, often called uniform exact recovery.

Theorem
The following holds for all k-sparse x∗ satisfying Ax∗ = b.

I If δ2k < 1, then problem P0 has a unique solution x∗;

I If δ2k <
√

2− 1, then the solution of P1 (BP) has a unique solution
x∗, i.e. recovers the original sparse signal x∗.
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Restricted Isometry Property for Stable Noisy Recovery

Under noisy measurement b = Ax∗ + ε, Candes (2008) also shows that
RIP leads to stable recovery of the true sparse signal x∗ using BPDN.

Theorem
Suppose that ‖ε‖2 ≤ ε. If δ2k <

√
2− 1, then

‖x̂− x∗‖2 ≤ C1k
−1/2σ1

k(x∗) + C2ε,

where x̂ is the solution of BPDN and

σ1
k(x∗) = min

supp(y)≤k
‖x∗ − y‖1

is the best k-term approximation error in l1 of x∗.
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JL ⇒ RIP

I Johnson-Lindenstrauss Lemma ensures RIP with high probability.

I Baraniuk, Davenport, DeVore, and Wakin (2008) show that in the
proof of Johnson-Lindenstrauss Lemma, one essentially establishes
that a random matrix A ∈ Rn×p with each element i.i.d. sampled
according to some distribution satisfying certain bounded moment
conditions, has ‖Ax‖22 concentrated around its mean
E ‖Ax‖22 = ‖x‖22 (see Appendix), i.e.

Prob
(∣∣‖Ax‖22 − ‖x‖22∣∣ ≥ ε‖x‖22) ≤ 2e−nc0(ε). (14)

With this one can establish a bound on the action of A on k-sparse
x by an union bound via covering numbers of k-sparse signals.
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JL ⇒ RIP: Key Lemma

Lemma
Let A ∈ Rn×p be a random matrix satisfying the concentration inequality
(14). Then for any δ ∈ (0, 1) and any set all T with |T | = k < n, the
following holds

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 (15)

for all x whose support is contained in T , with probability at least

1− 2

(
12

δ

)k
e−c0(δ/2)n. (16)
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Proof of Lemma I: δ/4-cover QT

It suffices to prove the results when ‖x‖2 = 1 as A is linear.

I Let XT := {x : supp(x) = T, ‖x‖2 = 1}. We first choose QT , a
δ/4-cover of XT , such that for every x ∈ XT there exists q ∈ QT
satisfying ‖q − x‖2 ≤ δ/4. Since XT has dimension at most k, it is
well-known from covering numbers that the capacity
#(QT ) ≤ (12/δ)k.

I Now we are going to apply the union bound of (14) to the set QT
with ε = δ/2. For each q ∈ QT , with probability at most
2e−c0(δ/2)n, |‖Aq‖22 − ‖q‖22| ≥ δ/2‖q‖22. Hence for all q ∈ QT , the
same bound holds with probability at most

2#(QT )e−c0(δ/2)n ≤ 2

(
12

δ

)k
e−c0(δ/2)n.
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Proof Lemma II: from QT to XT

I Now we define α to be the smallest constant such that

‖Ax‖2 ≤ (1 + α)‖x‖2, for all x ∈ XT .

We can show that α ≤ δ with the same probability.

I For this, pick up a q ∈ QT such that ‖q − x‖2 ≤ δ/4, whence by the
triangle inequality

‖Ax‖2 ≤ ‖Aq‖2 + ‖A(x− q)‖2 ≤ 1 + δ/2 + (1 + α)δ/4.

This implies that α ≤ δ/2 + (1 + α)δ/4, whence
α ≤ 3δ/4/(1− δ/4) ≤ δ. This gives the upper bound. The lower
bound also follows this since

‖Ax‖2 ≥ ‖Aq‖2 − ‖A(x− q)‖2 ≥ 1− δ/2− (1 + δ)δ/4 ≥ 1− δ,

which completes the proof.
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RIP Theorem: uniformly over k-sparse

I With this lemma, note that there are at most
(
p
k

)
subspaces of

k-sparse, an union bound leads to the following result for RIP.

Theorem
Let A ∈ Rn×p be a random matrix satisfying the concentration inequality
(14) and δ ∈ (0, 1). There exists c1, c2 > 0 such that if

k ≤ c1
n

log(p/k)

the following RIP holds for all k-sparse x,

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22

with probability at least 1− 2e−c2n.
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Proof of RIP Theorem

Proof.
For each of k-sparse signal (XT ), RIP fails with probability at most

2

(
12

δ

)k
e−c0(δ/2)n.

There are
(
p
k

)
≤ (ep/k)k such subspaces. Hence, RIP fails with

probability at most

2
(ep
k

)k (12

δ

)2

e−c0(δ/2)n = 2e−c0(δ/2)n+k[log(ep/k)+log(12/δ)].

Thus for a fixed c1 > 0, whenever k ≤ c1n/ log(p/k), the exponent
above will be ≤ −c2n provided that

c2 ≤ c0(δ/2)− c1(1 + (1 + log(12/δ))/ log(p/k).

Note that one can always choose c2 > 0 if c1 > 0 is small enough.
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Summary

The following results are about mean estimation under noise:

I Johnson-Lindenstrauss Lemma tells: random projections give a
universal basis to achieve uniformly almost isometric embedding,
using O(ε−2 log n) number of projections

I Various Applications

– Dimensionality reduction: PCA or MDS

– Locality Sensitive Hashing: clustering, nearest neighbor search, etc.

– Compressed Sensing: random design satisfying Restricted Isometry
Property with high probability
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A Simple Version of Johnson-Lindenstrauss Lemma

Theorem (Simplified Johnson-Lindenstrauss Lemma)
Let A = [Aij ]

k×d where Aij ∼ N (0, 1) and R = A/
√
k. For any

0 < ε < 1 and any positive integer k, the following holds for all
0 6= x ∈ Rd,

(1− ε) ≤ ‖ Rx ‖
2

‖x‖2
≤ (1 + ε), (17)

or for all x 6= y ∈ Rd,

1− ε ≤ ‖ Rx−Ry ‖
2

‖x− y‖2
≤ 1 + ε (18)

with probability at least 1− 2 exp

(
−kε

2

4
(1− 2ε/3)

)
.
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Remark

I This version of JL-Lemma is essentially used in the derivation of RIP
in compressed sensing.

I Extension to sub-Gaussian distributions with bounded moment
conditions can be found in Joseph Salmon’s lecture notes.

I Given n sample points xi ∈ V . If we let

k ≥ 4(1 + α/2)(ε2/2− ε3/3)−1 lnn,

then

P
(
‖Ru‖2 ≥ 1 + ε

)
≤ exp(−(2 + α) log n) =

(
1

n

)2+α

,

a union of

(
n

2

)
probabilistic bounds gives the full JL-Lemma.
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A Basic Lemma

Lemma
Let X ∼ N (0, 1).

(a) For all t ∈ (−∞, 1/2),

E(etX
2

) =
1

1− 2t
.

Proof.

(a) follows from Gaussian integral.

Appendix: A Simple Version of Johnson-Lindenstrauss Lemma 61



Proof of JL Lemma

Let us denote x ∈ Rd, u = x
‖x‖ and Yi the column values of the output,

i.e Yi = (Ru)i =
∑d
j=1Ri,juj . Then,

E (Yi) = E

 d∑
j=1

Ri,juj

 =

d∑
j=1

E (Ri,juj) =

d∑
j=1

ujE (Ri,j) = 0

Var (Yi) = Var

 d∑
j=1

Ri,juj

 = E

 d∑
j=1

Ri,juj

2

=

d∑
j=1

Var (Ri,juj)

=

d∑
j=1

u2
j Var (Ri,j) =

1

k
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Proof of JL Lemma (continued)

(Upper) . Defining Zi =
√
kYi ∼ N (0, 1), one can state the following bound:

P
(
‖Ru‖2 ≥ 1 + ε

)
= P(

k∑
i=1

((
√
kYi)

2 − 1) ≥ εk)

= P(

k∑
i=1

(Z2
i − 1) ≥ εk)

≤ e−tεk
k∏
i=1

E exp
(
t(Z2

i − 1)
)
, (Markov Ineq.)

= e−tk(1+ε)[E etZ
2

]k

= e−tk(1+ε)(1− 2t)−k/2 =: g(t) (Lemma (a))
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Proof of JL Lemma (continued)

Let
h(t) := 1/g(t) = etk(1+ε)(1− 2t)k/2.

Hence mint g(t) is equivalent to maxt h(t). Taking derivative of h(t),

0 = h′(t)|t∗ = k(1 + ε)etk(1+ε)(1− 2t)k/2 − ketk(1+ε)(1− 2t)k/2−1)
∣∣∣
t∗

= ket
∗k(1+ε)(1− 2t∗)k/2−1 [(1 + ε)(1− 2t∗)− 1]

⇒ t∗ =
1

2
− 1

2(1 + ε)

⇒ g(t∗) = e−t
∗k(1+ε)(1− 2t∗)−k/2 = e−kε/2(1 + ε)k/2

= exp

(
−kε

2
+
k

2
ln(1 + ε)

)
≤ exp

(
−kε

2
+
k

2
(ε− ε2

2
+
ε3

3
)

)
, using ln(1 + x) ≤ x− x2

2 + x3

3

= exp

(
−kε

2

4
+
kε3

6

)
, ε ∈ (0, 1)
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Proof of JL Lemma (continued)

(Lower) . Similarly

P
(
‖Ru‖2 ≤ 1− ε

)
= P(

k∑
i=1

(1− (
√
kYi)

2) ≥ εk)

= P(

k∑
i=1

(1− Z2
i ) ≥ εk)

≤ e−tεk
k∏
i=1

E exp
(
t(1− Z2

i )
)
, (Markov Ineq.)

= etk(1−ε)[E e−tZ
2

]k

= etk(1−ε)(1 + 2t)−k/2 =: g(t) (Lemma (a))
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Proof of JL Lemma (continued)

Let
h(t) := 1/g(t) = etk(ε−1)(1 + 2t)k/2.

Taking derivative of h(t),

0 = h′(t)|t∗ = k(ε− 1)etk(ε−1)(1 + 2t)k/2 + ketk(ε−1)(1 + 2t)k/2−1)
∣∣∣
t∗

= ket
∗k(ε−1)(1 + 2t∗)k/2−1 [(ε− 1)(1 + 2t∗) + 1]

⇒ t∗ =
1

2(1− ε)
− 1

2

⇒ g(t∗) = et
∗k(1−ε)(1 + 2t∗)−k/2 = ekε/2(1− ε)k/2

= exp

(
kε

2
+
k

2
ln(1− ε)

)
≤ exp

(
kε

2
+
k

2
(−ε− ε2

2
)

)
, using ln(1− x) ≤ −x− x2

2

= exp

(
−kε

2

4

)
, ε ∈ (0, 1)
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