Clustering via Uncoupled REgression (CURE)

Kaizheng Wang
Department of ORFE
Princeton University

May 8th 2020
Collaborators

Yuling Yan
Princeton ORFE

Mateo Díaz
Cornell CAM
Clustering
Spherical Clusters

\[\{ \mathbf{x}_i \}_{i=1}^{n} \sim \frac{1}{2} N(\mu, I_d) + \frac{1}{2} N(-\mu, I_d) \]
Spherical Clusters

\[\{x_i\}_{i=1}^n \sim \frac{1}{2} N(\mu, I_d) + \frac{1}{2} N(-\mu, I_d) \]

- PCA: \(\max_{\beta \in \mathbb{S}^{d-1}} \frac{1}{n} \sum_{i=1}^{n} (\beta^\top x_i)^2 \)
- k-means: \(\min_{\mu_1, \mu_2, y} \frac{1}{n} \sum_{i=1}^{n} \| x_i - \mu_{y_i} \|_2^2 \)
- SDP relaxations of k-means, etc
- Density-based methods require large samples
Finding a Needle in a Haystack

They are powerful but not omnipotent.

\[\frac{1}{2} N(\mu, \Sigma) + \frac{1}{2} N(-\mu, \Sigma): \text{covariance } \mu \mu^\top + \Sigma \]

- Max variance \(\neq \) useful
- PCA: \(\| \mu \|_2^2 / \| \Sigma \|_2 \gg 1 \) or \(\Sigma \approx I \)

Reduction to the spherical case?
- Estimation of \(\Sigma \) is difficult!
Headaches

- PCA and many: *nice shapes* & large separations.

- Learning with non-convex losses:
 1. Initialization (e.g. *spectral methods*);
 2. Refinement (e.g. gradient descent).

Stretched mixtures can be *catastrophic*.

Commonly-used: isotropic, Gaussian, uniform, etc.
Clustering via Uncoupled Regression

- The CURE methodology
- Theoretical guarantees
Vanilla CURE

Given centered $\{x_i\}_{i=1}^n \subseteq \mathbb{R}^d$, want $\beta \in \mathbb{R}^d$ such that

$$\beta^\top x_i \approx y_i, \quad i \in [n].$$
Vanilla CURE

Given centered $\{x_i\}_{i=1}^n \subseteq \mathbb{R}^d$, want $\beta \in \mathbb{R}^d$ such that

$$\beta^\top x_i \approx y_i, \quad i \in [n].$$

Cluster via Uncoupled REgression:

$$\frac{1}{n} \sum_{i=1}^n \delta \beta^\top x_i \approx \frac{1}{2} \delta_{-1} + \frac{1}{2} \delta_1.$$
Vanilla CURE

Given centered \(\{ \mathbf{x}_i \}_{i=1}^n \subseteq \mathbb{R}^d \), want \(\beta \in \mathbb{R}^d \) such that

\[
\beta^\top \mathbf{x}_i \approx y_i, \quad i \in [n].
\]

Clustering via Uncoupled REgression:

\[
\frac{1}{n} \sum_{i=1}^n \delta \beta^\top \mathbf{x}_i \approx \frac{1}{2} \delta_{-1} + \frac{1}{2} \delta_1.
\]

CURE: take \(f \) with valleys at \(\pm 1 \), e.g. \(f(x) = (x^2 - 1)^2; \)

solve \(\min_{\beta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\beta^\top \mathbf{x}_i) \); return \(\hat{y}_i = \text{sgn}(\hat{\beta}^\top \mathbf{x}_i) \).
Vanilla CURE

\[\frac{1}{n} \sum_{i=1}^{n} f(\beta^\top x_i) \] is non-convex by nature.

- **Projection pursuit** (Friedman and Tukey, 1974),
 ICA (Hyvärinen and Oja, 2000)
 - Maximize deviation from the null (Gaussian);
 - Limited algorithmic guarantees.
- **Phase retrieval** (Candès et al. 2011)
 - Isotropic measurements, spectral initialization.
Vanilla CURE with Intercept

Given \(\{x_i\}_{i=1}^n \subseteq \mathbb{R}^d \), find \(\alpha \in \mathbb{R} \) and \(\beta \in \mathbb{R}^d \) s.t.

\[
\frac{1}{n} \sum_{i=1}^n \delta_{\alpha + \beta^\top x_i} \approx \frac{1}{2} \delta_{-1} + \frac{1}{2} \delta_1.
\]

The naïve extension

\[
\min_{\alpha \in \mathbb{R}, \beta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\alpha + \beta^\top x_i)
\]

yields trivial solutions \((\hat{\alpha}, \hat{\beta}) = (\pm 1, 0)\).

It only forces \(|\alpha + \beta^\top x_i| \approx 1\) rather than

\[
\#\{i : \alpha + \beta^\top x_i \approx 1\} \approx \frac{n}{2}.
\]
Vanilla CURE with Intercept

Given \(\{ \mathbf{x}_i \}_{i=1}^n \subseteq \mathbb{R}^d \), find \(\alpha \in \mathbb{R} \) and \(\beta \in \mathbb{R}^d \) s.t.

\[
\frac{1}{n} \sum_{i=1}^{n} \delta_{\alpha + \beta^\top \mathbf{x}_i} \approx \frac{1}{2} \delta_{-1} + \frac{1}{2} \delta_{1}.
\]

CURE:

\[
\min_{\alpha \in \mathbb{R}, \, \beta \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^{n} f(\alpha + \beta^\top \mathbf{x}_i) + \frac{1}{2} (\alpha + \beta^\top \bar{\mathbf{x}})^2 \right\}.
\]
Vanilla CURE with Intercept

Given \(\{ \mathbf{x}_i \}_{i=1}^n \subseteq \mathbb{R}^d \), find \(\alpha \in \mathbb{R} \) and \(\beta \in \mathbb{R}^d \) s.t.
\[
\frac{1}{n} \sum_{i=1}^{n} \delta_{\alpha + \beta^\top \mathbf{x}_i} \approx \frac{1}{2} \delta_{-1} + \frac{1}{2} \delta_1.
\]

\[
\text{CURE:} \quad \min_{\alpha \in \mathbb{R}, \beta \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^{n} f(\alpha + \beta^\top \mathbf{x}_i) + \frac{1}{2} (\alpha + \beta^\top \bar{\mathbf{x}})^2 \right\}.
\]

- \(\frac{1}{n} \sum_{i=1}^{n} f(\alpha + \beta^\top \mathbf{x}_i) \): \(|\alpha + \beta^\top \mathbf{x}_i| \approx 1 \);
- \((\alpha + \beta^\top \bar{\mathbf{x}})^2 \): \(\#\{i : \alpha + \beta^\top \mathbf{x}_i \approx 1\} \approx n/2 \).

Loss Function

Clip \((x^2 - 1)^2 / 4\) to improve

• concentration and robustness for statistics;
• growth condition and smoothness for optimization.
Example: Fashion-MNIST

70000 fashion products, 10 categories (Xiao et al. 2017).

- T-shirts/tops
- Pullovers

Visualization by PCA
Example: Fashion-MNIST

Goal: cluster 1000 T-shirts/tops and 1000 Pullovers.
Alg.: gradient descent, random initialization from unit sphere.

Err.: CURE 5.2%, kmeans 44.3%, spectral (vanilla) 41.9%; spectral (Gaussian kernel) 10.5%.
Also works when the classes are imbalanced.
General CURE

Given \(\{x_i\}_{i=1}^n \subseteq \mathcal{X} \), find \(f : \mathcal{X} \rightarrow \mathcal{Y} \) in \(\mathcal{F} \) s.t.

\[
\frac{1}{n} \sum_{i=1}^{n} \delta_{f(x_i)} \approx \sum_{j=1}^{K} \pi_j \delta_{y_j}.
\]
General CURE

Given \(\{x_i\}_{i=1}^n \subseteq \mathcal{X} \), find \(f : \mathcal{X} \rightarrow \mathcal{Y} \) in \(\mathcal{F} \) s.t.

\[
\frac{1}{n} \sum_{i=1}^n \delta_{f(x_i)} \approx \sum_{j=1}^K \pi_j \delta_{y_j}.
\]

CURE:

\[
\min_{f \in \mathcal{F}} D(f \# \hat{\rho}_n, \nu).
\]

- Discrepancy measure: divergence; MMD; \(W_p \);
- Fashion (10 classes), CNN + \(W_1 \): state-of-the-art;
Clustering Algorithms

- **Generative:** \((X, Y) \rightarrow (Y \mid X)\)
 - Distribution learning (EM, DBSCAN)
 - \(~\) Linear discriminant analysis

- **Discriminative:** \((Y \mid X) \rightarrow \text{CURE}\) belongs to this.
 - Criterion opt. (projection pursuit, Transductive SVM)
 - \(~\) Logistic regression
Clustering Algorithms

Drawbacks of generative approaches

- Model dependency
- Unnecessary parameters
- Computational challenges
- Strong conditions
Clustering Algorithms

Example: \(\{x_i\}_{i=1}^{n} \sim \frac{1}{2}N(\mu, I_d) + \frac{1}{2}N(-\mu, I_d) \) with \(d \gg n \)

- Parameter estimation: \(\|\mu\|_2 \gg \sqrt{d/n} \)
- Clustering: \(\|\mu\|_2 \gg (d/n)^{1/4} \)

Never ask for more than you need!
Clustering via Uncoupled REgression

- The CURE methodology
- Theoretical guarantees
Elliptical Mixture Model

Main Assumptions

\[x_i \sim \begin{cases}
(\mu_1, \Sigma), & \text{if } y_i = 1 \\
(\mu_{-1}, \Sigma), & \text{if } y_i = -1.
\end{cases} \]

- \(\mathbb{P}(y_i = 1) = \mathbb{P}(y_i = -1) = 1/2, \ x_i = \mu_{y_i} + \Sigma^{1/2} z_i; \)
- \(z_i \) spherically symmetric, leptokurtic, sub-Gaussian.

CURE:

\[
\min_{\alpha \in \mathbb{R}, \ \beta \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^{n} f(\alpha + \beta^T x_i) + \frac{1}{2} (\alpha + \beta^T \bar{x})^2 \right\}.
\]
Theoretical Guarantees

Theorem (WYD’20)

Suppose n/d is large. The perturbed gradient descent alg. (Jin et al. 2017) starting from 0 achieves stat. precision within

$$\tilde{O}\left(\frac{n}{d} \sqrt{\frac{d^2}{n}}\right)$$

iterations (hiding polylog factors).
Theoretical Guarantees

Theorem (WYD’20)

Suppose \(n/d \) is large. The **perturbed gradient descent** alg. (Jin et al. 2017) starting from \(\mathbf{0} \) achieves **stat. precision** within

\[
\tilde{O}\left(\frac{n}{d} \sqrt{\frac{d^2}{n}} \right)
\]

iterations (hiding polylog factors).

- **Efficient** clustering for **stretched** mixtures **without** warm start;
- Two terms: prices for accuracy (**stat.**) and smoothness (**opt.**);
- Angular error: \(\tilde{O}(\sqrt{d/n}) \); excess risk: \(\tilde{O}(d/n) \).
Proof Sketch: Population

Consider the centered case $x_i \sim (\pm \mu, \Sigma)$:

$$\min_{\beta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} f(\beta^\top x_i).$$

Theorem (population landscape)

Let $f(x) = (x^2 - 1)^2/4$. For the infinite-sample loss:

- Two minima $\pm \beta^*$, where $\beta^* \propto \Sigma^{-1} \mu$, locally strongly cvx;
- Local maximum 0; all saddles are strict.
Loss Function

Clip \((x^2 - 1)^2/4\) to improve

- concentration and robustness for **statistics**;
- growth condition and smoothness for **optimization**.

![Graph of the function](image)
Proof Sketch: Finite Samples

Theorem (empirical landscape)

Suppose n/d is large and let $\hat{L}(\beta) = \frac{1}{n} \sum_{i=1}^{n} f(\beta^\top x_i)$. W.h.p.,

- Approx. second-order stationary points are good:

 - $\nabla \hat{L}$ is $\tilde{O}(1)$-Lipschitz, $\nabla^2 \hat{L}$ is $\tilde{O}(1 \lor \frac{d}{\sqrt{n}})$-Lipschitz.

Nice landscape ensures efficiency and accuracy of optimization.
Proof Sketch: Finite Samples

Theorem (empirical landscape)

Suppose \(n/d \) is large and let \(\hat{L}(\beta) = \frac{1}{n} \sum_{i=1}^{n} f(\beta^\top x_i) \). W.h.p.,

- Approx. second-order stationary points are good:

 If \(\|\nabla \hat{L}(\beta)\|_2 \leq \delta, \quad \lambda_{\min}[\nabla^2 \hat{L}(\beta)] \geq -\delta \), then

 \[
 \|\beta - \beta^*\|_2 \lesssim \|\nabla \hat{L}(\beta)\|_2 + \sqrt{\frac{d}{n} \log \left(\frac{n}{d} \right)}; \\
 \]

- \(\nabla \hat{L} \) is \(\tilde{O}(1) \)-Lipschitz, \(\nabla^2 \hat{L} \) is \(\tilde{O}(1 \lor \frac{d}{\sqrt{n}}) \)-Lipschitz.

Nice landscape ensures efficiency and accuracy of optimization.
Summary

A general CURE for clustering problems.

- **Clustering** -> **classification**;
- Flexible choices of transforms, OOS-extensions;
- **Stat.** and **comp.** guarantees under mixture models.

Extensions

- High dim., significance testing, model selection;
- Representation learning, semi-supervised version.
Q & A
Thank you!