A Mathematical Introduction to Data Science

March 27, 2023

Homework 7. Markov Chains on Graphs and Spectral Theory

Instructor: Yuan Yao

Due: 2 weeks later

The problem below marked by * is optional with bonus credits.

- 1. *PageRank*: The following dataset contains Chinese (mainland) University Weblink during 12/2001-1/2002,
 - https://github.com/yao-lab/yao-lab.github.io/blob/master/data/univ_cn.mat

where $rank_cn$ is the research ranking of universities in that year, $univ_cn$ contains the webpages of universities, and W_cn is the link matrix from university *i* to *j*.

- (a) Compute PageRank with Google's hyperparameter $\alpha = 0.85$;
- (b) Compute HITS authority and hub ranking using SVD of the link matrix;
- (c) Compare these rankings against the research ranking (you may consider Kendall's τ distance as the number of pairwise mismatches between two orders to compare different rankings);
- (d) Compute extended PageRank with various hyperparameters $\alpha \in (0, 1)$, investigate its effect on ranking stability.

For your reference, an implementation of PageRank and HITs can be found at

https://github.com/yao-lab/yao-lab.github.io/blob/master/data/pagerank.m

2. Perron Theorem: Assume that A > 0. Consider the following optimization problem:

$$\max \delta$$

s.t. $Ax \ge \delta x$
 $x \ge 0$
 $x \ne 0.$

Let λ^* be optimal value with $\nu^* \ge 0$, $1^T \nu^* = 1$, and $A\nu^* \ge \lambda^* \nu^*$. Show that

- (a) $A\nu^* = \lambda^*\nu^*$, i.e. (λ^*, ν^*) is an eigenvalue-eigenvector pair of A;
- (b) $\nu^* > 0;$
- *(c) λ^* is unique and ν^* is unique;
- *(d) For other eigenvalue λ ($\lambda z = Az$ when $z \neq 0$), $|\lambda| < \lambda^*$.

3. *Absorbing Markov Chain:

Let P be a row Markov matrix on n + 1 states with non-absorbing state $\{1, \ldots, n\}$ and absorbing state n + 1. Then P can be partitioned into

$$P = \left[\begin{array}{cc} Q & R \\ 0 & 1 \end{array} \right]$$

Assume that Q is primitive. Let N(i, j) be the expected number of jumps starting from nonabsorbent state i and hitting state j, before reaching the absorbing state n + 1. Show that

- (a) $N(i,i) = 1 + \sum_{k} N(i,k)Q(k,i)$, for i = 1, ..., n;
- (b) $N(i,j) = \sum_k N(i,k)Q(k,j)$, for $i \neq j$;
- (c) These identities together imply that $N = (I Q)^{-1}$, called the fundamental matrix;
- (d) Show that the probability of absorption from state i, B(i) (i = 1..., n), is given by B = NR.
- 4. Spectral Bipartition: Consider the 374-by-475 matrix X of character-event for A Dream of Red Mansions, e.g. in the Matlab format

https://github.com/yuany-pku/dream-of-the-red-chamber/blob/master/HongLouMeng374. txt

with a readme file:

https://github.com/yuany-pku/dream-of-the-red-chamber/blob/master/README.md

Construct a weighted adjacency matrix for character-cooccurance network $A = XX^T$. Define the degree matrix $D = \text{diag}(\sum_j A_{ij})$. Check if the graph is connected. If you are not familiar with this novel and would like to work on a different network, you may consider the Karate Club Network:

https://github.com/yao-lab/yao-lab.github.io/blob/master/data/karate.mat

that contains a 34-by-34 adjacency matrix.

- (a) Find the second smallest generalized eigenvector of L = D A, i.e. $(D A)f = \lambda_2 f$ where $\lambda_2 > 0$;
- (b) Sort the nodes (characters) according to the ascending order of f, such that $f_1 \leq f_2 \leq \ldots \leq f_n$, and construct the subset $S_i = \{1, \ldots, i\}$;
- (c) Find an optimal subset S^* such that the following is minimized

$$\alpha_f = \min_{S_i} \left\{ \frac{|\partial S_i|}{\min(|S_i|, |\bar{S}_i|)} \right\}$$

where $|\partial S_i| = \sum_{x \sim y, x \in S_i, y \in \overline{S}_i} A_{xy}$ and $|S_i| = \sum_{x \in S_i} d_x = \sum_{x \in S_i, y} A_{xy}$.

(d) Check if $\lambda_2 > \alpha_f$;

(e) Quite often people find a suboptimal cut by $S^+ = \{i : f_i \ge 0\}$ and $S^- = \{i : f_i < 0\}$. Compute its Cheeger ratio

$$h_{S^+} = \frac{|\partial S^+|}{\min(|S^+|, |S^-|)}$$

and compare it with α_f , λ_2 .

- (f) You may further recursively bipartite the subgraphs into two groups, which gives a recursive spectral bipartition.
- 5. Degree Corrected Stochastic Block Model (DCSBM): A random graph is generated from a DCSBM with respect to partition $\Omega = \{\Omega_k : k = 1, ..., K\}$ if its adjacency matrix $A \in \{0, 1\}^{N \times N}$ has the following expectation

$$\mathbb{E}[A] = \mathcal{A} = \Theta Z B Z^T \Theta$$

where $Z^{N \times k}$ has row vectors $\in \{0, 1\}^K$ as the block membership function $z: V \to \Omega$,

$$z_{ik} = \begin{cases} 1, & i \in \Omega_k, \\ 0, & otherwise. \end{cases}$$

and $\Theta = \operatorname{diag}(\theta_i)$ is the expected degree satisfying,

$$\sum_{i\in\Omega_k}\theta_i=1,\quad\forall k=1,\ldots,K.$$

The following matlab codes simulate a DCSBM of nK nodes, written by Kaizheng Wang, https://github.com/yao-lab/yao-lab.github.io/blob/master/data/DCSBM.m

Construct a DCSBM yourself, and simulate random graphs of 10 times. Then try to compare the following two spectral clustering methods in finding the K blocks (communities).

Alg. A [1] Compute the top K generalized eigenvector

$$(D-A)\phi_i = \lambda_i D\phi_i,$$

construct a K-dimensional embedding of V using $\Phi^{N \times K} = [\phi_1, \dots, \phi_K];$

[2] Run k-means algorithm (call kmeans in matlab) on Φ to find K clusters.

Alg. B [1] Compute the *bottom* K eigenvector of

$$\mathcal{L} = D^{-1/2} (D - A) D^{-1/2} = U \Lambda U^T,$$

construct an embedding of V using $U^{N \times K}$;

[2] Normalized the row vectors u_{i*} on to the sphere: $\hat{u}_{i*} = u_{i*}/||u_{i*}||$;

[3] Run k-means algorithm (call kmeans in matlab) on \hat{U} to find K clusters.

You may run it multiple times with a stabler clustering. Suppose the estimated membership function is $\hat{z}: V \to \{1, \ldots, K\}$ in either methods. Compare the performance using mutual information between membership function z and estimate \hat{z} ,

$$I(z, \hat{z}) = \sum_{s,t=1}^{K} Prob(z_i = s, \hat{z}_i = t) \log \frac{Prob(z_i = s, \hat{z}_i = t)}{Prob(z_i = s)Prob(\hat{z}_i = t)}.$$
 (1)

For example,

https://github.com/yao-lab/yao-lab.github.io/blob/master/data/NormalizedMI.m

*Directed Graph Laplacian: Consider the following dataset with Chinese (mainland) University Weblink during 12/2001-1/2002,

https://github.com/yao-lab/yao-lab.github.io/blob/master/data/univ_cn.mat

where $rank_cn$ is the research ranking of universities in that year, $univ_cn$ contains the webpages of universities, and W_cn is the link matrix from university *i* to *j*.

Define a PageRank Markov Chain

$$P = \alpha P_0 + (1 - \alpha) \frac{1}{n} e e^T, \quad \alpha = 0.85$$

where $P_0 = D_{out}^{-1} A$. Let $\phi \in \mathbb{R}^n_+$ be the stationary distribution of P, i.e. PageRank vector. Define $\Phi = \text{diag}(\phi_i) \in \mathbb{R}^{n \times n}$.

(a) Construct the normalized directed Laplacian

$$\vec{\mathcal{L}} = I - \frac{1}{2} (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2})$$

- (b) Use the second eigenvector of $\vec{\mathcal{L}}$ to bipartite the universities into two groups, and describe your algorithm in detail;
- (c) Try to explain your observation through directed graph Cheeger inequality.
- 7. *Chung's Short Proof of Cheeger's Inequality:

Chung's short proof is based on the fact that

$$h_G = \inf_{f \neq 0} \sup_{c \in \mathbb{R}} \frac{\sum_{x \sim y} |f(x) - f(y)|}{\sum_x |f(x) - c|d_x}$$

$$\tag{2}$$

where the supreme over c is reached at $c^* \in median(f(x) : x \in V)$. Such a claim can be found in Theorem 2.9 in Chung's monograph, Spectral Graph Theory. In fact, Theorem 2.9 \geq

implies that the infimum above is reached at certain function f. From here,

$$\lambda_1 = R(f) = \sup_c \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x (f(x) - c)^2 d_x},$$
(3)

$$\geq \frac{\sum_{x \sim y} (g(x) - g(y))^2}{\sum_x g(x)^2 d_x}, \quad g(x) = f(x) - c \tag{4}$$

$$= \frac{(\sum_{x \sim y} (g(x) - g(y))^2)(\sum_{x \sim y} (g(x) + g(y))^2)}{(\sum_{x \in V} g^2(x)d_x)((\sum_{x \sim y} (g(x) + g(y))^2)}$$
(5)

$$\frac{\left(\sum_{x \sim y} |g^2(x) - g^2(y)|\right)^2}{\left(\sum_{x \sim y} q^2(x) d_x\right) \left(\left(\sum_{x \sim y} (q(x) + q(y)\right)^2\right)}, \quad \text{Cauchy-Schwartz Inequality}$$
(6)

$$\sum_{x \in V} g^{2}(x) a_{x} \left(\left(\sum_{x \sim y} (g(x) + g(y))^{2} \right) - \frac{\left(\sum_{x \sim y} |g^{2}(x) - g^{2}(y)| \right)^{2}}{\left(a(x) + a(y) \right)^{2}} \leq 2(a^{2}(x) + a^{2}(y))$$
(7)

$$\geq \frac{(\sum_{x \sim y} |g'(x) - g'(y)|)}{2(\sum_{x \in V} g^2(x)d_x)^2}, \quad (g(x) + g(y))^2 \leq 2(g^2(x) + g^2(y))$$
(7)

$$\geq \frac{h_G^2}{2}.$$
(8)

Is there any step wrong in the reasoning above? If yes, can you remedy it/them?