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How many components of PCA?

I Data matrix: X = [x1|x2| · · · |xn] ∈ Rp×n

I Centering data matrix: Y = XH where

H = I − 1

n
1 · 1T

I PCA is given by top left singular vectors of Y = USV T (called
loading vectors) by projections to Rp, zj = ujY

I MDS is given by top right singular vectors of Y = USV T as
Euclidean embedding coordinates of n sample points

I But how many components shall we keep?
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Recall: Horn’s Parallel Analysis

I Data matrix: X = [x1|x2| · · · |xn] ∈ Rp×n

X =


X1,1 X1,2 · · · X1,n

X2,1 X2,2 · · · X2,n

...
...

. . .
...

Xp,1 Xp,2 · · · Xp,n

 .
I Compute its principal eigenvalues {λ̂i}i=1,...,p
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Recall: Horn’s Parallel Analysis

I Randomly take p permutations of n numbers π1, . . . , πp ∈ Sn
(usually π1 is set as identity), noting that sample means are
permutation invariant,

X1 =


X1,π1(1) X1,π1(2) · · · X1,π1(n)

X2,π2(1) X2,π2(2) · · · X2,π2(n)
...

...
. . .

...
Xp,πp(1) Xp,πp(2) · · · Xp,πp(n)

 .

I Compute its principal eigenvalues {λ̂1i }i=1,...,p.

I Repeat such procedure for r times, we can get r sets of principal
eigenvalues. {λ̂ki }i=1,...,p for k = 1, . . . , r
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Recall: Horn’s Parallel Analysis (continued)

I For each i = 1, define the i-th p-value as the percentage of random
eigenvalues {λ̂ki }k=1,...,r that exceed the i-th principal eigenvalue λ̂i
of the original data X,

pvali =
1

r
#{λ̂ki > λ̂i : k = 1, . . . , r}.

I Setup a threshold q, e.g. q = 0.05, and only keep those principal
eigenvalues λ̂i such that pvali < q
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Example

I Let’s look at an example of Parallel Analysis

– R: https://github.com/yuany-pku/2017_CSIC5011/blob/
master/slides/paran.R

– Matlab: papca.m

– Python:
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How does it work?

I We are going to introduce an analysis based on Random Matrix
Theory for rank-one spike model

I There is a phase transition in principal component analysis

– If the signal is strong, principal eigenvalues are beyond the random
spectrum and principal components are correlated with signal

– If the signal is weak, all eigenvalues in PCA are due to random noise
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Marčenko-Pastur Distribution of Noise Eigenvalues

I Let xi ∼ N (0, Ip) (i = 1, . . . , n) and X = [x1, x2, . . . , xn] ∈ Rp×n.

I The sample covariance matrix

Σ̂n =
1

n
XXT .

is called Wishart (random) matrix.

I When both n and p grow at p
n → γ 6= 0, the distribution of the

eigenvalues of Σ̂n follows the Marčcenko-Pastur (MP) Law

µMP (t) =

(
1− 1

γ

)
δ(t)I(γ > 1) +

{
0 t /∈ [a, b],√

(b−t)(t−a)
2πγt dt t ∈ [a, b],

where a = (1−√γ)2, b = (1 +
√
γ)2.
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Illustration of MP Law

I If γ ≤ 1, MP distribution has a support on [a, b];

I if γ > 1, it has an additional point mass 1− 1/γ at the origin.

(a) (b)

Figure: Show by matlab: (a) Marčenko-Pastur distribution with γ = 2. (b)
Marčenko-Pastur distribution with γ = 0.5.

Random Matrix Theory 11



Outline

Recall: PCA and Horn’s Parallel Analysis

Random Matrix Theory
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Rank-one Spike Model

Consider the following rank-1 signal-noise model

Y = X + ε,

where

I the signal lies in an one-dimensional subspace X = αu with
α ∼ N (0, σ2

X);

I the noise ε ∼ N (0, σ2
εIp) is i.i.d. Gaussian.

Therefore Y ∼ N (0,Σ) where the limiting covariance matrix Σ is
rank-one added by a sparse matrix:

Σ = σ2
Xuu

T + σ2
εIp.

Phase Transitions of PCA 13



When does PCA work?

I Can we recover signal direction u from principal component analysis
on noisy measurements Y ?

I It depends on the signal noise ratio, defined as

SNR = R :=
σ2
X

σ2
ε

.

For simplicity we assume that σ2
ε = 1 without loss of generality.
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Phase Transition of PCA

I Consider the scenario
γ = lim

p,n→∞

p

n
. (1)

as in applications, one never has infinite amount of samples and
dimensionality

I A fundamental result by I. Johnstone in 2006 shows a phase
transition of PCA:
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Phase Transitions

I The primary (largest) eigenvalue of sample covariance matrix
satisfies

λmax(Σ̂n)→

{
(1 +

√
γ)2 = b, σ2

X ≤
√
γ

(1 + σ2
X)(1 + γ

σ2
X

), σ2
X >

√
γ

(2)

I The primary eigenvector (principal component) associated with the
largest eigenvalue converges to

|〈u, vmax〉|2 →

0 σ2
X ≤

√
γ

1− γ

σ4
X

1+ γ

σ2
X

, σ2
X >

√
γ

(3)
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Phase Transitions (continued)

In other words,

I If the signal is strong SNR = σ2
X >

√
γ, the primary eigenvalue

goes beyond the random spectrum (upper bound of MP
distribution), and the primary eigenvector is correlated with signal
(in a cone around the signal direction whose deviation angle goes to
0 as σ2

X/γ →∞);

I If the signal is weak SNR = σ2
X ≤

√
γ, the primary eigenvalue is

buried in the random spectrum, and the primary eigenvector is
random of no correlation with the signal.
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Proof in Sketch

I Following the rank-1 model, consider random vectors yi ∼ N (0,Σ)
(i = 1, . . . , n), where Σ = σ2

xuu
T + σ2

εIp and u is an arbitrarily
chosen unit vector (‖u‖2 = 1) showing the signal direction.

I The sample covariance matrix is Σ̂n = 1
n

∑n
i=1 yiy

T
i = 1

nY Y
T

where Y = [y1, . . . , yn] ∈ Rp×n. Suppose one of its eigenvalue is λ̂
and the corresponding unit eigenvector is v̂, so Σ̂nv̂ = λv̂.

I First of all, we relate the λ̂ to the MP distribution by the trick:

zi = Σ−
1
2 yi → Zi ∼ N (0, Ip). (4)

Then Sn = 1
n

∑n
i=1 ziz

T
i = 1

nZZ
T (Z = [z1, . . . , zn]) is a Wishart

random matrix whose eigenvalues follow the Marčenko-Pastur
distribution.
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Proof in Sketch

I Notice that

Σ̂n =
1

n
Y Y T = Σ1/2(

1

n
ZZT )Σ1/2 = Σ

1
2SnΣ

1
2

and (λ̂, v̂) is eigenvalue-eigenvector pair of matrix Σ̂n. Therefore

Σ
1
2SnΣ

1
2 v̂ = λ̂v̂ ⇒ SnΣ(Σ−

1
2 v̂) = λ̂(Σ−

1
2 v̂) (5)

In other words, λ̂ and Σ−
1
2 v̂ are the eigenvalue and eigenvector of

matrix SnΣ.

I Define v = cΣ−
1
2 v̂ where the constant c makes v a unit eigenvector,

c2 = c2v̂T v̂ = vTΣv = vT (σ2
xuu

T + σ2
ε)v = σ2

x(uT v)2 + σ2
ε)

= R(uT v)2 + 1. (6)
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Proof in Sketch

Now we have,
SnΣv = λ̂v. (7)

Plugging in the expression of Σ, it gives

Sn(σ2
Xuu

T + σ2
εIp)v = λ̂v

Rearrange the term with u to one side, we got

(λ̂Ip − σ2
εSn)v = σ2

XSnu(uT v)

Assuming that λ̂Ip − σ2
εSn is invertible, then multiple its reversion at

both sides of the equality, we get,

v = σ2
X · (λ̂Ip − σ2

εSn)−1 · Snu(uT v). (8)
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Primary Eigenvalue λ̂

I Multiply (8) by uT at both side,

uT v = σ2
X · uT (λ̂Ip − σ2

εSn)−1Snu · (uT v)

that is, if uT v 6= 0,

1 = σ2
X · uT (λ̂Ip − σ2

εSn)−1Snu (9)
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Primary Eigenvalue λ̂

I Assume that Sn has the eigenvalue decomposition Sn = W Λ̂WT ,
where Λ = diag(λi : i = 1, . . . , p) and WWT = WTW = Ip
(W = [w1, . . . , wp] ∈ Rp×p). Define αi = wTi u and α = (αi) ∈ Rp.
Hence u =

∑p
i=1 αiwi = WTα. Now (9) leads to

1 = σ2
X ·uT [W (λ̂Ip−σ2

εΛ)−1WT ][WΛWT ]u = σ2
X ·αT (λ̂Ip−σ2

εΛ)−1Λα

which is

1 = σ2
X ·

p∑
i=1

λi

λ̂− σ2
ελi

α2
i (10)

where
∑p
i=1 α

2
i = 1, αi uniformly distributed around mean 1/

√
p.

I For large p, λi ∼ µMP (λi) and the sum (10) can be approximated by

1 = σ2
X ·

1

p

p∑
i=1

λi

λ̂− σ2
ελi
∼ σ2

X ·
∫ b

a

t

λ̂− σ2
εt
dµMP (t) (11)

where σ2
ε = 1 by assumption.
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Primary Eigenvalue λ̂

I Using the Stieltjes transform,

1 = σ2
X ·
∫ b

a

t

λ̂− t

√
(b− t)(t− a)

2πγt
dt

=
σ2
X

4γ
[2λ̂− (a+ b)− 2

√
|(λ̂− a)(b− λ̂)|]. (12)

I For λ̂ ≥ b and R = σ2
X ≥

√
γ, we have

1 =
σ2
X

4γ
[2λ̂− (a+ b)− 2

√
(λ̂− a)(λ̂− b)],

⇒ λ̂ = σ2
X +

γ

σ2
X

+ 1 + γ = (1 + σ2
X)(1 +

γ

σ2
X

).
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Primary Eigenvalue λ̂

Here we observe the following phase transitions for primary eigenvalue:

I If λ̂ ∈ [a, b], then Σ̂n has its primary eigenvalue λ̂ within
supp(µMP ), so it is undistinguishable from the noise.

I So λ̂ = b is the phase transition where PCA works to pop up signal
rather than noise. Then plugging in λ̂ = b in (12), we get,

1 = σ2
X ·

1

4γ
[2b− (a+ b)] =

σ2
X√
γ
⇔ σ2

X =
√
γ =

√
p

n
(13)

Hence, in order to make PCA works, we need to let the
signal-noise-ratio R ≥

√
p
n .
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Primary Eigenvector v̂

I As ‖v‖2 = 1, plugging v in Equation (8),

1 = vT v = σ4
X · vTuuTSn(λIp − σ2

εSn)−2Snuu
T v

= σ4
X · (|vTu|)[uTSn(λIp − σ2

εSn)−2Snu](|uT v|)

which implies that

|uT v|−2 = σ4
X [uTSn(λIp − σ2

εSn)−2Snu]. (14)

I Using the same trick as the equation (9), we reach the following
Monte-Carlo integration

|uT v|−2 = σ4
X [uTSn(λIp − σ2

εSn)−2Snu]

∼ σ4
X

∫ b

a

t2

(λ− σ2
εt)

2
dµMP (t) (15)
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Primary Eigenvector v̂

I For λ ≥ b, from Stieltjes transform introduced later one can
compute the integral as

|uT v|−2 = σ4
X ·
∫ b

a

t2

(λ− σ2
εt)

2
dµMP (t)

=
σ4
X

4γ

(
−4λ+ (a+ b) + 2

√
(λ− a)(λ− b) + . . .

+
λ(2λ− (a+ b))√

(λ− a)(λ− b)

)

from which it can be computed that (using λ̂ = (1 + σ2
X)(1 + γ

σ2
X

)

obtained above with R = σ2
X)

|uT v|2 =
1− γ

σ4
X

1 + γ + 2γ
σ2
X

.
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Primary Eigenvector v̂

I Now we can compute the inner product of u and v̂ that we are really
interested in:

|uT v̂|2 = (
1

c
uTΣ

1
2 v)2 =

1

c2
((Σ

1
2u)T v)2

=
1

c2
(((σ2

Xuu
T + Ip)

1
2u)T v)2

∗
=

1

c2
((
√

(1 + σ2
X)u)T v)2

∗∗
=

(1 + σ2
X)(uT v)2

R(uT v)2 + 1
, R = σ2

X ,

=
1 +R− γ

R −
γ
R2

1 +R+ γ + γ
R

=
1− γ

R2

1 + γ
R

where the equality (∗) uses Σ1/2u =
√

1 + σ2
Xu, and the equality

(∗∗) is due to the formula for c2 (Equation (6) above). Note that
this identity holds under the condition that R ≥ √γ to ensure the
numerator above non-negative.
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Stieltjes Transform

Define the Stieltjes Transformation of MP-density µMP to be

s(z) :=

∫
R

1

t− z
dµMP (t), z ∈ C (16)

Lemma (Bai-Silverstein’2011, Lemma 3.11)

s(z) =
(1− γ)− z +

√
(z − 1− γ)2 − 4γz

2γz
. (17)
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Stieltjes Transform (continued)

Lemma (2)

1. ∫ b

a

t

λ− t
µMP (t)dt = −λs(λ)− 1;

2. ∫ b

a

t2

(λ− t)2
µMP (t)dt = λ2s′(λ) + 2λs(λ) + 1
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Proof of Lemma 2

Proof.

1. For convenience, define

T (λ) :=

∫ b

a

t

λ− t
µMP (t)dt. (18)

The first result follows from that

1+T (λ) = 1+

∫ b

a

t

λ− t
µMP (t)dt =

∫ b

a

λ− t+ t

λ− t
µMP (t)dt = −λs(λ).

2. From the definition of T (λ), we have∫ b

a

t2

(λ− t)2
µMP (t)dt = −T (λ)− λT

′
(λ).

Combined with the first result, we reach the second one.
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Open Problems

I If one can estimate the noise models, such as the rank-1 model here,
then we can use random matrix theory (universality) or by
simulations to find the number of principal components.

I Such a random matrix theory can not fully explain why Horn’s
Parallel Analysis, whose proof is open.

I In applications, noise models might not be homogeneous σ2
εIp. How

to deal with heterogeneous noise models is open (Wang-Owen’2015
attacked this problem).

I Distributive PCA can exploit random matrix theory to decide the
number of samples in local clients (Fan-Wang et al. 2019).
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