A Mathematical Introduction to Data Science

Homework 6. Manifold Learning

Instructor: Yuan Yao

The problem below marked by * is optional with bonus credits.

1. Order the faces: The following dataset contains 33 faces of the same person $\left(Y \in \mathbb{R}^{112 \times 92 \times 33}\right)$ in different angles,
https://yao-lab.github.io/data/face.mat
You may create a data matrix $X \in \mathbb{R}^{n \times p}$ where $n=33, p=112 \times 92=10304$ (e.g. $X=r e s h a p e(Y,[10304,33])$ '; in matlab).
(a) Explore the MDS-embedding of the 33 faces on top two eigenvectors: order the faces according to the top 1st eigenvector and visualize your results with figures.
(b) Explore the ISOMAP-embedding of the 33 faces on the $k=5$ nearest neighbor graph and compare it against the MDS results. Note: you may try Tenenbaum's Matlab code https://yao-lab.github.io/data/isomapII.m
(c) Explore the LLE-embedding of the 33 faces on the $k=5$ nearest neighbor graph and compare it against ISOMAP. Note: you may try the following Matlab code https://yao-lab.github.io/data/lle.m
2. Manifold Learning: The following codes by Todd Wittman contain major manifold learning algorithms talked on class.
http://math.stanford.edu/~yuany/course/data/mani.m
Precisely, eight algorithms are implemented in the codes: MDS, PCA, ISOMAP, LLE, Hessian Eigenmap, Laplacian Eigenmap, Diffusion Map, and LTSA. The following nine examples are given to compare these methods,
(a) Swiss roll;
(b) Swiss hole;
(c) Corner Planes;
(d) Punctured Sphere;
(e) Twin Peaks;
(f) 3D Clusters;
(g) Toroidal Helix;
(h) Gaussian;
(i) Occluded Disks.

Run the codes for each of the nine examples, and analyze the phenomena you observed.
*Moreover if possible, play with t-SNE using scikit-learn manifold package:
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
or any other implementations collected at
http://lvdmaaten.github.io/tsne/
3. Nyström method: In class, we have shown that every manifold learning algorithm can be regarded as Kernel PCA on graphs: (1) given N data points, define a neighborhood graph with N nodes for data points; (2) construct a positive semidefinite kernel K; (3) pursue spectral decomposition of K to find the embedding (using top or bottom eigenvectors). However, this approach might suffer from the expensive computational cost in spectral decomposition of K if N is large and K is non-sparse, e.g. ISOMAP and MDS.
To overcome this hurdle, Nyström method leads us to a scalable approach to compute eigenvectors of low rank matrices. Suppose that an N-by- N positive semidefinite matrix $K \succeq 0$ admits the following block partition

$$
K=\left[\begin{array}{cc}
A & B \tag{1}\\
B^{T} & C
\end{array}\right] .
$$

where A is an n-by- n block. Assume that A has the spectral decomposition $A=U \Lambda U^{T}$, $\Lambda=\operatorname{diag}\left(\lambda_{i}\right)\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{k}>\lambda_{k+1}=\ldots=0\right)$ and $U=\left[u_{1}, \ldots, u_{n}\right]$ satisfies $U^{T} U=I$.
(a) Assume that $K=X X^{T}$ for some $X=\left[X_{1} ; X_{2}\right] \in \mathbb{R}^{N \times k}$ with the block $X_{1} \in \mathbb{R}^{n \times k}$. Show that X_{1} and X_{2} can be decided by:

$$
\begin{gather*}
X_{1}=U_{k} \Lambda_{k}^{1 / 2}, \tag{2}\\
X_{2}=B^{T} U_{k} \Lambda_{k}^{-1 / 2}, \tag{3}
\end{gather*}
$$

where $U_{k}=\left[u_{1}, \ldots, u_{k}\right]$ consists of those k columns of U corresponding to top k eigenvalues $\lambda_{i}(i=1, \ldots, k)$.
(b) Show that for general $K \succeq 0$, one can construct an approximation from (2) and (3),

$$
\hat{K}=\left[\begin{array}{cc}
A & B \tag{4}\\
B^{T} & \hat{C}
\end{array}\right] .
$$

where $A=X_{1} X_{1}^{T}, B=X_{1} X_{2}^{T}$, and $\hat{C}=X_{2} X_{2}^{T}=B^{T} A^{\dagger} B, A^{\dagger}$ denoting the MoorePenrose (pseudo-) inverse of A. Therefore $\|\hat{K}-K\|_{F}=\left\|C-B^{T} A^{\dagger} B\right\|_{F}$. Here the matrix $C-B^{T} A^{\dagger} B=: K / A$ is called the (generalized) Schur Complement of A in K.
(c) Explore Nyström method on the Swiss-Roll dataset (http://yao-lab.github.io/data/ swiss_roll_data.mat contains 3D-data X; http://yao-lab.github.io/data/swissroll. m is the matlab code) with ISOMAP. To construct the block A, you may choose either of the following:
n random data points;
${ }^{*} n$ landmarks as minimax k-centers (https://yao-lab.github.io/data/kcenter. m);

Some references can be found at:
[dVT04] Vin de Silva and J. B. Tenenbaum, "Sparse multidimensional scaling using landmark points", 2004, downloadable at http://pages.pomona.edu/~vds04747/ public/papers/landmarks.pdf;
[P05] John C. Platt, "FastMap, MetricMap, and Landmark MDS are all Nyström Algorithms", 2005, downloadable at http://research.microsoft.com/en-us/um/people/ jplatt/nystrom2.pdf.
(d) *Assume that A is invertible, show that

$$
\operatorname{det}(K)=\operatorname{det}(A) \cdot \operatorname{det}(K / A),
$$

(e) *Assume that A is invertible, show that

$$
\operatorname{rank}(K)=\operatorname{rank}(A)+\operatorname{rank}(K / A)
$$

(f) *Can you extend the identities in (c) and (d) to the case of noninvertible A? A good reference can be found at,
[Q81] Diane V. Quellette, "Schur Complements and Statistics", Linear Algebra and Its Applications, 36:187-295, 1981. http://www.sciencedirect.com/science/ article/pii/0024379581902329

