Unsuperwsed Learnlng
PCA, Clustering, AutoEncoder, and
Generative Adversarial Networks

Yuan YAO
HKUST

Supervised Learning

» Data: (X, y)
X is input, y is output/response (label)

» Goal: Learn a functfion fo map x>y

=» Examples:
» Classification,
= regression,
» object detection,
®» semantic segmentation,

®» mage capftioning, etc.

Reinforcement Learning

» Problems involving an agent

» nferacting with an environment, Reinforcement &
Learning
» which provides numeric reward signals o cine

» Goal:

» | earn how fo take actions in order fo maximize reward
in dynamic scenarios

reward
R

environment

Today: Unsupervised Learning

» Data: x
Just input data, no output labels!

» Goal: Learn some underlying hidden structure of the data

=» Examples:

» (Clustering,

» dimensionality reduction (manifold learning),
» Density (probability) estimation,

» Generatfive models:
Generative Models

Given training data, generate new samples from same distribution

B4 -

Training data ~ p,,,.(X) Generated samples ~ p

» Autoencoder

» GANsS, efc.

model)

Want to learn p_ . (x) similar to p,_,_(X)

PCA: Principal Component Analysis

Can you find a low dimensional affine rePresentation?

» Data: x; = (X,'l, ...,X,'p), I=1,...,n.

240

» Compute sample covariance matrix, e.g.
_ 1 n A\ T A
S =2 ima(xi—)" (xi — fi).

» Decompose into eigenvalue-eigenvector pairs:

220

200

€1
o S=ehe’ = (&...&,)A | :
2 N
? where A = diag(X1, ..., Ap).
Y \ > (S\k,ék) are eigen-value-eigenvector pairs, \; > ... > 3\,,.

140
L

PCA

» The k-th sample PC.s:

Z1k
L = = Xé,
Znk

» Component-wise, zjx = Xj1€1k + Xj2€2k + ... + Xjp€pk are the
principle component scores of the /-th observation.

>)\, measures the importance of the k-th PC.

> Me/(A1+ ... + \p) = \i/trace(S) is interpreted as percentage
of the total variation explained by Y.

» Usually retain the first few PCs.

» PCs are uncorrelated with each other.

Example: USArrests Data

-0.5 0.0 0.5
| | |
For each of the 50 states in the United States, the data set “ UrbanPop
contains the number of arrests per 100, 000 residents for each of
three crimes: Assault, Murder, and Rape. o
We also record UrbanPop (the percent of the population in each) L
state living in urban areas). i beth.soton sy et
The principal component score vectors Zi have length n = 50, and 5 - Connectiout - shington Caorado
the principal component loading vectors (&) have length p = 4. % Wiscobiesota pennsyivania — Oreggn neBHEEE, e
PCA was performed after standardizing each variable to have mean S o Nebras{anSalianBREFE® wis Michigan
zero and standard deviation one. g’ =1 ™ Ha_mh"e Idaho Wyoming O NewMexico o9
% th DakolaMame Montana aryAlzn:auh
g - | South Dakota Kentucky Tennedsgkouisiana
o Arkansas Alabama X Alaska
PC1 PC2 VermontWest Virginia Geﬁﬂr%‘fder
Murder 0.5358995 0.4181809 o South Carolina i
Assault ~ 0.5831836 0.1879856 | Yor Carona
UrbanPop 0.2781909 0.8728062
Rape 0.5434321 0.1673186 ?
s 2 a0 | e 3

. . . A A First Principal Component
Table 10.1. The principal component loading vectors, & and &,

for the USArrests data. These are also displayed in Figure 10.1.
Figure: 10.1. Next page

0.5

0.0

-0.5

K-Means Clustering

Algorithm 10.1 K-Means Clustering

» 1. Randomly assign a number, from 1 to K, to each of the
observations. These serve as initial cluster assignments for the
observations.

» 2. lterate until the cluster assignments stop changing:

1. For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

2. Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

FIGURE 10.6. The progress of the K-means algorithm on the
example of Figure 10.5 with K = 3. Top left: the observations are
shown. Top center: in Step 1 of the algorithm, each observation is
randomly assigned to a cluster. Top right: in Step 2(a), the cluster
centroids are computed. These are shown as large colored disks.
Initially the centroids are almost completely overlapping because
the initial cluster assignments were chosen at random. Bottom
left: in Step 2(b), each observation is assigned to the nearest
centroid. Bottom center: Step 2(a) is once again performed,
leading to new cluster centroids. Bottom right: the results
obtained after ten iterations.

Data Step 1 Iteration 1, Step 2a
.'.:..:'Q.{3 .':.l3 .':.u
® o o -" g] 8 ° 8
LTI . T . 61: B
.'.io %2’ :' ':oo % .: -. ':oo % .: -.
s A .’;:'o it LA 0.&:'.-. it LA 0.&:'-.
< 0:..-& .." e ..\:of oo . ..\:of oo
L I “ “

Iteration 1, Step 2b

Iteration 2, Step 2a

Final Results

Figure: 10.6

Hierarchical Clustering Algorithms

(Agglomerative)

» 1. Begin with n observations and a measure (such as
n

Euclidean distance) of all the (3) = n(n—1)/2 pairwise
dissimilarities. Treat each observation as its own cluster.
» 2. Fori=nn—1,..2:

1. Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least
dissimilar (that is, most similar). Fuse these two clusters. The
dissimilarity between these two clusters indicates the height in
the dendrogram at which the fusion should be placed.

2. Compute the new pairwise inter-cluster dissimilarities among
the / — 1 remaining clusters.

Linkage

Description

Complete

Maximal intercluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and the
observations in cluster B, and record the largest of these dissimilarities.

Single

Minimal intercluster dissimilarity. Compute all pairwise

dissimilarities between the observations in cluster A and the observations
in cluster B, and record the smallest of these dissimilarities. Single
linkage can result in extended, trailing clusters in which single
observations are fused one-at-a-time.

Average

Mean intercluster dissimilarity. Compute all pairwise dissimilarities
between the observations in cluster A and the observations in cluster B,
and record the average of these dissimilarities.

Centroid

Dissimilarity between the centroid for cluster A (a mean vector
of length p) and the centroid for cluster B. Centroid linkage can

result in undesirable inversions.

TABLE 10.2. A summary of the four most commonly-used types of linkage

Average Linkage Complete Linkage Single Linkage

—

Manifold Learning: Nonlinear
Dimensionality Reduction

MDS

ISOMAP

LLE: Locally linear Embedding

Laplacian Eigenmap

Hessian Eigenmap

Diffusion Map

LTSA: Local Tangent Space Alignment

*MDS-SDP (Sensor-Network-Localization)

t-SNE
hitps.//scikit-learn.org/stable/modules/manifold.html

Generative Models
Given training data, generate new samples from same distribution

B4 B

Training data ~ p__. (X) Generated samples ~

modeI)

Want to learn p_ . (x) similar to p___(x)

Generative Models

Given training data, generate new samples from same distribution

A @'q

Training data ~ p_,_(X) Generated samples ~

model)

Want to learn p__ . (x) similar to p__. _(X)

Addresses density estimation, a core problem in unsupervised learning
Several flavors:
- Explicit density estimation: explicitly define and solve for p . (x)

- Implicit density estimation: learn model that can sample from p (x) w/o explicitly defining it

model

Taxonomy of Generative Models Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
Fully Visible Belief Nets / \ GSN
- NADE —)
- MADE Variational Markov Chain
i P'XGIRNN/CNN Variational Autoencoder Boltzmann Machine
Change of variables models
(nonlinear ICA) , _ . . .
Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

» We are going to focus on:
» Variational AutoEncoder (VAE)

» Generative Adversarial Network (GAN)

Variational Autoencoders (VAE)

Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

e.g. PCA, Manifold
Learning, Dictionary
Learning

Features > ﬁﬁ - .
T Encoder ’ E@

Input data T Eagz
0 < IS

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

e.g. PCA, Manifold Learning,
Dictionary Learning, Matrix
Factorization: D = E’

Reconstructed
input data

Decoder

T
Features l -H e
I

- - <
Encoder .’AAE-@

o] T
sl < B

Input data

Deep Autoencoder

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)

Later: Deep, fully-connected

Q: Why dimensionality Later: ReLU CNN

reduction?

A: Want features to

s s
capture meaningful Features < miﬁ .

factors of variation in , E-@
data Encoder

nl o TS B
Input data T -H <€ -E

Deep Learning for decoders

How to learn this feature representation?
Train such that features can be used to reconstruct original data

“Autoencoding” - encoding itself
Originally: Linear +
nonlinearity (sigmoid)
Reponstructed T / Later: Deep, fully-connected
input data Later: ReLU CNN (upconv)
Decoder
Features pA
T Encoder
Input data T

L2 Loss functions

Some background first: Autoencoders _Reconstructed data
l|ﬂan=ﬂl

Train such that features Doesn’t use labels! , '

can be used to L2 Loss function: %sgg

reconstruct original data |z — *||2 - -
Ty a7 < S

T

Reponstructed Encoder: 4-layer conv
input data Decoder: 4-layer upconv
Decoder i
Input Id_gta |

e o N
RN L&TES

Encoder

el ML RS S
a7l « B2

i
Features z
i

Input data

Some background first: Autoencoders

Reconstructed

input data

Features

Input data

Autoencoders for Transfer Learning

Loss function
(Softmax, etc) bird plane

/ \ dog deer truck

Predicted Label

Train for final task
(sometimes with
small data)

Classifier Fine-tune
Encoder can be encoder

Y
used to initialize a Features A jointly with
£

supervised model classifier
Encoder

o MR

Input data

Reconstructed

input data

Features

Decoder

Encoder

Input data

|
|

Autoencoders can reconstruct
data, and can learn features to
Initialize a supervised model

Features capture factors of
variation in training data. Can we
generate new images from an
autoencoder?

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {m(i)};’\;l is generated from underlying unobserved (latent)
representation z

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to

Sample from .))
true conditional T generate x: attributes, orientation, etc.
po=(| Z(i)) 1

Sample from

true prior >

po=(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample fr.o_m How should we represent this model?
true conditional I
i A . ,
po+(| 2)) Choose prior p(z) to be simple, e.g.
Gaussian. Reasonable for latent attributes,
Sample from e.g. pose, how much smile.
true prior >

po+ (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample fr.o.m How should we represent this model?
true conditional £Z
i A : .
po= (T | 2)) Choose prior p(z) to be simple, e.g.
Decoder Gaussian.
network » _
Sample from Conditional p(x|z) is complex (generates
true prior > image) => represent with neural network
po=(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from
true conditional

po-(z | 2)

Sample from
true prior

po+(2)

5

A

Decoder
network

<

We want to estimate the true parameters g*
of this generative model.

How to train the model?

Remember strategy for training generative
models from FVBNs. Learn model parameters
to maximize likelihood of training data

po(x) = [po(2)pe(z|2)dz
\

Now with latent z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from
true conditional

pe~(x | 2)

Sample from
true prior

po=(2)

X
A

Decoder
network

<

We want to estimate the true parameters g*
of this generative model.

How to train the model?

Remember strategy for training generative
models from FVBNs. Learn model parameters
to maximize likelihood of training data
po(z) = [po(2)pe(z|2)dz
Q: What is the problem with this?

Intractable!
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

® v Vv
Data likelihood: pa(z) = [po(2)pe(z|2)dz

f

Intractible to compute
p(x|z) for every z!

v 9
Posterior density also intractable: P9(3|$) — Pe($|z)99 (Z)/Pe(fb‘)

f

Intractable data likelihood

Variational Lower Bounds

2 v v
Data likelihood: pg(z) = [pe(2)pe(z|2)dz

v v 9
Posterior density also intractable: po(2|x) = po(z|2)pe(2)/po()

Solution: In addition to decoder network modeling p4(x|z), define additional
encoder network q ¢(z|x) that approximates p,(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that is
tractable, which we can optimize

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from 2|z ~ N (fy|z, 22z) Sample x|z from Z|z ~ N (g2, Xz|2)
Hz|x z|:1: Hzx|z m|z
Encoder network Decoder network
d¢(2|z) po(z|2)
(parameters ¢) (parameters 0)

Encoder and decoder networks also called
“recognition”/“inference” and “generation” networks Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Assume that >, and X, |, are both diagonal, i.e. conditional independence.

Variational Autoencoders

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

log pg(z)) = E. q,(z|z) [logpg(m(i))] (po(z?) Does not depend on 2)

(2)
_E, |log P& 1 2)Po(2)

po(z | @)

po(zD | 2)pa(2) qp(z |)

po(z | @) gz | z®)
(= | ﬂf(i))] [qe(z | ﬂﬁ(i))] .

+ E. (lo . Logarithms

Po(2) 8 po(z] 2| (Losarithins)

— E. [logps(¢? | 2)| — Dcr(as(z | 29) || po(2)) + Drr(as(z | #D) || po(z | 2@))

A A +

] (Bayes’ Rule)

=E, |log

} (Multiply by constant)

= B, —logpg(:c(i) | z)] —E, [log L

Decoder network gives p,(x|z), can This KL term (between Pg(z[x) intractable (saw
compute estimate of this term through ~ Gaussians for encoder and z ~ €arlier), can’t compute this KL
sampling. (Sampling differentiable prior) has nice closed-form term :(But we know KL

throuah reparam. trick. see paper.) solution! divergence always >=0.

Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

log pg(z'V) = E, g, (zla®) {logpg(a:(i))] (po (D) Does not depend on 2)

=E. |log

po (2" | 2)po(2)
po(z | @)

po (2 | 2)po(2) gy (2 | V)
po(z | 2D) g(z | x(®)

] (Bayes’ Rule)

=E, |log

] (Multiply by constant)

-) . (2) (2)

—E. [logpe(z'? | 2)| — E, {log 4z |@)] + E, llog 4 | T)] (Logarithms)
[_ I po(z) | po(z | ()

=(E. [logpg(2' | 2)| = Drcrap(= | ™) | po(2)|+ Drcr(as(z | =") lIps(=| z))

L(z),6,) >0
Tractable lower bound which we can take

gradient of and optimize! (pe(x|z) differentiable,
KL term differentiable)

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

log pe (z'V) = E. q,(zz) [logpg(:n(i))] (po(z?) Does not depend on z)

I (4)
= E. |log po(e™ | z)pg(z)] (Bayes’ Rule)
po(z | z(¥))

po@® | 2)pa(=) gz | 29)
Po(z [2©) g0l M M

Make approximate
posterior distribution
y by constant) close to prior

Reconstruct -
the input data=E__|log

qe (2 |

- . 7) (2)
—E. |logpplz'? | z)] - E, [log)] +E, llog 4s(2 | @ :)] (Logarithms)

: peAﬂ/Z) po(z | (V)
=E, _10gp9(33(i) | Z)] — Di1(qp(z |) || po(z)) + Drer(g4(2 | D) || po(2 | z¥))

>O

; - a* — L(x (1) 0,
log po (™) > L(z®, 0, $) , " = arg maxz &)

Variational lower bound (“‘ELBQO”) Training: MaX|m|ze Iower bound

£(zD. 8, ¢)

Stage |: Encoder

Putting it all together: maximizing the
likelihood lower bound

B, [logps(a | 2)| = Dicr(as(= | =) || po(2))

N -

£(z@, 0, ¢)

Make approximate
posterior distribution
close to prior

Hz|x

Encoder network

q¢(z|z)
Input Data

Stage Il: Decoder.

Variational Autoencoders

Maximize

4

L

Putting it all t r-maximizing the i elinood of ~ Sample xiz from |2 ~ N (g)2s La|2)
likelihoogTower bound original input
| | being / \
E. |logps(z¥ | z)} — Dk r(gs(2 | 29) || pe(z)) reconstructed M|z Yzl
E(m(i)” 6, %) Decoder network \/
po(x|z)

<
Sample z from z|$ ~ N(,u'z|$} ZJz|sc)

posterior distribution / \

close to prior Hz|x Ezlm

Encoder network
For every minibatch of input (z|:r:) \/
data: compute this forward ¢

pass, and then backprop! Input Data I

Make approximate

INg data

generat

LL]
<
>

Data manifold for 2-d z

Use decoder network. Now sample z from prior!

QDA NANNANANNNN SN SNNNNNS
QA ELLLLLLWN NN~
QAVINN KL LLLVYY Y NN~
QAVVDNINIntn oot WOVVY W -~~~
QAVDHHINNHVWWBVIOVIVY W W - —

QO0ODNOHINININMHMEOEBDIVIVI® W = —— A

QAOAOOMHIMMNMMNMMBDIID D W - ——
QOODOMMMMMNMMODIDID DD w o — —
OODMMMNMN MMM WMD DL e —
QOODOMMNMMMMM N0 WW® DD e —
QOMME MMM NN OO W N on o e —
QA2 0°0P 00000000 o~ o~ 0~ o~
DI I NS00 00 00 O & o~ O~~~

Vary z,

QZ.&ZZ.&?“Q-Q-Q.Q.Q.G.????.I?‘

Sl ddogrorrororrcTaanN~N
SAdadadddocrrrrrrrTTIIIINN
SddddgrrrrrrdITTITTITRIRINN
SAdddTTTrrrrrr>rIrIr22rNN
S I g gl e el el ol ol ol ol ol W N NI N NN

< >

Vary z,

Eml.:?;

TN

Z
Sample z from z ~ N((}’I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample x|z from $|Z ~ N(#ﬂz; ZJ:.c|z)
Hz|z

Decoder network
po(x|2)

VAE: generating dato

Diagonal prior on z

=> independent _
latent variables Degree of i{”e
Different

dimensions of z Vary z,
encode

interpretable factors
of variation

\

Also good feature representation that
can be computed using q¢(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

-Jﬁﬂﬁﬁ

‘ﬁ“!“ﬁ

”ﬁﬁﬁ?ﬁﬁﬁa‘
'ﬁﬁﬁﬁﬂﬁia‘

Labeled Faces in the Wild

32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Variational Autoencoders

= Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

» Pros:
= Principled approach to generative models

= Allows inference of q(z|x), can be useful feature representation for other tasks

» Cons:

=» Maximizes lower bound of likelihood

= Samples blurrier and lower quality compared to state-of-the-art (GANs)

» Active areas of research:

= More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian

= |ncorporating structure in latent variables

Generative Adversarial Networks
(GAN)

PixelCNNs define tractable density function, optimize likelihood of training data:

p9($) — HPQ(CE?',|$1, ceey $i_1)
=1

VAEs define intractable density function with latent z:

po(a) = [po(pa(alz)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANSs: don’t work with any explicit density function!
Instead, take game-theoretic approach: learn to generate from training distribution
through 2-player game

lan Goodfellow et al., “Generative

Generative Adversarial Networks Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Output: Sample from

Q: What can we use to
training distribution

represent this complex
transformation?

Generator
Network

*

Input: Random noise Z

A: A neural network!

lan Goodfellow et al., “Generative

Training GANS: TWO-pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Fake Images
(from generator)

Real or Fake

*

Discriminator Network

¢ Real Images
' e (from training set)

*

Generator Network

Random noise

*

Z

Training GANs: Minimax Game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

I%in II]QEI.X [Emwpdam log Dg,(x) + Ezmp(z) log(1 — Dy, (G9g (z)))}
g d

Training GANs: Minimax Game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

1"—%111 max [Emwpdam log Dy, (z) + Eznp(z) log(1 — Dy, (G9g (Z)))}
g d | J L I

Discriminelltor output Discriminaltor output for
for real data x generated fake data G(z)

- Discriminator (6,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (eg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Training GANSs

Minimax objective function:

min max [Emrupdm log Dy, (%) + Enp(z) log(1 — Do, (G, (z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

H?éa.X [Emmpdam log Dﬂd ($) + Ezwp(z) log(l T Dﬁd(Gﬁg (z))):|

2. Gradient descent on generator

n;in E,p(2) log(1 — Dy, (Geg (2)))

The Issue In Training GANS

Minimax objective function:

I%in max [Emwpdam log Dy, () + Eznp(z) log(1 — De, (G9g (z)))}
q d

Alternate between:;

1. Gradient ascent on discriminator
Gradient signal

max [E:rmpdam log Dy, () + E,np(2) log(1 — Dﬂd(Gﬂg (z)))} dominated by region

6.)
where sample is
2. Gradient descent on generator already QO\Od

q

minE, () log(1 — Dy, (Gs, (2))) {

When sample is likely:|

fake, wantto learn |

In practice, optimizing this generator objective from it to improve /f,_l |
does not work well! generator. But |
gradient in this region-f -

is relatively flat!

The Log D trick

Minimax objective function:

I%iﬂ Htlgax |:E$diata log Dg, (33) + Ezmp(z) log(l — Do, (Gﬁ'g (z)))}
g d

Alternate between:
1. Gradient ascent on discriminator

max |:E$diata log Dy, () + E;rp(z) log(1 — Dy, (G, (z)))}

2. Instead: Gradient ascent on generator, different

objective
I maxE, ;) log(Ds,(Go, (2)))

/
Instead of minimizing likelihood of discriminator being correct, now High gradiént signal
maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice. oz

Cow gradient signal

Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(z).

e Sample minibatch of m examples {z(%),..., ﬂ:(m}} from data generating distribution

pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

1 i i
Vo, > [1og Dy, (&™) + log(1 — Dg, (G, (¢))))]
i=1

end for
e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(z).

e Update the generator by ascending its stochastic gradient (improved objective):
1 & ;
Vo, — > log(Dy,(Go, (2")))
i=1
end for

Other Losses (Wasserstein Distance, KL-divergence) are better in stability!

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images
(from generator)

’

Real Images
(from training set)

Generator Network

Random noise

*

After training, use generator network to

Z

generate new images

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples (CIFAR-10)

-

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.

e Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Fw

100 z e e

Stride 2 16

Project and reshape
CONV 2

CONV 4 =

Generator G(2)

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
amazing!

Radford et al,
ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

Interpolating wi w,;;w Wg W w@ : '131 a‘n

between m.
random T .
points in laten = wg» et W 5 ﬁ

space -‘;_ “r r ,TT- T .T J

=l M|

|i A W
Radford et al, ﬂi'— . -5' ~ -

ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math

Radford et al, ICLR 2016

Smiling woman Neutral woman Neutral man

Samples
from the <
model

Average Z
vectors, do
arithmetic

Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman féaféoggfé al,

Woman with glasses

201 7: Year Of the GAN Text -> Image Synthesis

this small bird has a pink this magnificent fellow is

i breast and crown, and black almost all black with a red
Source->Ta rget domain tra?sfer —_ primaries and secondaries. crest, and white cheek patch.
Input Output LpH utpy

Church outdoor.

(c) Kitchen. (d) Conference room.

LSGAN. Mao et al. 2017.

d TP
Rl "9

apple — orange

= summer Yosemite

Pix2pix. Isola 2017. Many examples at
https://phillipi.github.io/pix2pix/

CycleGAN. Zhu et al. 2017.
BEGAN. Bertholet et al. 2017.

Reference of GANS

» The GAN zoo: https://github.com/hindupuravinash/the-gan-zoo

®» See also: hitps://qgithub.com/soumith/ganhacks for tips and tricks for
trainings GANSs

Thank you!

