A Mathematical Introduction to Data Science

Homework 7. Markov Chains on Graphs and Spectral Theory
Instructor: Yuan Yao
Due: 2 weeks later

The problem below marked by * is optional with bonus credits.

1. PageRank: The following dataset contains Chinese (mainland) University Weblink during 12/2001-1/2002,
https://github.com/yao-lab/yao-lab.github.io/blob/master/data/univ_cn.mat
where rank_cn is the research ranking of universities in that year, univ_cn contains the webpages of universities, and W_cn is the link matrix from university i to j.
(a) Compute PageRank with Google's hyperparameter $\alpha=0.85$;
(b) Compute HITS authority and hub ranking using SVD of the link matrix;
(c) Compare these rankings against the research ranking (you may consider Kendall's τ distance - as the number of pairwise mismatches between two orders - to compare different rankings);
(d) Compute extended PageRank with various hyperparameters $\alpha \in(0,1)$, investigate its effect on ranking stability.

For your reference, an implementation of PageRank and HITs can be found at https://github.com/yao-lab/yao-lab.github.io/blob/master/data/pagerank.m
2. Perron Theorem: Assume that $A>0$. Consider the following optimization problem:

$$
\begin{array}{ll}
& \max \delta \\
\text { s.t. } & A x \geq \delta x \\
& x \geq 0 \\
& x \neq 0 .
\end{array}
$$

Let λ^{*} be optimal value with $\nu^{*} \geq 0, \quad 1^{T} \nu^{*}=1$, and $A \nu^{*} \geq \lambda^{*} \nu^{*}$. Show that
(a) $A \nu^{*}=\lambda^{*} \nu^{*}$, i.e. $\left(\lambda^{*}, \nu^{*}\right)$ is an eigenvalue-eigenvector pair of A;
(b) $\nu^{*}>0$;

* (c) λ^{*} is unique and ν^{*} is unique;
(d) For other eigenvalue $\lambda \quad(\lambda z=A z$ when $z \neq 0),|\lambda|<\lambda^{}$.

3. *Absorbing Markov Chain:

Let P be a row Markov matrix on $n+1$ states with non-absorbing state $\{1, \ldots, n\}$ and absorbing state $n+1$. Then P can be partitioned into

$$
P=\left[\begin{array}{cc}
Q & R \\
0 & 1
\end{array}\right]
$$

Assume that Q is primitive. Let $N(i, j)$ be the expected number of jumps starting from nonabsorbent state i and hitting state j, before reaching the absorbing state $n+1$. Show that
(a) $N(i, i)=1+\sum_{k} N(i, k) Q(k, i)$, for $i=1, \ldots, n$;
(b) $N(i, j)=\sum_{k} N(i, k) Q(k, j)$, for $i \neq j$;
(c) These identities together imply that $N=(I-Q)^{-1}$, called the fundamental matrix;
(d) Show that the probability of absorption from state $i, B(i)(i=1 \ldots, n)$, is given by $B=N R$.
4. Spectral Bipartition: Consider the 374 -by- 475 matrix X of character-event for A Dream of Red Mansions, e.g. in the Matlab format
https://github.com/yuany-pku/dream-of-the-red-chamber/blob/master/HongLouMeng; 374 . txt
with a readme file:
https://github.com/yuany-pku/dream-of-the-red-chamber/blob/master/README.md
Construct a weighted adjacency matrix for character-cooccurance network $A=X X^{T}$. Define the degree matrix $D=\operatorname{diag}\left(\sum_{j} A_{i j}\right)$. Check if the graph is connected. If you are not familiar with this novel and would like to work on a different network, you may consider the Karate Club Network:
https://github.com/yao-lab/yao-lab.github.io/blob/master/data/karate.mat
that contains a 34 -by- 34 adjacency matrix.
(a) Find the second smallest generalized eigenvector of $L=D-A$, i.e. $(D-A) f=\lambda_{2} f$ where $\lambda_{2}>0$;
(b) Sort the nodes (characters) according to the ascending order of f, such that $f_{1} \leq f_{2} \leq$ $\ldots \leq f_{n}$, and construct the subset $S_{i}=\{1, \ldots, i\}$;
(c) Find an optimal subset S^{*} such that the following is minimized

$$
\alpha_{f}=\min _{S_{i}}\left\{\frac{\left|\partial S_{i}\right|}{\min \left(\left|S_{i}\right|,\left|\bar{S}_{i}\right|\right)}\right\}
$$

where $\left|\partial S_{i}\right|=\sum_{x \sim y, x \in S_{i}, y \in \bar{S}_{i}} A_{x y}$ and $\left|S_{i}\right|=\sum_{x \in S_{i}} d_{x}=\sum_{x \in S_{i}, y} A_{x y}$.
(d) Check if $\lambda_{2}>\alpha_{f}$;
(e) Quite often people find a suboptimal cut by $S^{+}=\left\{i: f_{i} \geq 0\right\}$ and $S^{-}=\left\{i: f_{i}<0\right\}$. Compute its Cheeger ratio

$$
h_{S^{+}}=\frac{\left|\partial S^{+}\right|}{\min \left(\left|S^{+}\right|,\left|S^{-}\right|\right)}
$$

and compare it with α_{f}, λ_{2}.
(f) You may further recursively bipartite the subgraphs into two groups, which gives a recursive spectral bipartition.
5. Degree Corrected Stochastic Block Model (DCSBM): A random graph is generated from a DCSBM with respect to partition $\Omega=\left\{\Omega_{k}: k=1, \ldots, K\right\}$ if its adjacency matrix $A \in$ $\{0,1\}^{N \times N}$ has the following expectation

$$
\mathbb{E}[A]=\mathcal{A}=\Theta Z B Z^{T} \Theta
$$

where $Z^{N \times k}$ has row vectors $\in\{0,1\}^{K}$ as the block membership function $z: V \rightarrow \Omega$,

$$
z_{i k}= \begin{cases}1, & i \in \Omega_{k} \\ 0, & \text { otherwise }\end{cases}
$$

and $\Theta=\operatorname{diag}\left(\theta_{i}\right)$ is the expected degree satisfying,

$$
\sum_{i \in \Omega_{k}} \theta_{i}=1, \quad \forall k=1, \ldots, K
$$

The following matlab codes simulate a DCSBM of $n K$ nodes, written by Kaizheng Wang, https://github.com/yao-lab/yao-lab.github.io/blob/master/data/DCSBM.m
Construct a DCSBM yourself, and simulate random graphs of 10 times. Then try to compare the following two spectral clustering methods in finding the K blocks (communities).

Alg. A [1] Compute the top K generalized eigenvector

$$
(D-A) \phi_{i}=\lambda_{i} D \phi_{i},
$$

construct a K-dimensional embedding of V using $\Phi^{N \times K}=\left[\phi_{1}, \ldots, \phi_{K}\right]$;
[2] Run k-means algorithm (call kmeans in matlab) on Φ to find K clusters.
Alg. B [1] Compute the bottom K eigenvector of

$$
\mathcal{L}=D^{-1 / 2}(D-A) D^{-1 / 2}=U \Lambda U^{T},
$$

construct an embedding of V using $U^{N \times K}$;
[2] Normalized the row vectors $u_{i *}$ on to the sphere: $\hat{u}_{i *}=u_{i *} /\left\|u_{i *}\right\|$;
[3] Run k-means algorithm (call kmeans in matlab) on \hat{U} to find K clusters.

You may run it multiple times with a stabler clustering. Suppose the estimated membership function is $\hat{z}: V \rightarrow\{1, \ldots, K\}$ in either methods. Compare the performance using mutual information between membership function z and estimate \hat{z},

$$
\begin{equation*}
I(z, \hat{z})=\sum_{s, t=1}^{K} \operatorname{Prob}\left(z_{i}=s, \hat{z}_{i}=t\right) \log \frac{\operatorname{Prob}\left(z_{i}=s, \hat{z}_{i}=t\right)}{\operatorname{Prob}\left(z_{i}=s\right) \operatorname{Prob}\left(\hat{z}_{i}=t\right)} . \tag{1}
\end{equation*}
$$

For example,
https://github.com/yao-lab/yao-lab.github.io/blob/master/data/NormalizedMI.m
6. *Directed Graph Laplacian: Consider the following dataset with Chinese (mainland) University Weblink during 12/2001-1/2002,
https://github.com/yao-lab/yao-lab.github.io/blob/master/data/univ_cn.mat
where rank_cn is the research ranking of universities in that year, univ_cn contains the webpages of universities, and W_cn is the link matrix from university i to j.
Define a PageRank Markov Chain

$$
P=\alpha P_{0}+(1-\alpha) \frac{1}{n} e e^{T}, \quad \alpha=0.85
$$

where $P_{0}=D_{\text {out }}^{-1} A$. Let $\phi \in \mathbb{R}_{+}^{n}$ be the stationary distribution of P, i.e. PageRank vector. Define $\Phi=\operatorname{diag}\left(\phi_{i}\right) \in \mathbb{R}^{n \times n}$.
(a) Construct the normalized directed Laplacian

$$
\overrightarrow{\mathcal{L}}=I-\frac{1}{2}\left(\Phi^{1 / 2} P \Phi^{-1 / 2}+\Phi^{-1 / 2} P^{T} \Phi^{1 / 2}\right)
$$

(b) Use the second eigenvector of $\overrightarrow{\mathcal{L}}$ to bipartite the universities into two groups, and describe your algorithm in detail;
(c) Try to explain your observation through directed graph Cheeger inequality.
7. *Chung's Short Proof of Cheeger's Inequality:

Chung's short proof is based on the fact that

$$
\begin{equation*}
h_{G}=\inf _{f \neq 0} \sup _{c \in \mathbb{R}} \frac{\sum_{x \sim y}|f(x)-f(y)|}{\sum_{x}|f(x)-c| d_{x}} \tag{2}
\end{equation*}
$$

where the supreme over c is reached at $c^{*} \in \operatorname{median}(f(x): x \in V)$. Such a claim can be found in Theorem 2.9 in Chung's monograph, Spectral Graph Theory. In fact, Theorem 2.9
implies that the infimum above is reached at certain function f. From here,

$$
\begin{align*}
\lambda_{1} & =R(f)=\sup _{c} \frac{\sum_{x \sim y}(f(x)-f(y))^{2}}{\sum_{x}(f(x)-c)^{2} d_{x}} \tag{3}\\
& \geq \frac{\sum_{x \sim y}(g(x)-g(y))^{2}}{\sum_{x} g(x)^{2} d_{x}}, \quad g(x)=f(x)-c \tag{4}\\
& =\frac{\left(\sum_{x \sim y}(g(x)-g(y))^{2}\right)\left(\sum_{x \sim y}(g(x)+g(y))^{2}\right)}{\left(\sum_{x \in V} g^{2}(x) d_{x}\right)\left(\left(\sum_{x \sim y}(g(x)+g(y))^{2}\right)\right.} \tag{5}\\
& \geq \frac{\left(\sum_{x \sim y}\left|g^{2}(x)-g^{2}(y)\right|\right)^{2}}{\left(\sum_{x \in V} g^{2}(x) d_{x}\right)\left(\left(\sum_{x \sim y}(g(x)+g(y))^{2}\right)\right.}, \quad \text { Cauchy-Schwartz Inequality } \tag{6}\\
& \geq \frac{\left(\sum_{x \sim y}\left|g^{2}(x)-g^{2}(y)\right|\right)^{2}}{2\left(\sum_{x \in V} g^{2}(x) d_{x}\right)^{2}}, \quad(g(x)+g(y))^{2} \leq 2\left(g^{2}(x)+g^{2}(y)\right) \tag{7}\\
& \geq \frac{h_{G}^{2}}{2} \tag{8}
\end{align*}
$$

Is there any step wrong in the reasoning above? If yes, can you remedy it/them?

