
A Mathematical Introduction to Data Science March 20, 2023

Homework 6. Manifold Learning

Instructor: Yuan Yao Due: 2 weeks later

The problem below marked by ∗ is optional with bonus credits.

1. Order the faces: The following dataset contains 33 faces of the same person (Y ∈ R112×92×33)
in different angles,

https://yao-lab.github.io/data/face.mat

You may create a data matrix X ∈ Rn×p where n = 33, p = 112 × 92 = 10304 (e.g.
X=reshape(Y,[10304,33])’; in matlab).

(a) Explore the MDS-embedding of the 33 faces on top two eigenvectors: order the faces
according to the top 1st eigenvector and visualize your results with figures.

(b) Explore the ISOMAP-embedding of the 33 faces on the k = 5 nearest neighbor graph
and compare it against the MDS results. Note: you may try Tenenbaum’s Matlab code
https://yao-lab.github.io/data/isomapII.m

(c) Explore the LLE-embedding of the 33 faces on the k = 5 nearest neighbor graph and
compare it against ISOMAP. Note: you may try the following Matlab code
https://yao-lab.github.io/data/lle.m

2. Manifold Learning: The following codes by Todd Wittman contain major manifold learning
algorithms talked on class.

http://math.stanford.edu/~yuany/course/data/mani.m

Precisely, eight algorithms are implemented in the codes: MDS, PCA, ISOMAP, LLE, Hessian
Eigenmap, Laplacian Eigenmap, Diffusion Map, and LTSA. The following nine examples are
given to compare these methods,

(a) Swiss roll;

(b) Swiss hole;

(c) Corner Planes;

(d) Punctured Sphere;

(e) Twin Peaks;

(f) 3D Clusters;

(g) Toroidal Helix;

(h) Gaussian;

(i) Occluded Disks.
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Run the codes for each of the nine examples, and analyze the phenomena you observed.

*Moreover if possible, play with t-SNE using scikit-learn manifold package:

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

or any other implementations collected at

http://lvdmaaten.github.io/tsne/

3. Nyström method: In class, we have shown that every manifold learning algorithm can be
regarded as Kernel PCA on graphs: (1) given N data points, define a neighborhood graph

with N nodes for data points; (2) construct a positive semidefinite kernel K; (3) pursue
spectral decomposition of K to find the embedding (using top or bottom eigenvectors).
However, this approach might suffer from the expensive computational cost in spectral

decomposition of K if N is large and K is non-sparse, e.g. ISOMAP and MDS.

To overcome this hurdle, Nyström method leads us to a scalable approach to compute
eigenvectors of low rank matrices. Suppose that an N -by-N positive semidefinite matrix

K � 0 admits the following block partition

K =

[
A B
BT C

]
. (1)

where A is an n-by-n block. Assume that A has the spectral decomposition A = UΛUT ,
Λ = diag(λi) (λ1 ≥ λ2 ≥ . . . λk > λk+1 = . . . = 0) and U = [u1, . . . , un] satisfies UTU = I.

(a) Assume that K = XXT for some X = [X1;X2] ∈ RN×k with the block X1 ∈ Rn×k.
Show that X1 and X2 can be decided by:

X1 = UkΛ
1/2
k , (2)

X2 = BTUkΛ
−1/2
k , (3)

where Uk = [u1, . . . , uk] consists of those k columns of U corresponding to top k eigen-
values λi (i = 1, . . . , k).

(b) Show that for general K � 0, one can construct an approximation from (2) and (3),

K̂ =

[
A B

BT Ĉ

]
. (4)

where A = X1X
T
1 , B = X1X

T
2 , and Ĉ = X2X

T
2 = BTA†B, A† denoting the Moore-

Penrose (pseudo-) inverse of A. Therefore ‖K̂ − K‖F = ‖C − BTA†B‖F . Here the
matrix C −BTA†B =: K/A is called the (generalized) Schur Complement of A in K.

(c) Explore Nyström method on the Swiss-Roll dataset (http://yao-lab.github.io/data/
swiss_roll_data.mat contains 3D-data X; http://yao-lab.github.io/data/swissroll.
m is the matlab code) with ISOMAP. To construct the block A, you may choose either
of the following:

n random data points;
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*n landmarks as minimax k-centers (https://yao-lab.github.io/data/kcenter.
m);
Some references can be found at:

[dVT04] Vin de Silva and J. B. Tenenbaum, “Sparse multidimensional scaling us-
ing landmark points”, 2004, downloadable at http://pages.pomona.edu/~vds04747/

public/papers/landmarks.pdf;

[P05] John C. Platt, “FastMap, MetricMap, and Landmark MDS are all Nyström Al-
gorithms”, 2005, downloadable at http://research.microsoft.com/en-us/um/people/
jplatt/nystrom2.pdf.

(d) *Assume that A is invertible, show that

det(K) = det(A) · det(K/A),

(e) *Assume that A is invertible, show that

rank(K) = rank(A) + rank(K/A).

(f) *Can you extend the identities in (c) and (d) to the case of noninvertible A? A good
reference can be found at,

[Q81] Diane V. Quellette, “Schur Complements and Statistics”, Linear Algebra
and Its Applications, 36:187-295, 1981. http://www.sciencedirect.com/science/

article/pii/0024379581902329
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