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Deep Learning is 
Notoriously Not Robust!

• Imperceivable adversarial examples are ubiquitous 
to fail neural networks 

• How can one achieve robustness?

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Adversarial and Huber’s Agnostic Contamination Model

Deep Neural Networks are Notoriously not Robust

• Imperceivable adversarial examples are ubiquitous to fail neural networks.

• How can one achieve robustness against adversarial?

Yuan Yao Breiman-Huber
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Robust Optimization

Figure 7: The choice of attack method - FGSM (red) vs. PGD (blue) matters.

Figure 8: Values of the local maxima given by the cross-entropy loss for five examples from the MNIST
and CIFAR10 evaluation datasets. For each example, PGD is started uniformly at random around the
example and iterated until the loss plateaus.The blue histogram corresponds to the loss on a naturally
trained network, while the red histogram corresponds to the adversarially trained counterpart. The
loss is significantly smaller for the adversarially trained networks, and the final loss values are very
concentrated without any outliers.

Figure 9: Natural classification (left) vs. adversarial boundaries (right) corresponding to `1 ball around
training points.

alone increases accuracy. When adversaries like PGD are added, for small capacity networks PGD fails
to learn a meaningful decision boundary and performance is sacrificed for robustness. On the other
hand, for large capacity networks a robust and accurate solution can be achieved with PGD adversary.

The PGD adversary was trained for both MNIST and CIFAR10 and it has been shown that there
is a steady decrease in the training loss of adversarial examples (Figure 11) showing an indication that
the original adversarial training optimization problem is indeed being solved during training.
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Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model

Adversarial and Huber’s Agnostic Contamination Model

Robust Optimization

• Traditional training:

min
✓

Jn(✓, z = (xi , yi )
n
i=1)

• e.g. square or cross-entropy loss as negative log-likelihood of logit

models

• Robust optimization (Madry et al. ICLR’2018):

min
✓

max
k✏ik�

Jn(✓, z = (xi + ✏i , yi )
n
i=1)

• robust to any distributions, yet computationally hard

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

Yuan Yao Breiman-Huber
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Distributionally Robust 
Optimization (DRO)

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model

Adversarial and Huber’s Agnostic Contamination Model

Distributionally Robust Optimization

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

D = {P✏ : W2(P✏, uniform distribution)  ✏}

where DRO may be reduced to regularized maximum likelihood estimates

(Shafieezadeh-Abadeh, Esfahani, Kuhn, NIPS’2015) that are convex

optimizations and tractable

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

D = {P✏ : TV (P✏, uniform distribution)  ✏}?

Yuan Yao Breiman-Huber
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Adversarial and Huber’s Agnostic Contamination Model

Distributionally Robust Optimization

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

D = {P✏ : W2(P✏, uniform distribution)  ✏}

where DRO may be reduced to regularized maximum likelihood estimates

(Shafieezadeh-Abadeh, Esfahani, Kuhn, NIPS’2015) that are convex

optimizations and tractable

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

D = {P✏ : TV (P✏, uniform distribution)  ✏}?

Yuan Yao Breiman-Huber
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Wasserstein DRO and  
Sqrt-Lasso (Jose Blanchet et al.’2016)Connection to Sqrt-Lasso

Theorem (B., Kang, Murthy (2016)) Suppose that

c
!
(x , y) ,

!
x 0, y 0

""
=

(
kx − x 0k2q if y = y 0

• if y 6= y 0
.

Then, if 1/p + 1/q = 1

max
P :Dc (P ,Pn)≤d

E 1/2
P

$%
Y − bT X

&2'
= E 1/2

Pn

(%
Y − bT X

&2)
+
p

d kbkp .

Remark 1: This is sqrt-Lasso (Belloni et al. (2011)).
Remark 2: Uses RoPA duality theorem & "judicious choice of c (·) ”

Blanchet (Columbia U. and Stanford U.) 40 / 60
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Certified Robustness of LassoOutline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model

Adversarial and Huber’s Agnostic Contamination Model

Take q = 1 and p = 1, with

c
�
(x , y),

�
x
0, y 0�� =

(
kx � x

0k21 if y = y
0

1 if y 6= y
0

Then for

P
0
n =

1
n

X

i

�x0i

with kxi � x
0
i k1  �,

Dc(P
0
n,Pn) =

Z
⇡((x , y), (x 0, y 0))c

�
(x , y),

�
x
0, y 0��  �,

for small enough � and well-separated x ’s. Sqrt-Lasso

min
�

⇢
E

1/2
Pn

⇣
Y � �T

X

⌘2
�
+

p
�k�k1

�2

=min
�

max
P:Dc (P,Pn)�

EP

✓⇣
Y � �T

X

⌘2
◆

provides a certified robust estimate in terms of Madry’s adversarial training,

using a convex Wasserstein relaxation.
Yuan Yao Breiman-Huber 7



TV-neighborhood
• Now how about the TV-uncertainty set? 

• an example from robust statistics …

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model

Adversarial and Huber’s Agnostic Contamination Model

Distributionally Robust Optimization

• Distributional Robust Optimization:

min
✓

max
✏

Ez⇠P✏2D[Jn(✓, z)]

• D is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

D = {P✏ : W2(P✏, uniform distribution)  ✏}

where DRO may be reduced to regularized maximum likelihood estimates

(Shafieezadeh-Abadeh, Esfahani, Kuhn, NIPS’2015) that are convex

optimizations and tractable

• intermediate approach with statistically contaminated distributions

• sometimes, contamination might be unstructured...

D = {P✏ : TV (P✏, uniform distribution)  ✏}?

Yuan Yao Breiman-Huber
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Huber’s Model

contamination proportion

parameter of interest

arbitrary contamination

[Huber 1964]

Chao Gao, Department of Statistics, Yale University c� July 28, 2016 1

X1, ..., Xn ⇠ (1� ✏)P✓ + ✏Q

M(✏) = inf
✓̂
sup
✓2⇥

sup
Q

E(✓,✏,Q)L(✓̂, ✓)

M(✏) ⇣ M(0) _ !(✏,⇥)

dmin = ⌦(1)

n(p� q)4

k9p3d2max
! 1

p

q

exp(�I)

I ! 1

I > log n

When di = 1, exp(�I) = exp
⇣
�n

k
(
p
p �p

q )2
⌘

1 Introduction
⇣
P

(n)
f , f 2 E↵(Q)

⌘

X
n|f ⇠ P

(n)
f

f ⇠ ⇧
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An Example
Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

how to estimate ?
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Robust Maxmum-Likelihood 
Does not work!Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Adversarial and Huber’s Agnostic Contamination Model

`(✓,Q) = negative log-likelihood =
nX

i=1

(✓ � Xi )
2

⇠ (1� ✏)EN (✓)(✓ � X )2 + ✏EQ(✓ � X )2

the sample mean

✓̂mean =
1
n

nX

i=1

Xi = argmin
✓

`(✓,Q)

min
✓

max
Q

`(✓,Q) � max
Q

min
✓

`(✓,Q) = max
Q

`(✓̂mean,Q) = 1

Yuan Yao Breiman-Huber
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Medians
Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1

1

n

nX

i=1

I{uTXi > uT ⌘}.

1. Coordinatewise median
Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1

1

n

nX

i=1

I{uTXi > uT ⌘}.

2. Tukey’s median
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Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Adversarial and Huber’s Agnostic Contamination Model

Statistical Accuracy

Coordinatewise Median Tukey’s Median

breakdown point 1/2 1/3

statistical precision
p

n

p

n

(no contamination)

statistical precision
p

n
+ p✏2

p

n
+ ✏2: minimax

(with contamination) [Chen-Gao-Ren’15]

computational complexity Polynomial NP-hard

[Amenta et al. ’00]

Yuan Yao Breiman-Huber

Comparisons

Note: R-package for Tukey median can not deal with more 
than 10 dimensions! 

[https://github.com/ChenMengjie/DepthDescent] 
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Depth and Statistical 
Properties
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Chao Gao, Department of Statistics, Yale University c� October 25, 2016 1

s

✓̂ = argmax
⌘2Rp

min
kuk=1

(
1

n

nX

i=1

I{uTXi > uT ⌘} ^
1

n

nX

i=1

I{uTXi  uT ⌘}

)

⇣ p

n
_ ✏2

⌘
polylog(p)

|✓̂median � ✓|2 = OP

✓
1

n
_ ✏2

◆

1d-solution: Median Absolute Deviation

log

✓
p

s

◆

s log
ep

s

k2

n log k

k2 + n log k

np+ ds log
ep

s

ds log
ep

s

min
k

⇢
1

k2↵
+

k2

n2
+

log k

n

�
⇣

8
><

>:

n� 2↵
↵+1 , 0 < ↵ < 1

log n

n
, ↵ � 1

{(⇠i, ⇠j)}1i,jn

n� 2↵
↵+1

Multivariate Location Depth

[Tukey, 1975]

Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1

1

n

nX

i=1

I{uTXi > uT ⌘}.
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Regression Depth

Robust Regression via Muti-task Regression Depth

Chao Gao

University of Chicago

December 19, 2016

Abstract

abstract.

Keywords.

1 Introduction

y|X ⇠ N(XT�,�2)

Xy|X ⇠ N(XXT�,�2XXT )

uTXy|X ⇠ N(uTXXT�,�2uTXXTu)

2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

3 Applications of Regression Depth

3.1 Nonparametric Regression

Consider the model y = f(x)+�z. (random uniform design and Fourier basis.) The regression

function admits the expansion f(x) =
P1

j=1 �j�j(x). We assume the true function f⇤ belongs

1

Robust Regression via Muti-task Regression Depth

Chao Gao

University of Chicago

December 19, 2016

Abstract

abstract.

Keywords.

1 Introduction

y|X ⇠ N(XT�,�2)

Xy|X ⇠ N(XXT�,�2XXT )

uTXy|X ⇠ N(uTXXT�,�2uTXXTu)

�̂ = argmax
⌘2Rp

min
u2Rp

(
1

n

nX

i=1

I{uTXi(yi �XT
i ⌘) > 0} ^ 1

n

nX

i=1

I{uTXi(yi �XT
i ⌘)  0}

)

2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

1

model

Robust Regression via Muti-task Regression Depth

Chao Gao

University of Chicago

December 19, 2016

Abstract

abstract.

Keywords.

1 Introduction

y|X ⇠ N(XT�,�2)

Xy|X ⇠ N(XXT�,�2XXT )

uTXy|X ⇠ N(uTXXT�,�2uTXXTu)

2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

3 Applications of Regression Depth

3.1 Nonparametric Regression

Consider the model y = f(x)+�z. (random uniform design and Fourier basis.) The regression

function admits the expansion f(x) =
P1

j=1 �j�j(x). We assume the true function f⇤ belongs

1

embedding

Robust Regression via Muti-task Regression Depth

Chao Gao

University of Chicago

December 19, 2016

Abstract

abstract.

Keywords.

1 Introduction

y|X ⇠ N(XT�,�2)

Xy|X ⇠ N(XXT�,�2XXT )

uTXy|X ⇠ N(uTXXT�,�2uTXXTu)

2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

3 Applications of Regression Depth

3.1 Nonparametric Regression

Consider the model y = f(x)+�z. (random uniform design and Fourier basis.) The regression

function admits the expansion f(x) =
P1

j=1 �j�j(x). We assume the true function f⇤ belongs

1

projection

[Rousseeuw & Hubert, 1999] 16



Tukey’s depth is not a special 
case of regression depth.
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Multi-task Regression Depth

Robust Regression via Muti-task Regression Depth

Chao Gao

University of Chicago

December 19, 2016

Abstract

abstract.

Keywords.

1 Introduction

y|X ⇠ N(XT�,�2)

Xy|X ⇠ N(XXT�,�2XXT )

uTXy|X ⇠ N(uTXXT�,�2uTXXTu)

�̂ = argmax
⌘2Rp

min
u2Rp

(
1

n

nX

i=1

I{uTXi(yi �XT
i ⌘) > 0} ^ 1

n

nX

i=1

I{uTXi(yi �XT
i ⌘)  0}

)

(X,Y ) 2 Rp ⇥ Rm ⇠ P

2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

1

Robust Regression via Muti-task Regression Depth

Chao Gao

University of Chicago

December 19, 2016

Abstract

abstract.

Keywords.

1 Introduction

y|X ⇠ N(XT�,�2)

Xy|X ⇠ N(XXT�,�2XXT )

uTXy|X ⇠ N(uTXXT�,�2uTXXTu)

�̂ = argmax
⌘2Rp

min
u2Rp

(
1

n

nX

i=1

I{uTXi(yi �XT
i ⌘) > 0} ^ 1

n

nX

i=1

I{uTXi(yi �XT
i ⌘)  0}

)

(X,Y ) 2 Rp ⇥ Rm ⇠ P

2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

1

Robust Regression via Muti-task Regression Depth

Chao Gao

University of Chicago

December 19, 2016

Abstract

abstract.

Keywords.

1 Introduction

y|X ⇠ N(XT�,�2)

Xy|X ⇠ N(XXT�,�2XXT )

uTXy|X ⇠ N(uTXXT�,�2uTXXTu)

�̂ = argmax
⌘2Rp

min
u2Rp

(
1

n

nX

i=1

I{uTXi(yi �XT
i ⌘) > 0} ^ 1

n

nX

i=1

I{uTXi(yi �XT
i ⌘)  0}

)

(X,Y ) 2 Rp ⇥ Rm ⇠ P

DU (B, {(Xi, Yi)}ni=1) = inf
U2U

1

n

nX

i=1

I
�⌦

UTXi, Yi �BTXi
↵
� 0

 
,

2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

1

empirical version:
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Chao Gao

University of Chicago

December 19, 2016

Abstract

abstract.

Keywords.

1 Introduction

y|X ⇠ N(XT�,�2)

Xy|X ⇠ N(XXT�,�2XXT )

uTXy|X ⇠ N(uTXXT�,�2uTXXTu)

�̂ = argmax
⌘2Rp

min
u2Rp

(
1

n

nX

i=1

I{uTXi(yi �XT
i ⌘) > 0} ^ 1

n

nX

i=1

I{uTXi(yi �XT
i ⌘)  0}

)

(X,Y ) 2 Rp ⇥ Rm ⇠ P

2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

1

population version:

[Mizera, 2002] 18



Multi-task Regression Depth
2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

3 Applications of Regression Depth

3.1 Nonparametric Regression

Consider the model y = f(x)+�z. (random uniform design and Fourier basis.) The regression

function admits the expansion f(x) =
P1

j=1 �j�j(x). We assume the true function f⇤ belongs

to the following Sobolev ball:

S↵(M) =

8
<

:f =
1X

j=1

�j�j :
1X

j=1

j2↵�2
j  M2

9
=

; .

Define the vector of infinite size Xi = {�j(xi)}j2[1] 2 R1. Then, the model becomes

y = �TX + �z. Define

Uk = {u 2 R1 : uj = 0 for all j > k} .

The regression coe�cient is estimated by

�̂ = argmax
�2Uk

DU2k(�, {(Xi, yi)}ni=1).

Proposition 3.1. For any probability measure P and its associated empirical measure Pn,

we have for any � > 0,

sup
�2Uk

|DU2k(�,Pn)�DU2k(�,P)|  C

r
k

n
+

r
log(1/�)

2n
,

with probability at least 1� 2�, where C > 0 is some absolute constant.

Theorem 3.1. Consider the estimator f̂ with k = dn
1

2↵+1 e. Assume that ✏ < 1/4 and n� 2↵
2↵+1

su�ciently small. Then, we have

kf̂ � fk2  C�2
⇣
n� 2↵

2↵+1 _ ✏2
⌘
,

with P(✏,f,Q)-probability at least 1 � exp
⇣
�C 0(n

1
2↵+1 + n✏2)

⌘
uniformly over all Q and f 2

S↵(M), where C,C 0 are some absolute constants.

2
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Chao Gao

University of Chicago

December 19, 2016

Abstract

abstract.

Keywords.

1 Introduction

y|X ⇠ N(XT�,�2)

Xy|X ⇠ N(XXT�,�2XXT )

uTXy|X ⇠ N(uTXXT�,�2uTXXTu)

�̂ = argmax
⌘2Rp

min
u2Rp

(
1

n

nX

i=1

I{uTXi(yi �XT
i ⌘) > 0} ^ 1

n

nX

i=1

I{uTXi(yi �XT
i ⌘)  0}

)

(X,Y ) 2 Rp ⇥ Rm ⇠ P

DU (B, {(Xi, Yi)}ni=1) = inf
U2U

1

n

nX

i=1

I
�⌦

UTXi, Yi �BTXi
↵
� 0

 
,

p = 1, X = 1 2 R,

m = 1,

1
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Keywords.

1 Introduction

y|X ⇠ N(XT�,�2)

Xy|X ⇠ N(XXT�,�2XXT )

uTXy|X ⇠ N(uTXXT�,�2uTXXTu)

�̂ = argmax
⌘2Rp

min
u2Rp

(
1

n

nX

i=1

I{uTXi(yi �XT
i ⌘) > 0} ^ 1

n

nX

i=1

I{uTXi(yi �XT
i ⌘)  0}

)

(X,Y ) 2 Rp ⇥ Rm ⇠ P

DU (B, {(Xi, Yi)}ni=1) = inf
U2U

1

n

nX

i=1

I
�⌦

UTXi, Yi �BTXi
↵
� 0

 
,

p = 1, X = 1 2 R,

DU (b,P) = inf
u2U

P
�
uT (Y � b) � 0

 

m = 1,

DU (�,P) = inf
U2U

P
�
uTX(y � �TX) � 0

 

1
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Multi-task Regression Depth
Estimation Error. For any          , 

with probability at least            .

Proposition 3.3. For any probability measure P and its associated empirical measure Pn,

we have for any � > 0,

sup
B2Ar

|DA2r(B,Pn)�DA2r(B,P)|  C

r
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n
+

r
log(1/�)

2n
,

with probability at least 1� 2�, where C > 0 is some absolute constant.
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 = inf
rank(A)=2r

k⌃1/2vec(A)k
kAkF
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��
uniformly over all Q and

B 2 Ar, where C,C 0 are some absolute constants.

4 Applications of Multi-task Regression Depth

4.1 Multiple Linear Regression

Consider the model Y = BTX + �Z, where B 2 Rp⇥m. The estimator is defined as
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Contamination Error.

Chao Gao, Department of Statistics, Yale University c� August 11, 2018 1

1
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p

n
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n
+ ✏

2
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Multi-task Regression DepthDU (�,P) = inf
U2U

P
�
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2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
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UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

3 Applications of Regression Depth

3.1 Nonparametric Regression
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Theorem [G17]. For some 

with high probability uniformly over        .

Chao Gao, Department of Statistics, Yale University c� October 22, 2016 8

X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

Q: What would Harry do?

A: Harry would start with p = 1.

Corollary. Define � through the equation

�(
p
� ) = 3/4,

where � is the CDF of N(0, 1). Then for any U ⇢ Sp�1, we have DU (�⌃, P⌃) =
1

2
.

DU

⇣
�⌃, N(0,⌃)

⌘
=

1

2

U = Sp�1 = {u 2 Rp : kuk = 1}.
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)
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When ✏ = 0, the likelihood ratio test
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dP1
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When ✏ > 0, the test is not robust to outliers.
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4.2 Linear Regression with Group Sparsity

Consider the model Y = BTX + �Z. The matrix B is in the following space

⌅s =

8
<

:B 2 Rp⇥m :
pX

j=1

I{Bj⇤ 6= 0}  s

9
=

; .

Define the estimator by
bB = argmax

B2⌅s

D⌅2s(B, {(Xi, Yi)}ni=1).

Proposition 4.2. For any probability measure P and its associated empirical measure Pn,

we have for any � > 0,

sup
B2⌅s

|D⌅2s(B,Pn)�D⌅2s(B,P)|  C

s
ms+ s log

� ep
s

�

n
+

r
log(1/�)

2n
,

with probability at least 1� 2�, where C > 0 is some absolute constant.

Define

 = inf
|supp(v)|=2s

k⌃1/2vk
kvk .

Theorem 4.2. Assume that ✏ < 1/4 and
ms+s log( ep

s )
n is su�ciently small. Then, we have

Tr(( bB �B)T⌃( bB �B))  C�2

 
ms+ s log

� ep
s

�

n
_ ✏2

!
,

6

DU (�,P) = inf
U2U

P
�
uTX(y � �TX) � 0

 

(X,Y ) ⇠ PB : X ⇠ N(0,⌃), Y |X ⇠ N(BTX,�2Im)

(X1, Y1), ..., (Xn, Yn) ⇠ (1� ✏)PB + ✏Q

B,Q

2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

3 Applications of Regression Depth

3.1 Nonparametric Regression

Consider the model y = f(x)+�z. (random uniform design and Fourier basis.) The regression

function admits the expansion f(x) =
P1

j=1 �j�j(x). We assume the true function f⇤ belongs

to the following Sobolev ball:

S↵(M) =

8
<

:f =
1X

j=1

�j�j :
1X

j=1

j2↵�2
j  M2

9
=

; .

Define the vector of infinite size Xi = {�j(xi)}j2[1] 2 R1. Then, the model becomes

y = �TX + �z. Define

Uk = {u 2 R1 : uj = 0 for all j > k} .

The regression coe�cient is estimated by

�̂ = argmax
�2Uk

DU2k(�, {(Xi, yi)}ni=1).

Proposition 3.1. For any probability measure P and its associated empirical measure Pn,

we have for any � > 0,

sup
�2Uk

|DU2k(�,Pn)�DU2k(�,P)|  C

r
k

n
+

r
log(1/�)

2n
,

with probability at least 1� 2�, where C > 0 is some absolute constant.

2

 21



Covariance Matrix

Chao Gao, Department of Statistics, Yale University c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1

1

n

nX

i=1

I{uTXi > uT ⌘}.

1

2

1

3

p

n
_ ✏2 p

✓
1

n
_ ✏2

◆

Theorem 1. Write P(✏,✓,Q) = (1� ✏)N(✓, Ip) + ✏Q. There are constants C, c > 0 such that

inf

✓̂
sup

✓,Q
P(✏,✓,Q)

⇢���✓̂ � ✓
���
2
� C

⇣ p

n
_ ✏2

⌘�
� c,

for any ✏ 2 [0, 1]. For the coordinate median ✓̂, there are constants C, c > 0 such that

sup

✓,Q
P(✏,✓,Q)

⇢���✓̂ � ✓
���
2
� Cp

✓
1

n
_ ✏2

◆�
� c,

for any ✏ 2 [0, 1].

X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

how to estimate ?
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Covariance Matrix

Given i.i.d. observations {Xi}ni=1 from P, the matrix depth of � with respect to {Xi}ni=1

is defined as

DU (�, {Xi}ni=1) = min
u2U

min

(
1

n

nX

i=1

I{|uTXi|2  uT�u}, 1
n

nX

i=1

I{|uTXi|2 � uT�u}
)
. (4)

A general estimator for �⌃ is given by

�̂ = argmax
�2F

DU (�, {Xi}ni=1), (5)

where F is some matrix class to be specified later. The estimator of ⌃ is

⌃̂ = �̂/�, (6)

where � is defined through (3).

3.2 General Covariance Matrix

Consider the following covariance matrix class with bounded spectra

F(M) =
�
⌃ = ⌃T 2 Rp⇥p : ⌃ ⌫ 0, smax(⌃)  M

 
,

where ⌃ ⌫ 0 means ⌃ is positive semi-definite and M > 0 is some absolute constant that

does not scale with p or n.

To define an estimator, we need to specify a subset U ⇢ Sp�1 in the depth function. Let

Up be a (1/4)-net of the unit sphere Sp�1 in the Euclidean space in Rp. This means for any

u 2 Sp�1, there exists a u0 2 Up such that ku� u0k  1/4. According to [45], such Up can be

picked with cardinality bounded by 9p. Define

�̂ = argmax
�⌫0

DUp(�, {Xi}ni=1). (7)

When (7) has multiple maxima, �̂ is understood as any positive semi-definite matrix that

attains the deepest level. A final estimator of ⌃ is defined by ⌃̂ = �̂/� as in (6). The

statistical property of ⌃̂ is stated in the following theorem.

Theorem 3.1. Assume that ✏ < 1/4 and p/n < c for some su�ciently small constant c.

Then, we have

k⌃̂� ⌃k2op  C
⇣ p
n
_ ✏2

⌘
,

with P(✏,⌃,Q)-probability at least 1� exp
�
�C 0(p+ n✏2)

�
uniformly over all Q and ⌃ 2 F(M),

where C,C 0 > 0 are some absolute constants.

Remark 3.1. Due to the computational consideration, we chose a (1/4)-net Up of Sp�1
and

defined our estimator via the matrix depth relative to Up. In fact, it can be shown that the

result in Theorem 3.1 also holds if we define �̂ = argmax�⌫0D(�, {Xi}ni=1) relative to Sp�1
.

7

Chao Gao, Department of Statistics, Yale University c� April 22, 2018 1

�̂ = argmax
�⌫0

D(�, {Xi}ni=1)

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏G

X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏G

|f̂(0)� f(0)|2

���⌃̂� ⌃
���
2

op
.P

⇣ p

n
_ ✏2

⌘

k✓̂ � ✓k2 .P

⇣ p

n
_ ✏2

⌘

max
✓2Rp

min
kuk=1

(
1

n

nX

i=1

I{uT log p✓(Xi)  0}� P✓

�
uT log p✓(X)  0

�
)

max
✓2Rp

min
kuk=1
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Theorem [CGR15]. For some 

with high probability uniformly over         .
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X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

Q: What would Harry do?

A: Harry would start with p = 1.

Corollary. Define � through the equation

�(
p
� ) = 3/4,

where � is the CDF of N(0, 1). Then for any U ⇢ Sp�1, we have DU (�⌃, P⌃) =
1

2
.

DU

⇣
�⌃, N(0,⌃)

⌘
=

1

2

U = Sp�1 = {u 2 Rp : kuk = 1}.

Us =

(
u 2 Sp�1 :

)

2s

C > 0,

When ✏ = 0, the likelihood ratio test

� = I
(

nY
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dP2

dP1
(Xi) > C

)

is optimal.

When ✏ > 0, the test is not robust to outliers.

Consider

H0 : P 2 {P : H(P, P1)  �} , H1 : P 2 {P : H(P, P2)  �}.

There exists a testing function � such that

sup
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P�+ sup
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P (1� �)  2 exp

✓
�
1

2
n (H(P1, P2)� 2�)2

◆
.

However, by convexity of H2(·, ·),

{(1� ✏)P1 + ✏Q : Q} ⇢

n
P : H(P, P1) 

p

2✏
o
.

Chao Gao, Department of Statistics, Yale University c� August 11, 2018 1

k⌃̂� ⌃k2op  C
⇣ p
n
_ ✏2

⌘

E =
1

k
p+

k � 1

k
q

T =
1

k2
p3 +

3(k � 1)

k2
pq2 +

(k � 1)(k � 2)

k2
q3

E = (Ed)2
✓
1

k
p+

k � 1

k
q

◆
,

V = (Ed)2
✓
1

k
p+

k � 1

k
q

◆2

,

T =

✓
1

k2
p3 +

3(k � 1)

k2
pq2 +

(k � 1)(k � 2)

k2
q3
◆
.

Ed2 = 1

Their empirical counterparts are defined as
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 N(0, 1)

T � E3
=

(k � 1)(p� q)3

k3

T �
✓
V

E

◆3

=
(k � 1)(p� q)3

k3

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

✓
n

log n

◆� 2�
2�+1

_ ✏
2�
�+1
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X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Computational Challenges

Lai, Rao, Vempala 
Diakonikolas, Kamath, Kane, Li, Moitra, Stewart 

Balakrishnan, Du, Singh 
Dalalyan, Carpentier, Collier, Verzelen

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Adversarial and Huber’s Agnostic Contamination Model

Computational Complexity

• Polynomial algorithms are proposed [Diakonikolas et al.’16, Lai et al. 16]

of minimax optimal statistical precision

• needs information on second or higher order of moments

• some priori knowledge about ✏

• Tukey’s median has a wider adaptivity,

• does not need to know ✏

• does not need to know second (or higher) order of moments

• optimal for any elliptical distribution even when moments are not defined

• find saddle points of mini-max optimization

• any computational facility for it?

Generative Adversarial Networks (GANs)!

Yuan Yao Breiman-Huber
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Advantages of Tukey Median

• A well-defined objective function

• Adaptive to    and 

• Optimal for any elliptical distribution
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A practically good algorithm?
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`2 loss is
p p

n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
n _ ✏

�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations

11

Generative Adversarial Networks 
[Goodfellow et al. 2014]

Note: R-package for Tukey median can not deal with more 
than 10 dimensions [https://github.com/ChenMengjie/

DepthDescent] 
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5.5 ADAPTATION TO UNKNOWN COVARIANCE

The robust mean estimator constructed through JS-GAN can be easily made adaptive to unknown covariance
structure, which is a special case of (16). We define

(b✓, b⌃) = argmin
⌘2Rp,�2Ep

max
D2D

"
1

n

nX

i=1

logD(Xi) + EN(⌘,�) log(1�D(Xi))

#
+ log 4,

The estimator b✓, as a result, is rate-optimal even when the true covariance matrix is not necessarily identity and
is unknown (see Theorem 4.1). Below, we demonstrate some numerical evidence of the optimality of b✓ as well
as the error of b⌃ in Table 3.

Data generating process Network structure kb✓ � 0pk kb⌃� ⌃1kop

0.8N(0p,⌃1) + 0.2N(0.5 ⇤ 1p,⌃2) 100-20-1 0.1680 (0.1540) 1.9716 (0.7405)
0.8N(0p,⌃1) + 0.2N(0.5 ⇤ 1p,⌃2) 100-20-20-1 0.1824 (0.3034) 1.4495 (0.6028)

0.8N(0p,⌃1) + 0.2N(1p,⌃2) 100-20-1 0.0817 (0.0213) 1.2753 (0.4523)
0.8N(0p,⌃1) + 0.2N(6 ⇤ 1p,⌃2) 100-20-1 0.1069 (0.0357) 1.1668 (0.1839)

0.8N(0p,⌃1) + 0.2Cauchy(0.5 ⇤ 1p) 100-20-1 0.0797 (0.0257) 4.0653 (0.1569)

Table 3: Numerical experiments for robust mean estimation with unknown covariance trained with 50, 000
samples. The covariance matrices ⌃1 and ⌃2 are generated by the same way described in Appendix B.2.

5.6 ADAPTATION TO ELLIPTICAL DISTRIBUTIONS

We consider the estimation of the location parameter ✓ in elliptical distribution EC(✓,⌃, h) by the JS-GAN
defined in (16). In particular, we study the case with i.i.d. observations X1, ..., Xn ⇠ (1�✏)Cauchy(✓, Ip)+✏Q.
The density function of Cauchy(✓,⌃) is given by p(x; ✓,⌃) / |⌃|�1/2

�
1 + (x� ✓)T⌃�1(x� ✓)

��(1+p)/2.

Compared with Algorithm (1), the difference lies in the choice of the generator. We consider the generator
G1(⇠, U) = g!(⇠)U + ✓, where g!(⇠) is a non-negative neural network parametrized by ! and some random
variable ⇠. The random vector U is sampled from the uniform distribution on {u 2 Rp : kuk = 1}. If the
scatter matrix is unknown, we will use the generator G2(⇠, U) = g!(⇠)AU+✓, with AAT modeling the scatter
matrix.

Table 4 shows the comparison with other methods. Our method still works well under Cauchy distribution,
while the performance of other methods that rely on moment conditions deteriorates in this setting.

Table 4: Comparison of various methods of robust location estimation under Cauchy distributions. Samples
are drawn from (1 � ✏)Cauchy(0p, Ip) + ✏Q with ✏ = 0.2, p = 50 and various choices of Q. Sample size:
50,000. Discriminator net structure: 50-50-25-1. Generator g!(⇠) structure: 48-48-32-24-12-1 with absolute
value activation function in the output layer.

Contamination Q JS-GAN (G1) JS-GAN (G2) Dimension Halving Iterative Filtering
Cauchy(1.5 ⇤ 1p, Ip) 0.0664 (0.0065) 0.0743 (0.0103) 0.3529 (0.0543) 0.1244 (0.0114)
Cauchy(5.0 ⇤ 1p, Ip) 0.0480 (0.0058) 0.0540 (0.0064) 0.4855 (0.0616) 0.1687 (0.0310)

Cauchy(1.5 ⇤ 1p, 5 ⇤ Ip) 0.0754 (0.0135) 0.0742 (0.0111) 0.3726 (0.0530) 0.1220 (0.0112)
Normal(1.5 ⇤ 1p, 5 ⇤ Ip) 0.0702 (0.0064) 0.0713 (0.0088) 0.3915 (0.0232) 0.1048 (0.0288))
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Experimental Results

Experiments: Comparisons

Q n p ✏ TV-GAN JS-GAN Dimension Halving Iterative Filtering

N(0.5 ⇤ 1p, Ip) 50,000 100 .2 0.0953 (0.0064) 0.1144 (0.0154) 0.3247 (0.0058) 0.1472 (0.0071)

N(0.5 ⇤ 1p, Ip) 5,000 100 .2 0.1941 (0.0173) 0.2182 (0.0527) 0.3568 (0.0197) 0.2285 (0.0103)

N(0.5 ⇤ 1p, Ip) 50,000 200 .2 0.1108 (0.0093) 0.1573 (0.0815) 0.3251 (0.0078) 0.1525 (0.0045)

N(0.5 ⇤ 1p, Ip) 50,000 100 .05 0.0913 (0.0527) 0.1390 (0.0050) 0.0814 (0.0056) 0.0530 (0.0052)

N(5 ⇤ 1p, Ip) 50,000 100 .2 2.7721 (0.1285) 0.0534 (0.0041) 0.3229 (0.0087) 0.1471 (0.0059)

N(0.5 ⇤ 1p,⌃) 50,000 100 .2 0.1189 (0.0195) 0.1148 (0.0234) 0.3241 (0.0088) 0.1426 (0.0113)

Cauchy(0.5 ⇤ 1p) 50,000 100 .2 0.0738 (0.0053) 0.0525 (0.0029) 0.1045 (0.0071) 0.0633 (0.0042)

Table: Comparison of various robust mean estimation methods. The smallest error of

each case is highlighted in bold.

• Dimension Halving: [Lai et al.’16]

https://github.com/kal2000/AgnosticMeanAndCovarianceCode.

• Iterative Filtering: [Diakonikolas et al.’17]

https://github.com/hoonose/robust-filter.

Yuan Yao Breiman-Huber
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Generative Adversarial Networks for Robust Estimation

f -GAN

Given a strictly convex function f that satisfies f (1) = 0, the f -divergence

between two probability distributions P and Q is defined by

Df (PkQ) =

Z
f

✓
p

q

◆
dQ. (8)

Let f ⇤ be the convex conjugate of f . A variational lower bound of (8) is

Df (PkQ) � sup
T2T

[EPT (X )� EQ f
⇤(T (X ))] . (9)

where equality holds whenever the class T contains the function f
0 (p/q).

[Nowozin-Cseke-Tomioka’16] f -GAN minimizes the variational lower bound (9)

bP = argmin
Q2Q

sup
T2T

"
1
n

nX

i=1

T (Xi )� EQ f
⇤(T (X ))

#
. (10)

with i.i.d. observations X1, ...,Xn ⇠ P.

Yuan Yao Breiman-Huber
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From f-GAN to Tukey’s 
Median: f-learning

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Generative Adversarial Networks for Robust Estimation

From f -GAN to Tukey’s Median

Consider the special case

T =

⇢
f
0
✓
eq
q

◆
: eq 2 eQ

�
. (11)

which is tight if P 2 eQ. The sample version leads to the following f -learning

bP = argmin
Q2Q

sup
eQ2 eQ

"
1
n

nX

i=1

f
0
✓
eq(Xi )
q(Xi )

◆
� EQ f

⇤
✓
f
0
✓
eq(X )
q(X )

◆◆#
. (12)

• If f (x) = x log x , Q = eQ, (12) ) Maximum Likelihood Estimate

• If f (x) = (x � 1)+, then Df (PkQ) = 1
2

R
|p � q| is the TV-distance,

f
⇤(t) = tI{0  t  1}, f -GAN ) TV-GAN

• Q = {N(⌘, Ip) : ⌘ 2 Rp} and eQ = {N(e⌘, Ip) : ke⌘ � ⌘k  r}, (12) r!0)
Tukey’s Median

Yuan Yao Breiman-Huber
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2 f-GAN

An f-divergence is defined as

Df (PkQ) =

Z
f

✓
p

q

◆
dQ.

Since

f(u) = sup
t
(tu� f⇤

(t)),

it is not hard to derive the following variational form of f-divergence,

Df (PkQ) = sup

T
[EX⇠PT (X)� EX⇠Qf

⇤
(T (X))] .

The optimal T is achieved by

T (x) = f 0
✓
p(x)

q(x)

◆
.

GAN is a special case of f-GAN by taking

f(x) = x log x� (x+ 1) log(x+ 1).

Its conjugate function is

f⇤
(t) = � log(1� et).

Therefore, with this particular f , we get

Df (PkQ) = sup

T

h
EX⇠PT (X) + EX⇠Q log(1� eT (X)

)

i
.

With the transformation T (x) = logD(x), we recover the original definition of GAN.

Similar to GAN, we can consider a symmetric class of T . This leads to the estimation

procedure

min
Q2Q

max
Q̃2Q

(
1

n

nX

i=1

f 0
✓
q̃(Xi)

q(Xi)

◆
�
Z

f⇤
✓
f 0

✓
q̃

q

◆◆
dQ

)
,

which is the general density estimation procedure of f-GAN.

A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are

f 0
(x) = 1 + log x,

and

f⇤
(t) = exp(t� 1).

Then, the procedure becomes

min
Q2Q

max
Q̃2Q

1

n

nX

i=1

log
q̃(Xi)

q(Xi)
= 2 min

Q2Q

1

n

nX

i=1

log
1

q(Xi)
,

which is the MLE.

Liu & Gao, Department of Statistics, University of Chicago c� April 3, 2018 2

2 f-GAN

An f-divergence is defined as

Df (PkQ) =

Z
f

✓
p

q

◆
dQ.

Since

f(u) = sup
t
(tu� f⇤

(t)),

it is not hard to derive the following variational form of f-divergence,

Df (PkQ) = sup

T
[EX⇠PT (X)� EX⇠Qf

⇤
(T (X))] .

The optimal T is achieved by

T (x) = f 0
✓
p(x)

q(x)

◆
.

GAN is a special case of f-GAN by taking

f(x) = x log x� (x+ 1) log(x+ 1).

Its conjugate function is

f⇤
(t) = � log(1� et).

Therefore, with this particular f , we get

Df (PkQ) = sup

T

h
EX⇠PT (X) + EX⇠Q log(1� eT (X)

)

i
.

With the transformation T (x) = logD(x), we recover the original definition of GAN.

Similar to GAN, we can consider a symmetric class of T . This leads to the estimation

procedure

min
Q2Q

max
Q̃2Q

(
1

n

nX

i=1

f 0
✓
q̃(Xi)

q(Xi)

◆
�
Z

f⇤
✓
f 0

✓
q̃

q

◆◆
dQ

)
,

which is the general density estimation procedure of f-GAN.

A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are

f 0
(x) = 1 + log x,

and

f⇤
(t) = exp(t� 1).

Then, the procedure becomes

min
Q2Q

max
Q̃2Q

1

n

nX

i=1

log
q̃(Xi)

q(Xi)
= 2 min

Q2Q

1

n

nX

i=1

log
1

q(Xi)
,

which is the MLE.

f-divergence
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A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are
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(x) = 1 + log x,

and
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Then, the procedure becomes
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2 f-GAN

An f-divergence is defined as

Df (PkQ) =

Z
f

✓
p

q

◆
dQ.

Since

f(u) = sup
t
(tu� f⇤

(t)),

it is not hard to derive the following variational form of f-divergence,

Df (PkQ) = sup

T
[EX⇠PT (X)� EX⇠Qf

⇤
(T (X))] .

The optimal T is achieved by

T (x) = f 0
✓
p(x)

q(x)

◆
.

GAN is a special case of f-GAN by taking

f(x) = x log x� (x+ 1) log(x+ 1).

Its conjugate function is

f⇤
(t) = � log(1� et).

Therefore, with this particular f , we get

Df (PkQ) = sup

T

h
EX⇠PT (X) + EX⇠Q log(1� eT (X)

)

i
.

With the transformation T (x) = logD(x), we recover the original definition of GAN.

Similar to GAN, we can consider a symmetric class of T . This leads to the estimation
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which is the general density estimation procedure of f-GAN.

A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are

f 0
(x) = 1 + log x,

and

f⇤
(t) = exp(t� 1).

Then, the procedure becomes
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which is the MLE.
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3 Total Variation

Choose
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4 Hellinger Divergence

When

f(x) = 2� 2
p
x ,

we get the Hellinger divergence
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This leads to the estimation procedure
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5 A Related Divergence Function
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TV-GAN

4

where the last inequality sets � = 1, and we use the fact that lim
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This means that TV-GAN with a logistic regression (or a zero hidden-layer neural net)

classifier gives a sharper variational lower bound than TV-Learning. Moreover, we know

that when P = P✓, TV-Learning is a sharp variational lower bound, which immediately

implies that the logistic regression TV-GAN is also sharp.
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X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

Q: What would Harry do?
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TV-GAN
rugged landscape!

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Generative Adversarial Networks for Robust Estimation

The Landscape of TV-GAN can be Bad!

Figure: Heatmaps of the landscape of F (⌘, w) = supb [EP sigmoid(wX + b) � EN(⌘,1)sigmoid(wX + b)], where b is maximized

out for visualization. Left: samples are drawn from P = (1 � ✏)N(1, 1) + ✏N(1.5, 1) with ✏ = 0.2. Right: samples are drawn from

P = (1 � ✏)N(1, 1) + ✏N(10, 1) with ✏ = 0.2. Left: the landscape is good in the sense that no matter whether we start from the

left-top area or the right-bottom area of the heatmap, gradient ascent on ⌘ does not consistently increase or decrease the value of ⌘.

This is because the signal becomes weak when it is close to the saddle point around ⌘ = 1. Right: it is clear that F̃ (w) = F (⌘, w) has

two local maxima for a given ⌘, achieved at w = +1 and w = �1. In fact, the global maximum for F̃ (w) has a phase transition

from w = +1 to w = �1 as ⌘ grows. For example, the maximum is achieved at w = +1 when ⌘ = 1 (blue solid) and is achieved

at w = �1 when ⌘ = 5 (red solid). Unfortunately, even if we initialize with ⌘0 = 1 and w0 > 0, gradient ascents on ⌘ will only

increase the value of ⌘ (green dash), and thus as long as the discriminator cannot reach the global maximizer, w will be stuck in the

positive half space {w : w > 0} and further increase the value of ⌘.

Yuan Yao Breiman-Huber
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The Original JS-GAN
Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Generative Adversarial Networks for Robust Estimation

The original Jenson-Shannon GAN

[Goodfellow et al. 2014] For f (x) = x log x � (x + 1) log x+1
2 ,
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1
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#
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What are D, the class of discriminators?

• Single layer (no hidden layer):

D =
n
D(x) = sigmoid(wT

x + b) : w 2 Rp, b 2 R
o

• One-hidden or Multiple layer:

D =
n
D(x) = sigmoid(wT

g(X ))
o

Yuan Yao Breiman-Huber
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JS-GAN

numerical
experiment
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`2 loss is
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n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
n _ ✏

�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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JS-GAN
A classifier with hidden layers leads to robustness. Why?

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

JSg(P,Q) = max
w2Rd


P log

1

1 + e�wT g(X)
+Q log

1

1 + ewT g(X)

�
+ log 4.

b✓ = argmin

✓2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ ✓

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2  C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

Proposition.

Chao Gao, Department of Statistics, Yale University c� August 12, 2018 1

JSg(P,Q) = max
w2Rd


P log

1

1 + e�wT g(X)
+Q log

1

1 + ewT g(X)

�
+ log 4.

JSg(P,Q) = 0 () Pg(X) = Qg(X)

b✓ = argmin

✓2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ ✓

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2  C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃

✏

 46



JS-GAN

Theorem [GLYZ18]. For a neural network 
class     with at least one hidden layer and 
appropriate regularization, we have 

with high probability uniformly over             .
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JS-GAN: Adaptation to 
Unknown Covariance

unknown
covariance?
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Generalization
Strong Contamination model:

For any unit vector u, the distribution of ⇠uTU does not depend on u because of the

symmetry of U . Define H(·) to be the distribution function of ⇠uTU . Since there is a one-to-

one relation between H(·) and the distribution of ⇠, the distribution of X = ✓+ ⇠AU is fully

determined by the triplet (✓,⌃, H), and therefore we write the distribution as E(✓,⌃, H).

Note that ⌃ and H are not identifiable, this is because ⇠AU = (a⇠)(a�1A)U for any

a > 0. To overcome this issue, we restrict H to the following class

H =

⇢
H is a distribution function : H(t) +H(�t) ⌘ 1,

Z
R(|t|)dH(t) =

Z
R(|t|)d�(t)

�
,

where �(·) is the distribution function of N(0, 1), and

R(|t|) =

(
|t|, |t|  1,

1, |t| > 1,
(31)

which is recognized as the clipped `1 function. The restriction H 2 H is without loss of

generality. This is because the function F (a) = ER(|a⇠uTU |) is increasing for all a > 0, so

that the equation F (a) =
R
R(|t|)d�(t) must have a solution. Here, we do not use the simpler

absolute function, because the first moment of ⇠uTU may not exist.

Definition 6.2. The elliptical distribution X = ✓ + ⇠AU has a canonical parametrization

(✓,⌃, H) with ⌃ = AAT and H 2 H. We use the notation E(✓,⌃, H) to denote the elliptical

distribution in its canonical form.

With the canonical representation, the parameters ✓,⌃, H are all identifiable. The scat-

ter matrix ⌃ is proportion to the covariance matrix whenever the covariance matrix exists.

Moreover, for multivariate Gaussian N(✓,⌃), its canonical parametrization is (✓,⌃,�), and

the scatter matrix and the covariance matrix are identical.

The goal of this section is to estimate both the location ✓ and the scatter ⌃ with obser-

vations

X1, ..., Xn
iid
⇠ P for some P satisfying TV(P,E(✓,⌃, H))  ✏. (32)

To achieve this goal, we further require that H belongs to the following class

H(M 0) =

(
H 2 H :

Z 1/3

1/4
dH(t) �

1

M 0

)
.

The number M 0 > 0 is assumed to be some large constant. It is easy to see that H =

[M 0>0H(M 0). The regular condition H 2 H(M 0) will be easily satisfied as long as there is a

constant probability mass of H contained in the interval [1/4, 1/3]. This condition prevents

some of the probability mass from escaping to infinity.

Define the estimator

(b✓, b⌃, bH) = argmin
⌘2Rp,�2Ep(M),H2H(M 0)

max
T2T

"
1

n

nX

i=1

S(T (Xi), 1) + EX⇠E(⌘,�,G)S(T (X), 0)

#
. (33)

22

For any unit vector u, the distribution of ⇠uTU does not depend on u because of the

symmetry of U . Define H(·) to be the distribution function of ⇠uTU . Since there is a one-to-

one relation between H(·) and the distribution of ⇠, the distribution of X = ✓+ ⇠AU is fully

determined by the triplet (✓,⌃, H), and therefore we write the distribution as E(✓,⌃, H).

Note that ⌃ and H are not identifiable, this is because ⇠AU = (a⇠)(a�1A)U for any

a > 0. To overcome this issue, we restrict H to the following class

H =

⇢
H is a distribution function : H(t) +H(�t) ⌘ 1,

Z
R(|t|)dH(t) =

Z
R(|t|)d�(t)

�
,

where �(·) is the distribution function of N(0, 1), and

R(|t|) =

(
|t|, |t|  1,

1, |t| > 1,
(31)

which is recognized as the clipped `1 function. The restriction H 2 H is without loss of

generality. This is because the function F (a) = ER(|a⇠uTU |) is increasing for all a > 0, so

that the equation F (a) =
R
R(|t|)d�(t) must have a solution. Here, we do not use the simpler

absolute function, because the first moment of ⇠uTU may not exist.

Definition 6.2. The elliptical distribution X = ✓ + ⇠AU has a canonical parametrization

(✓,⌃, H) with ⌃ = AAT and H 2 H. We use the notation E(✓,⌃, H) to denote the elliptical

distribution in its canonical form.

With the canonical representation, the parameters ✓,⌃, H are all identifiable. The scat-

ter matrix ⌃ is proportion to the covariance matrix whenever the covariance matrix exists.

Moreover, for multivariate Gaussian N(✓,⌃), its canonical parametrization is (✓,⌃,�), and

the scatter matrix and the covariance matrix are identical.

The goal of this section is to estimate both the location ✓ and the scatter ⌃ with obser-

vations

X1, ..., Xn
iid
⇠ P for some P satisfying TV(P,E(✓,⌃, H))  ✏. (32)

To achieve this goal, we further require that H belongs to the following class

H(M 0) =

(
H 2 H :

Z 1/3

1/4
dH(t) �

1

M 0

)
.

The number M 0 > 0 is assumed to be some large constant. It is easy to see that H =

[M 0>0H(M 0). The regular condition H 2 H(M 0) will be easily satisfied as long as there is a

constant probability mass of H contained in the interval [1/4, 1/3]. This condition prevents

some of the probability mass from escaping to infinity.

Define the estimator

(b✓, b⌃, bH) = argmin
⌘2Rp,�2Ep(M),H2H(M 0)

max
T2T

"
1

n

nX

i=1

S(T (Xi), 1) + EX⇠E(⌘,�,G)S(T (X), 0)

#
. (33)

22
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Scoring Rules

I We are going to replace the log likelihoods in JS-GAN by some
scoring functions

log t 7! S(t, 1) : [0, 1] ! R

log(1� t) 7! S(t, 0) : [0, 1] ! R

that map the probability (likelihood) to some real numbers.
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Fisher Consistency:  
Proper Scoring Rule
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Fisher Consistency: Proper Scoring Rule

I With a Bernoulli experiment of probability p observing 1, define the
expected score

S(t, p) = pS(t, 1) + (1� p)S(t, 0)

I Like likelihood functions, as a function of t, we hope that S(t, p) is
maximized at t = p

max
t

S(t, p) = S(p, p) =: G(p)

I Such a score is called Proper Scoring Rule.
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Savage Representation

Lemma (Savage representation)

I For a proper scoring rule S(t, p):

– G(t) = S(t, t) is convex

– S(t, 0) = G(t)� tG0(t)

– S(t, 1) = G(t) + (1� t)G0(t)

– S(t, p) = pS(t, 1) + (1� p)S(t, 0) = G(t) +G0(t)(p� t)
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Proof of Lemma

I Denote S(t, p) as a linear function of p

S(t, p) = pS(t, 1) + (1� p)S(t, 0) = a(t) + b(t)p

where a(t) = S(t, 0) and b(t) = S(t, 1)� S(t, 0).

I Fisher consistency says that

S(t, p) = a(t) + b(t)p  S(p, p) = a(p) + b(p)p =: G(p) )

Hence,
(a) S(t, p) is a supporting line of G(p), touching at p = t

(b) G(p) is thus convex

(c) b(t) 2 @G(p)|p=t =: G0(t)

(d) G(p)|p=t = a(t) + b(t)p|p=t ) a(t) = G(t)�G0(t)t.
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Gao, Yao and Zhu

such that (
S(t, 1) = G(t) + (1� t)G0(t),

S(t, 0) = G(t)� tG0(t).
(2)

Here, G0(t) is a subgradient of G at the point t. Moreover, the statement also holds for

strictly proper scoring rules when convex is replaced by strictly convex.

For any regular proper scoring rule, the convex function G(·) can be determined by

G(t) = S(t; t) = tS(t, 1) + (1� t)S(t, 0),

and the Savage representation simply says that S(t; t) is a convex function in t.

2.3 Relation to f-Divergence

Given two probability distributions P and Q, a divergence function D(P,Q) measures the

di↵erence between P and Q. It satisfies the following two properties:

1. For any P and Q, D(P,Q) � 0.

2. Whenever P = Q, D(P,Q) = 0.

Following the principle outlined in Mohamed and Lakshminarayanan (2016), we show that a

general class of divergence functions can be induced from proper scoring rules. To motivate

the derivation, we consider a classification problem by introducing a binary latent variable

y 2 {0, 1}. The conditional distribution of X given y is specified as X|(y = 1) ⇠ P and

X|(y = 0) ⇠ Q. We also assume that P(y = 1) = 1
2 so that the joint distribution (X, y) is

fully specified. The classification problem is to find a function T (X) 2 [0, 1] that forecasts

the probability of y = 1 given X. With a proper scoring rule {S(·, 1), S(·, 0)}, it is natural

to consider the following cost function for the task,

E [yS(T (X), 1) + (1� y)S(T (X), 0)]

=
1

2
EX⇠PS(T (X), 1) +

1

2
EX⇠QS(T (X), 0).

Then, one can find a good classification rule T (·) by maximizing the above objective over

T 2 T . This leads to the following definition of a divergence function,

DT (P,Q) = max
T2T


1

2
EX⇠PS(T (X), 1) +

1

2
EX⇠QS(T (X), 0)

�
�G(1/2), (3)

where G(·) is the convex function in the Savage representation of the proper scoring rule.

The definition (3) can be understood as a variational lower bound of some f -divergence.

Given a convex function f(·) that satisfies f(1) = 0, recall that the definition of the f -

divergence between P and Q is given by

Df (PkQ) =

Z
f

✓
dP

dQ

◆
dQ.

6

Generative Adversarial Nets for Robust Scatter Estimation: A Proper Scoring Rule Perspective

Proposition 1 Given any regular proper scoring rule {S(·, 1), S(·, 0)} and any class T 3�
1
2

 
, DT (P,Q) is a divergence function, and

DT (P,Q)  Df

⇣
P
���
1

2
P +

1

2
Q
⌘
, (4)

where f(t) = G(t/2) � G(1/2). Moreover, whenever T 3
dP

dP+dQ , the inequality above

becomes an equality.

Proof Suppose T 3
�
1
2

 
, then DT (P,Q) � 1

2S(1/2, 1) +
1
2S(1/2, 0) �G(1/2) = 0. When

P = Q, we have DT (P,Q)  maxt2[0,1] [G(t)�G(1/2)� (t� 1/2)G0(t)]  0 by the convex-

ity of G(·), and therefore DT (P,Q) = 0, which implies it is a divergence function. Since

{S(·, 1), S(·, 0)} is a proper scoring rule, p(x)S(T (x), 1) + q(x)S(T (x), 0) is maximized at

T (x) = p(x)
p(x)+q(x) . Thus,

DT (P,Q) 
1

2
EX⇠PS

✓
dP

dP + dQ
(X), 1

◆
+

1

2
EX⇠QS

✓
dP

dP + dQ
(X), 0

◆
�G(1/2)

=
1

2
EX⇠PG

✓
dP

dP + dQ
(X)

◆
+

1

2
EX⇠QG

✓
dP

dP + dQ
(X)

◆
�G(1/2)

= Df

⇣
P
���
1

2
P +

1

2
Q
⌘
,

and obviously the inequality above becomes an equality when T 3
dP

dP+dQ .

It is worth noting that Df

⇣
P
���1
2P + 1

2Q
⌘
is in general not symmetric with respect to

P and Q. However, when the regular proper scoring rule is symmetric in the sense that

S(t, 1) = S(1� t, 0), we have G(t) = G(1� t), or equivalently, f(t) = f(2� t), in which case

the corresponding f -divergence satisfies

Df

⇣
P
���
1

2
P +

1

2
Q
⌘
= Df

⇣
Q
���
1

2
P +

1

2
Q
⌘
,

and is symmetric.

2.4 Variational Lower Bounds and GANs

The variational form of the divergence function makes it easy to define a sample version

of (3). Replacing EX⇠P in (3) by the empirical measure, we have a divergence function

between 1
n

Pn
i=1 �Xi and Q, which is a useful objective function for statistical estimation.

Given a class of probability measures Q, the induced estimator of P is defined by

bP = argmin
Q2Q

max
T2T

"
1

n

nX

i=1

S(T (Xi), 1) + EX⇠QS(T (X), 0)

#
. (5)

We drop the term �G(1/2) in (3) because it is a constant that does not a↵ect the definition

of (5). The formula (5) has an interpretation of a minimax game between two players. The

7

Regular Proper Scoring Rule

I A scoring rule S is regular if both S(·, 0) and S(·, 1) are real-valued,
except possibly that S(0, 1) = �1 or S(1, 0) = �1.

I We can exploit the following SD relaxation:
– (0; ei � ej)(0; ei � ej)

T • Z = dij for (i, j) 2 Ex,

– (ai; ej)(ai; ej)
T • Z = cdij for (i, j) 2 Ea,

both of which are linear with respect to Z.

I The constraints with equalities of d2ij can be replaced by inequalities
such as  d

2
ij(1 + ✏) (or � d

2
ij(1� ✏)). This is a system of linear

matrix inequalities with positive semidefinite variable Z.
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Example 1: Log Score and 
JS-GAN

between 1
n

Pn
i=1 �Xi and Q, which is a useful objective function for statistical estimation.

Given a class of probability measures Q, the induced estimator of P is defined by

bP = argmin
Q2Q

max
T2T

"
1

n

nX

i=1

S(T (Xi), 1) + EX⇠QS(T (X), 0)

#
. (13)

We drop the term �G(1/2) in (11) because it is a constant that does not a↵ect the definition

of (13). The formula (13) has an interpretation of a minimax game between two players. The

goal of the first player is to find the best discriminator T that learns whether a sample is from

the empirical distribution or the model distribution Q. The second player is to find a model

distribution Q as close to the empirical distribution as possible so that the first player cannot

tell the di↵erence. In the context of deep learning, both the discriminator class T and the

generator class Q are modeled by neural networks, and (13) is recognized as the technique

of Generative Adversarial Nets proposed by [25]. The relation between GANs and proper

scoring rules is discovered by [42] in the context of learning implicit models.

3.5 Examples

1. Log Score. The log score is perhaps the most commonly used rule because of its various

intriguing properties [31]. The scoring rule with S(t, 1) = log t and S(t, 0) = log(1 �

t) is regular and strictly proper. Its Savage representation is given by the convex

function G(t) = t log t+ (1� t) log(1� t), which is interpreted as the negative Shannon

entropy of Bernoulli(t). The corresponding divergence function DT (P,Q), according to

Proposition 3.1, is a variational lower bound of the Jensen-Shannon divergence

JS(P,Q) =
1

2

Z
log

✓
dP

dP + dQ

◆
dP +

1

2

Z
log

✓
dQ

dP + dQ

◆
dQ+ log 2.

Its sample version (13) is the original GAN proposed by [25] that is widely used in

learning distributions of images.

2. Zero-One Score. The zero-one score S(t, 1) = 2I{t � 1/2} and S(t, 0) = 2I{t < 1/2} is

also known as the misclassification loss. This is a regular proper scoring rule but not

strictly proper. The induced divergence function DT (P,Q) is a variational lower bound

of the total variation distance

TV(P,Q) = P

✓
dP

dQ
� 1

◆
�Q

✓
dP

dQ
� 1

◆
=

1

2

Z
|dP � dQ|.

The sample version (13) is recognized as the TV-GAN that is extensively studied by

[21] in the context of robust estimation.

3. Quadratic Score. Also known as the Brier score [6], the definition is given by S(t, 1) =

�(1 � t)2 and S(t, 0) = �t2. The corresponding convex function in the Savage repre-

sentation is given by G(t) = �t(1� t). By Proposition 3.1, the divergence function (11)

13
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Example 2: Zero-One Score 
and TV-GAN

between 1
n

Pn
i=1 �Xi and Q, which is a useful objective function for statistical estimation.

Given a class of probability measures Q, the induced estimator of P is defined by

bP = argmin
Q2Q

max
T2T

"
1

n

nX

i=1

S(T (Xi), 1) + EX⇠QS(T (X), 0)

#
. (13)

We drop the term �G(1/2) in (11) because it is a constant that does not a↵ect the definition

of (13). The formula (13) has an interpretation of a minimax game between two players. The

goal of the first player is to find the best discriminator T that learns whether a sample is from

the empirical distribution or the model distribution Q. The second player is to find a model

distribution Q as close to the empirical distribution as possible so that the first player cannot

tell the di↵erence. In the context of deep learning, both the discriminator class T and the

generator class Q are modeled by neural networks, and (13) is recognized as the technique

of Generative Adversarial Nets proposed by [25]. The relation between GANs and proper

scoring rules is discovered by [42] in the context of learning implicit models.

3.5 Examples

1. Log Score. The log score is perhaps the most commonly used rule because of its various

intriguing properties [31]. The scoring rule with S(t, 1) = log t and S(t, 0) = log(1 �

t) is regular and strictly proper. Its Savage representation is given by the convex

function G(t) = t log t+ (1� t) log(1� t), which is interpreted as the negative Shannon

entropy of Bernoulli(t). The corresponding divergence function DT (P,Q), according to

Proposition 3.1, is a variational lower bound of the Jensen-Shannon divergence

JS(P,Q) =
1

2

Z
log

✓
dP

dP + dQ

◆
dP +

1

2

Z
log

✓
dQ

dP + dQ

◆
dQ+ log 2.

Its sample version (13) is the original GAN proposed by [25] that is widely used in

learning distributions of images.

2. Zero-One Score. The zero-one score S(t, 1) = 2I{t � 1/2} and S(t, 0) = 2I{t < 1/2} is

also known as the misclassification loss. This is a regular proper scoring rule but not

strictly proper. The induced divergence function DT (P,Q) is a variational lower bound

of the total variation distance

TV(P,Q) = P

✓
dP

dQ
� 1

◆
�Q

✓
dP

dQ
� 1

◆
=

1

2

Z
|dP � dQ|.

The sample version (13) is recognized as the TV-GAN that is extensively studied by

[21] in the context of robust estimation.

3. Quadratic Score. Also known as the Brier score [6], the definition is given by S(t, 1) =

�(1 � t)2 and S(t, 0) = �t2. The corresponding convex function in the Savage repre-

sentation is given by G(t) = �t(1� t). By Proposition 3.1, the divergence function (11)

13
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Example 3: Quadratic Score 
and LS-GAN

3. Quadratic Score. Also known as the Brier score [6], the definition is given by S(t, 1) =

�(1 � t)2 and S(t, 0) = �t2. The corresponding convex function in the Savage repre-

sentation is given by G(t) = �t(1� t). By Proposition 2.1, the divergence function (3)

induced by this regular strictly proper scoring rule is a variational lower bound of the

following divergence function,

�(P,Q) =
1

8

Z
(dP � dQ)2

dP + dQ
,

known as the triangular discrimination. The sample version (5) belongs to the family

of least-squares GANs proposed by [39].

4. Boosting Score. The boosting score was introduced by [7] with S(t, 1) = �
�
1�t
t

�1/2
and

S(t, 0) = �

⇣
t

1�t

⌘1/2
and has an connection to the AdaBoost algorithm. The corre-

sponding convex function in the Savage representation is given by G(t) = �2
p
t(1� t).

The induced divergence function DT (P,Q) is thus a variational lower bound of the

squared Hellinger distance

H2(P,Q) =
1

2

Z ⇣p
dP �

p
dQ

⌘2
.

5. Beta Score. A general Beta family of proper scoring rules was introduced by [7] with

S(t, 1) = �
R 1
t c↵�1(1� c)�dc and S(t, 0) = �

R t
0 c

↵(1� c)��1dc for any ↵,� > �1. The

log score, the quadratic score and the boosting score are special cases of the Beta score

with ↵ = � = 0, ↵ = � = 1, ↵ = � = �1/2. The zero-one score is a limiting case of the

Beta score by letting ↵ = � ! 1. Moreover, it also leads to asymmetric scoring rules

with ↵ 6= �.

2.6 TV-GAN and The Matrix Depth Function

With the zero-one loss, (5) is specialized as

bP = argmin
Q2Q

max
T2T

"
1

n

nX

i=1

I{T (Xi) � 1/2}+ EX⇠QI{T (X) < 1/2}

#
. (6)

We also consider a variation of (6) defined by

bP = argmin
Q2Q

max
T2TQ

"
1

n

nX

i=1

I{T (Xi) � 1/2}+ EX⇠QI{T (X) < 1/2}

#
. (7)

The subtle di↵erence of (7) compared with (6) is the dependence of the discriminator class

on Q. In fact, both (7) and (6) can be regarded as the minimizers of variational lower bounds

of the total variation distance. The connection between (7) and various depth functions in

robust estimation was discussed in an f -Learning framework by [22].

8
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Example 4: Boosting Score

3. Quadratic Score. Also known as the Brier score [6], the definition is given by S(t, 1) =

�(1 � t)2 and S(t, 0) = �t2. The corresponding convex function in the Savage repre-

sentation is given by G(t) = �t(1� t). By Proposition 2.1, the divergence function (3)

induced by this regular strictly proper scoring rule is a variational lower bound of the

following divergence function,

�(P,Q) =
1

8

Z
(dP � dQ)2

dP + dQ
,

known as the triangular discrimination. The sample version (5) belongs to the family

of least-squares GANs proposed by [39].

4. Boosting Score. The boosting score was introduced by [7] with S(t, 1) = �
�
1�t
t

�1/2
and

S(t, 0) = �

⇣
t

1�t

⌘1/2
and has an connection to the AdaBoost algorithm. The corre-

sponding convex function in the Savage representation is given by G(t) = �2
p

t(1� t).

The induced divergence function DT (P,Q) is thus a variational lower bound of the

squared Hellinger distance

H2(P,Q) =
1

2

Z ⇣p
dP �

p
dQ

⌘2
.

5. Beta Score. A general Beta family of proper scoring rules was introduced by [7] with

S(t, 1) = �
R 1
t c↵�1(1� c)�dc and S(t, 0) = �

R t
0 c

↵(1� c)��1dc for any ↵,� > �1. The

log score, the quadratic score and the boosting score are special cases of the Beta score

with ↵ = � = 0, ↵ = � = 1, ↵ = � = �1/2. The zero-one score is a limiting case of the

Beta score by letting ↵ = � ! 1. Moreover, it also leads to asymmetric scoring rules

with ↵ 6= �.

2.6 TV-GAN and The Matrix Depth Function

With the zero-one loss, (5) is specialized as

bP = argmin
Q2Q

max
T2T

"
1

n

nX

i=1

I{T (Xi) � 1/2}+ EX⇠QI{T (X) < 1/2}

#
. (6)

We also consider a variation of (6) defined by

bP = argmin
Q2Q

max
T2TQ

"
1

n

nX

i=1

I{T (Xi) � 1/2}+ EX⇠QI{T (X) < 1/2}

#
. (7)

The subtle di↵erence of (7) compared with (6) is the dependence of the discriminator class

on Q. In fact, both (7) and (6) can be regarded as the minimizers of variational lower bounds

of the total variation distance. The connection between (7) and various depth functions in

robust estimation was discussed in an f -Learning framework by [22].

8
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Example 5: Beta Score and 
new GANs

3. Quadratic Score. Also known as the Brier score [6], the definition is given by S(t, 1) =

�(1 � t)2 and S(t, 0) = �t2. The corresponding convex function in the Savage repre-

sentation is given by G(t) = �t(1� t). By Proposition 2.1, the divergence function (3)

induced by this regular strictly proper scoring rule is a variational lower bound of the

following divergence function,

�(P,Q) =
1

8

Z
(dP � dQ)2

dP + dQ
,

known as the triangular discrimination. The sample version (5) belongs to the family

of least-squares GANs proposed by [39].

4. Boosting Score. The boosting score was introduced by [7] with S(t, 1) = �
�
1�t
t

�1/2
and

S(t, 0) = �

⇣
t

1�t

⌘1/2
and has an connection to the AdaBoost algorithm. The corre-

sponding convex function in the Savage representation is given by G(t) = �2
p
t(1� t).

The induced divergence function DT (P,Q) is thus a variational lower bound of the

squared Hellinger distance

H2(P,Q) =
1

2

Z ⇣p
dP �

p
dQ

⌘2
.

5. Beta Score. A general Beta family of proper scoring rules was introduced by [7] with

S(t, 1) = �
R 1
t c↵�1(1� c)�dc and S(t, 0) = �

R t
0 c

↵(1� c)��1dc for any ↵,� > �1. The

log score, the quadratic score and the boosting score are special cases of the Beta score

with ↵ = � = 0, ↵ = � = 1, ↵ = � = �1/2. The zero-one score is a limiting case of the

Beta score by letting ↵ = � ! 1. Moreover, it also leads to asymmetric scoring rules

with ↵ 6= �.

2.6 TV-GAN and The Matrix Depth Function

With the zero-one loss, (5) is specialized as

bP = argmin
Q2Q

max
T2T

"
1

n

nX

i=1

I{T (Xi) � 1/2}+ EX⇠QI{T (X) < 1/2}

#
. (6)

We also consider a variation of (6) defined by

bP = argmin
Q2Q

max
T2TQ

"
1

n

nX

i=1

I{T (Xi) � 1/2}+ EX⇠QI{T (X) < 1/2}

#
. (7)

The subtle di↵erence of (7) compared with (6) is the dependence of the discriminator class

on Q. In fact, both (7) and (6) can be regarded as the minimizers of variational lower bounds

of the total variation distance. The connection between (7) and various depth functions in

robust estimation was discussed in an f -Learning framework by [22].
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Smooth Proper Scoring Rule

Assumption (Smooth Proper Scoring Rules)
We assume that

I G
(2)(1/2) > 0 and G

(3)(t) is continuous at t = 1/2;

I Moreover, there is a universal constant c0 > 0, such that
2G(2)(1/2) � G

(3)(1/2) + c0.

– The condition 2G(2)(1/2) � G(3)(1/2) + c0 is automatically satisfied
by a symmetric scoring rule, because S(t, 1) = S(1� t, 0)
immediately implies that G(3)(1/2) = 0.

– For the Beta score with S(t, 1) = �
R 1

t
c↵�1(1� c)�dc and

S(t, 0) = �
R t

0
c↵(1� c)��1dc for any ↵,� > �1, it is easy to check

that such a c0 (only depending on ↵,�) exists as long as
|↵� �| < 1.

– A scoring rule S is regular if both S(·, 0) and S(·, 1) are real-valued,
except possibly that S(0, 1) = �1 or S(1, 0) = �1.Proper Scoring Rules 49



Statistical Optimality

Theorem [GYZ19]. For a neural network 
class     with at least one hidden layer and 
appropriate regularization, we have 

Note that the generator class is {N(⌘,�) : ⌘ 2 Rp,� 2 Ep(M)} compared with the centered

class in (19).

We also introduce a general discriminator class of deep neural nets. We first define a

sigmoid bottom layer

Gsigmoid =
�
g(x) = sigmoid(uTx+ b) : u 2 Rp, b 2 R

 
.

Then, with G
1(B) = Gsigmoid, we inductively define

G
l+1(B) =

8
<

:g(x) = ReLU

0

@
X

h�1

vhgh(x)

1

A :
X

h�1

|vh|  B, gh 2 G
l(B)

9
=

; .

Note that the neighboring two layers are connected via ReLU activation functions. Finally,

the network structure is defined by

T
L(, B) =

(
T (x) = sigmoid

0

@
X

j�1

wjgj(x)

1

A :
X

j�1

|wj |  , gj 2 G
L(B)

)
. (30)

This is a neural network class that consists of L hidden layers. When L = 1, (30) recovers

the definition of the class (25).

Theorem 5.1. Consider the estimator (29) that is induced by a regular proper scoring rule

that satisfies Condition 4.1. The discriminator class T = T
L(, B) is specified by (30).

Assume p
n + ✏2  c for some su�ciently small constant c > 0. Set 1  L = O(1), 1  B =

O(1), and  = O
⇣q

p
n + ✏

⌘
. Then, under the data generating process (27), we have

kb✓ � ✓k2  C
⇣ p
n
_ ✏2

⌘
,

kb⌃� ⌃k2op  C
⇣ p
n
_ ✏2

⌘
,

with probability at least 1� e�C0(p+n✏2) uniformly over all ✓ 2 Rp and all k⌃kop  M = O(1).

The constants C,C 0 > 0 are universal.

6 Elliptical Distributions

One of the most important statistical properties of the depth-based estimator (18) is its

ability to adapt to general elliptical distributions [9]. In this section, we show that the same

property can also be achieved by robust estimators induced by proper scoring rules.

Definition 6.1 ([18]). A random vector X 2 Rp follows an elliptical distribution if and only

if it has the representation X = ✓+ ⇠AU , where ✓ 2 Rp and A 2 Rp⇥r are model parameters.

The random variable U is distributed uniformly on the unit sphere {u 2 Rp : kuk = 1} and

⇠ � 0 is a random variable in R independent of U . The vector ✓ and the matrix ⌃ = AAT

are called the location and the scatter of the elliptical distribution.
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JSg(P,Q) = max
w2Rd


P log

1

1 + e�wT g(X)
+Q log

1

1 + ewT g(X)

�
+ log 4.

JSg(P,Q) = 0 () Pg(X) = Qg(X)

kb✓ � ✓k2 .

8
><

>:

p

n
+ ✏2

p

n
+ ✏

b✓ = argmin

✓2Rp
max
T2T

"
1

n

nX

i=1

log T (Xi) + E⌘ log(1� T (X))

#
+ log 4

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏N(e✓, Ip)

b✓ ⇡ ✓

b✓ ⇡ (1� ✏)✓ + ✏e✓

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2  C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃
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Robust Learning of 
Gaussian Distributions

Outline Generalization and Breiman’s Dilemma Robustness and Huber’s Contamination Model Summary

Experimental Results

Experiments: Comparisons

Q n p ✏ TV-GAN JS-GAN Dimension Halving Iterative Filtering

N(0.5 ⇤ 1p, Ip) 50,000 100 .2 0.0953 (0.0064) 0.1144 (0.0154) 0.3247 (0.0058) 0.1472 (0.0071)

N(0.5 ⇤ 1p, Ip) 5,000 100 .2 0.1941 (0.0173) 0.2182 (0.0527) 0.3568 (0.0197) 0.2285 (0.0103)

N(0.5 ⇤ 1p, Ip) 50,000 200 .2 0.1108 (0.0093) 0.1573 (0.0815) 0.3251 (0.0078) 0.1525 (0.0045)

N(0.5 ⇤ 1p, Ip) 50,000 100 .05 0.0913 (0.0527) 0.1390 (0.0050) 0.0814 (0.0056) 0.0530 (0.0052)

N(5 ⇤ 1p, Ip) 50,000 100 .2 2.7721 (0.1285) 0.0534 (0.0041) 0.3229 (0.0087) 0.1471 (0.0059)

N(0.5 ⇤ 1p,⌃) 50,000 100 .2 0.1189 (0.0195) 0.1148 (0.0234) 0.3241 (0.0088) 0.1426 (0.0113)

Cauchy(0.5 ⇤ 1p) 50,000 100 .2 0.0738 (0.0053) 0.0525 (0.0029) 0.1045 (0.0071) 0.0633 (0.0042)

Table: Comparison of various robust mean estimation methods. The smallest error of

each case is highlighted in bold.

• Dimension Halving: [Lai et al.’16]

https://github.com/kal2000/AgnosticMeanAndCovarianceCode.

• Iterative Filtering: [Diakonikolas et al.’17]

https://github.com/hoonose/robust-filter.

Yuan Yao Breiman-Huber
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5.5 ADAPTATION TO UNKNOWN COVARIANCE

The robust mean estimator constructed through JS-GAN can be easily made adaptive to unknown covariance
structure, which is a special case of (16). We define

(b✓, b⌃) = argmin
⌘2Rp,�2Ep

max
D2D

"
1

n

nX

i=1

logD(Xi) + EN(⌘,�) log(1�D(Xi))

#
+ log 4,

The estimator b✓, as a result, is rate-optimal even when the true covariance matrix is not necessarily identity and
is unknown (see Theorem 4.1). Below, we demonstrate some numerical evidence of the optimality of b✓ as well
as the error of b⌃ in Table 3.

Data generating process Network structure kb✓ � 0pk kb⌃� ⌃1kop

0.8N(0p,⌃1) + 0.2N(0.5 ⇤ 1p,⌃2) 100-20-1 0.1680 (0.1540) 1.9716 (0.7405)
0.8N(0p,⌃1) + 0.2N(0.5 ⇤ 1p,⌃2) 100-20-20-1 0.1824 (0.3034) 1.4495 (0.6028)

0.8N(0p,⌃1) + 0.2N(1p,⌃2) 100-20-1 0.0817 (0.0213) 1.2753 (0.4523)
0.8N(0p,⌃1) + 0.2N(6 ⇤ 1p,⌃2) 100-20-1 0.1069 (0.0357) 1.1668 (0.1839)

0.8N(0p,⌃1) + 0.2Cauchy(0.5 ⇤ 1p) 100-20-1 0.0797 (0.0257) 4.0653 (0.1569)

Table 3: Numerical experiments for robust mean estimation with unknown covariance trained with 50, 000
samples. The covariance matrices ⌃1 and ⌃2 are generated by the same way described in Appendix B.2.

5.6 ADAPTATION TO ELLIPTICAL DISTRIBUTIONS

We consider the estimation of the location parameter ✓ in elliptical distribution EC(✓,⌃, h) by the JS-GAN
defined in (16). In particular, we study the case with i.i.d. observations X1, ..., Xn ⇠ (1�✏)Cauchy(✓, Ip)+✏Q.
The density function of Cauchy(✓,⌃) is given by p(x; ✓,⌃) / |⌃|�1/2

�
1 + (x� ✓)T⌃�1(x� ✓)

��(1+p)/2.

Compared with Algorithm (1), the difference lies in the choice of the generator. We consider the generator
G1(⇠, U) = g!(⇠)U + ✓, where g!(⇠) is a non-negative neural network parametrized by ! and some random
variable ⇠. The random vector U is sampled from the uniform distribution on {u 2 Rp : kuk = 1}. If the
scatter matrix is unknown, we will use the generator G2(⇠, U) = g!(⇠)AU+✓, with AAT modeling the scatter
matrix.

Table 4 shows the comparison with other methods. Our method still works well under Cauchy distribution,
while the performance of other methods that rely on moment conditions deteriorates in this setting.

Table 4: Comparison of various methods of robust location estimation under Cauchy distributions. Samples
are drawn from (1 � ✏)Cauchy(0p, Ip) + ✏Q with ✏ = 0.2, p = 50 and various choices of Q. Sample size:
50,000. Discriminator net structure: 50-50-25-1. Generator g!(⇠) structure: 48-48-32-24-12-1 with absolute
value activation function in the output layer.

Contamination Q JS-GAN (G1) JS-GAN (G2) Dimension Halving Iterative Filtering
Cauchy(1.5 ⇤ 1p, Ip) 0.0664 (0.0065) 0.0743 (0.0103) 0.3529 (0.0543) 0.1244 (0.0114)
Cauchy(5.0 ⇤ 1p, Ip) 0.0480 (0.0058) 0.0540 (0.0064) 0.4855 (0.0616) 0.1687 (0.0310)

Cauchy(1.5 ⇤ 1p, 5 ⇤ Ip) 0.0754 (0.0135) 0.0742 (0.0111) 0.3726 (0.0530) 0.1220 (0.0112)
Normal(1.5 ⇤ 1p, 5 ⇤ Ip) 0.0702 (0.0064) 0.0713 (0.0088) 0.3915 (0.0232) 0.1048 (0.0288))
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• Discriminator helps identify outliers or contaminated samples 

• Generator fits uncontaminated portion of true samples 

Discriminator identifies 
outliers 

Table 4 shows the performances of JS-GAN, TV-GAN, dimension halving, and iterative

filtering with i.i.d. observations sampled from (1� ✏)N(0p, Ip) + ✏Q. The network structure,

for both JS-GAN and TV-GAN, has one hidden layer with 20 hidden units when the sample

size is 50,000 and 2 hidden units when sample size is 5,000. With fixed network structure,

the hyper parameters are robust to various sampling distributions. For the network with

20 hidden units, the critical parameters to reproduce the results in the table are �g = 0.02,

�d = 0.2, K = 5, T = 150 (p = 100), T = 250 (p = 200), T0 = 25 for JS-GAN and

�g = 0.0001, �d = 0.3, K = 2, T = 150 (p = 100), T = 250 (p = 200), T0 = 1, � = 0.1

for TV-GAN, where � is the penalty factor of the additional regularization term (21). For

the network with 2 hidden units, the critical parameters to reproduce the results below are

�g = 0.01, �d = 0.2, K = 5, T = 150 (p = 100), T0 = 25 for JS-GAN and �g = 0.01, �d = 0.1,

K = 5, T = 150 (p = 100), T0 = 1 for TV-GAN. We use Xavier initialization [28] for both

JS-GAN and TV-GAN trainings.

To summarize, our method outperforms other algorithms in most cases. TV-GAN is good

at cases when Q and N(0p, Ip) are non-separable but fails when Q is far away from N(0p, Ip)

due to optimization issues discussed in Section 3.1 (Figure 1). On the other hand, JS-GAN

stably achieves the lowest error in separable cases and also shows competitive performances

for non-separable ones.

Q n p ✏ TV-GAN JS-GAN Dimension Halving Iterative Filtering

N(0.5 ⇤ 1p, Ip) 50,000 100 .2 0.0953 (0.0064) 0.1144 (0.0154) 0.3247 (0.0058) 0.1472 (0.0071)

N(0.5 ⇤ 1p, Ip) 5,000 100 .2 0.1941 (0.0173) 0.2182 (0.0527) 0.3568 (0.0197) 0.2285 (0.0103)
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N(0.5 ⇤ 1p,⌃) 50,000 100 .2 0.1189 (0.0195) 0.1148 (0.0234) 0.3241 (0.0088) 0.1426 (0.0113)

Cauchy(0.5 ⇤ 1p) 50,000 100 .2 0.0738 (0.0053) 0.0525 (0.0029) 0.1045 (0.0071) 0.0633 (0.0042)

Table 4: Comparison of various robust mean estimation methods. The smallest error of each

case is highlighted in bold.

6.4 Network Structures

In this section, we study the performances of TV-GAN and JS-GAN with various structures

of neural networks. The experiments are conducted with i.i.d. observations drawn from

(1 � ✏)N(0p, Ip) + ✏N(0.5 ⇤ 1p, Ip) with ✏ = 0.2. Table 5 summarizes results for p = 100,

n 2 {5000, 50000} and various network structures. We observe that TV-GAN that uses

neural nets with one hidden layer improves over the performance of that without any hidden

layer. This indicates that the landscape of TV-GAN is improved by a more complicated

network structure. However, adding one more layer does not improve the results. For JS-

GAN, we omit the results without hidden layer because of its lack of robustness (Proposition

3.1). Deeper networks sometimes improve over shallow networks, but this is not always true.

Table 6 illustrates the improvements of network with more than one hidden layers over that
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Application: Price of 50 stocks from 2007/01 to 2018/12 
Corps are selected by ranking in market capitalization 
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Log-return. y[i] = log(price_{i+1}/price_{i}) 
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Fit data by Elliptical-GAN. 
Apply SVD on scatter. 
Dimension reduction on R^2. 
outlier x and o are selected from Discriminator value distribution. 
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Discriminator value distribution from (Elliptical) Generator 
and real samples. Outliers are chosen from samples 
larger/ lower than a chosen percentile of Generator 
distribution 

 68



Standard (non-robust) PCA: 
First two direction are dominated by few corps —> not robust 
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Robust PCA: Loadings of Elliptical Scatter 
Comparing with PCA, it’s more robust in the sense that it does 
not totally dominate by Financial company (JPM, GS)
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