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Topological & Geometric Data Analysis

Differential Geometric methods: manifolds
• data manifold: manifold learning/NDR, etc.
• model manifold: information geometry (high-order efficiency
for parametric statistics), Grassmannian, etc.

Algebraic Geometric methods: polynomials/varieties
• data: tensor, Sum-Of-Square (MDS, polynom. optim.), etc
• model: algebraic statistics

Algebraic Topological methods: complexes (graphs, etc.)
• persistent homology
• *Euler calculus
• Hodge theory (a bridge between geometry and topology via
optimization/spectrum)
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1 Preference Aggregation and Hodge Theory
Social Choice and Impossibility Theorems
A Possibility: Saari Decomposition and Borda Count
HodgeRank: generalized Borda Count

2 Hodge Decomposition of Pairwise Ranking
Hodge Decomposition
Combinatorial Hodge Theory on Simplicial Complexes
Robust Ranking
From Social Choice to Personalized Ranking

3 Random Graphs
Phase Transitions in Topology
Fiedler Value Asymptotics

4 Game Theory
Game Theory: Multiple Utilities
Hodge Decomposition of Finite Games

Yuan Yao Applied Hodge Theory



Outline Social Choice Hodge Theory Random Graphs Game Theory

Social Choice Problem

The fundamental problem of preference aggregation:

How to aggregate preferences
which faithfully represent individuals?
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Crowdsourcing QoE evaluation of Multimedia

Figure: Crowdsouring subjective Quality of Experience evaluation
(Xu-Huang-Y., et al. ACM-MM 2011)
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Crowdsourced ranking

10/18/13 CrowdRank | Your Ranking Engine with Real Consumer Reports - Consumers Report and Vote

www.crowdrank.net 1/3

Search

15.1 million votes cast

   

Insights Articles
           

Greatest AllTime
Basketball Player

Sexiest MAN Alive TV Brands Wireless Carriers

Sexiest Woman Alive Hotels MBA Best Dating Site

Colleges Airlines Beer Brewer Smartphone Brands

All Categories

CrowdRank

Read more

Last month, we shared an analysis of votes in our Sexiest Woman Alive category evaluating whether gentlemen
prefer blondes.  The overall answer was that globally men prefer brunettes but a slim 50.1% margin.  But, the
U.S. diverged from the global average and voters preferred blondes 50.9% of the time.  The U.S. story gets more
interesting, however, if we drill down to a state level.  When we look at individual states, there is more parity:  21
states show a preference for blondes, 18 prefer brunettes, and 7 prefer redheads.  Meanwhile 4 states have no
clear winner between blondes, brunettes, and redheads.

In the US, Do Gentlemen Prefer Blondes?

CrowdRank Insights

Brands Education Sports TV & Movies More

Nexus 7 from
$229
www.google.com/nexus

The 7" tablet from
Google with the
world's sharpest
screen. Buy now.

Flights from
Chicago

The Depot
Renaissance
Minneapolis
Hotel
Beautiful
Chilean Girls

MBA
Marketing
Degree

Figure: Left: www.allourideas.org/worldcollege (Prof. Matt Salganik at
Princeton); Right: www.crowdrank.net.
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Learning relative attributes: age
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Figure: Age: a relative attribute estimated from paired comparisons
(Fu-Hospedales-Xiang-Gong-Y. ECCV, 2014)
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Netflix Customer-Product Rating

Example (Netflix Customer-Product Rating)

480189-by-17770 customer-product 5-star rating matrix X
with Xij = {1, . . . , 5}
X contains 98.82% missing values

However,

pairwise comparison graph G = (V ,E ) is very dense!

only 0.22% edges are missed, almost a complete graph

rank aggregation may be carried out without estimating
missing values

imbalanced: number of raters on e ∈ E varies
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Drug Sensitivity Ranking

Example (Drug Sensitivity Data)

300 drugs

940 cell lines, with ≈ 1000 genetic features

sensitivity measurements in terms of IC50 and AUC

heterogeneous missing values

However,

every two drug d1 and d2 has been tested at least in one cell
line, hence comparable (which is more sensitive)

complete graph of paired comparisons: G = (V ,E )

imbalanced: number of raters on e ∈ E varies
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Paired comparison data on graphs

Graph G = (V ,E )

V : alternatives to be ranked or rated

(iα, jα) ∈ E a pair of alternatives

yαij ∈ R degree of preference by rater α

ωαij ∈ R+ confidence weight of rater α

Examples: relative attributes, subjective QoE assessment,
perception of illuminance intensity, sports, wine taste, etc.
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Modern settings

Modern ranking data are

distributive on networks

incomplete with missing values

imbalanced

even adaptive to dynamic and random settings?

Here we introduce:

Hodge Theory approach to Social Choice or Preference
Aggregation

Yuan Yao Applied Hodge Theory
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Social Choice and Impossibility Theorems

History

Classical social choice theory origins from Voting Theory

Borda 1770, B. Count against plurality vote

Condorcet 1785, C. Winner who wins all paired elections

Impossibility theorems: Kenneth Arrow 1963, Amartya Sen
1973

Resolving conflicts: Kemeny, Saari ...

In these settings, we study complete ranking orders from
voters.

Yuan Yao Applied Hodge Theory
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Social Choice and Impossibility Theorems

Classical Social Choice or Voting Theory

Problem

Given m voters whose preferences are total orders (permutation)
{�i : i = 1, . . . ,m} on a candidate set V , find a social choice
mapping

f : (�1, . . . ,�m) 7→�∗,
as a total order on V , which “best” represents voter’s will.

Yuan Yao Applied Hodge Theory
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Social Choice and Impossibility Theorems

Example: 3 candidates ABC

Preference order Votes

A � B � C 2
B � A � C 3
B � C � A 1
C � B � A 3
C � A � B 2
A � C � B 2

Yuan Yao Applied Hodge Theory
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Social Choice and Impossibility Theorems

What we did in practice I: Position rules

There are two important classes of social mapping in realities:

I. Position rules: assign a score s : V → R, such that for each
voter’s order(permutation) σi ∈ Sn (i = 1, . . . ,m),
sσi (k) ≥ sσi (k+1). Define the social order by the descending
order of total score over raters, i.e. the score for k-th
candidate

f (k) =
m∑
i=1

sσi (k).

• Borda Count: s : V → R is given by (n − 1, n − 2, . . . , 1, 0)
• Vote-for-top-1: (1, 0, . . . , 0)
• Vote-for-top-2: (1, 1, 0, . . . , 0)
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Social Choice and Impossibility Theorems

What we did in practice II: pairwise rules

II. Pairwise rules: convert the voting profile, a (distribution)
function on n! set Sn, into paired comparison matrix
X ∈ Rn×n where X (i , j) is the number (distribution) of voters
that i � j ; define the social order based on paired comparison
data X .
• Kemeny Optimization: minimizes the number of pairwise
mismatches to X over Sn (NP-hard)
• Pluarity: the number of wins in paired comparisons
(tournaments) – equivalent to Borda count in complete
Round-Robin tournaments

Yuan Yao Applied Hodge Theory
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Social Choice and Impossibility Theorems

Revisit the ABC-Example

Preference order Votes

A � B � C 2
B � A � C 3
B � C � A 1
C � B � A 3
C � A � B 2
A � C � B 2
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Social Choice and Impossibility Theorems

Voting chaos!

Position:
• s < 1/2, C wins
• s = 1/2, ties
• s > 1/2, A/B wins

Pairwise:
• A, B: 13 wins
• C : 14 wins
• Kemeny winner: C

so completely in chaos!

Yuan Yao Applied Hodge Theory
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Social Choice and Impossibility Theorems

Arrow’s Impossibility Theorem

(Arrow’1963)

Consider the Unrestricted Domain, i.e. voters may have all
complete and transitive preferences. The only social choice rule
satisfying the following conditions is the dictator rule

Pareto (Unanimity): if all voters agree that A � B then such
a preference should appear in the social order

Independence of Irrelevant Alternative (IIA): the social order
of any pair only depends on voter’s relative rankings of that
pair

Yuan Yao Applied Hodge Theory
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Social Choice and Impossibility Theorems

Sen’s Impossibility Theorem

(Sen’1970)

With Unrestricted Domain, there are cases with voting data that
no social choice mapping,

f : (�1, . . . ,�m) 7→ 2V ,

exists under the following conditions

Pareto: if all voters agree that A > B then such a preference
should appear in the social order

Minimal Liberalism: two distinct voters decide social orders of
two distinct pairs respectively

Yuan Yao Applied Hodge Theory
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Saari Decomposition

A Possibility: Saari’s Profile Decomposition

Every voting profile, as distributions on symmetric group Sn, can
be decomposed into the following components:

Universal kernel: all ranking methods induce a complete tie on
any subset of V
• dimension: n!− 2n−1(n − 2)− 2

Borda profile: all ranking methods give the same result
• dimension: n − 1
• basis: {1(σ(1) = i , ∗)− 1(∗, σ(n) = i) : i = 1, . . . , n}
Condorcet profile: all positional rules give the same result
• dimension: (n−1)!

2
• basis: sum of Zn orbit of σ minus their reversals

Departure profile: all pairwise rules give the same result

Yuan Yao Applied Hodge Theory
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Saari Decomposition

Example: Decomposition of Voting Profile R3!

Yuan Yao Applied Hodge Theory
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Saari Decomposition

Borda Count: the most consistent rule?

Table: Invariant subspaces of social rules (-)

Borda Profile Condorcet Departure

Borda Count consistent - -
Pairwise consistent inconsistent -

Position (non-Borda) consistent - inconsistent

So, if you look for a best possibility from impossibility, Borda
count is perhaps the choice

Borda Count is the projection onto the Borda Profile subspace

Yuan Yao Applied Hodge Theory
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Saari Decomposition

Equivalently, Borda Count is a Least Square

Borda Count is equivalent to

min
β∈R|V |

∑
α,{i ,j}∈E

ωαij (βi − βj − Y α
ij )2,

where

E.g. Y α
ij = 1, if i � j by voter α, and Y α

ij = −1, on the
opposite.

Note: NP-hard (n > 3) Kemeny Optimization, or
Minimimum-Feedback-Arc-Set:

min
s∈R|V |

∑
α,{i ,j}∈E

ωαij (sign(βi − βj)− Ŷ α
ij )2

Yuan Yao Applied Hodge Theory
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HodgeRank

Generalized Borda Count with Incomplete Data

min
x∈R|V |

∑
α,{i ,j}∈E

ωαij (xi − xj − yαij )2,

⇔
min

x∈R|V |

∑
{i ,j}∈E

ωij((xi − xj)− ŷij)
2,

where ŷij = Êαyαij = (
∑
α

ωαij y
α
ij )/ωij = −ŷji , ωij =

∑
α

ωαij

So ŷ ∈ l2ω(E ), inner product space with 〈u, v〉ω =
∑

uijvijωij , u, v
skew-symmetric

Yuan Yao Applied Hodge Theory
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HodgeRank

Statistical Majority Voting: l2(E )

ŷij = (
∑

α ω
α
ij y

α
ij )/(

∑
α ω

α
ij ) = −ŷji , ωij =

∑
α ω

α
ij

ŷ from generalized linear models:
• [1] Uniform model: ŷij = 2π̂ij − 1.

• [2] Bradley-Terry model: ŷij = log
π̂ij

1−π̂ij .

• [3] Thurstone-Mosteller model: ŷij = Φ−1(π̂ij), Φ(x) is
Gaussian CDF
• [4] Angular transform model: ŷij = arcsin(2π̂ij − 1).

Yuan Yao Applied Hodge Theory
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Hodge Decomposition

Hodge Decomposition of Pairwise Ranking

ŷij = −ŷji ∈ l2ω(E ) admits an orthogonal decomposition,

ŷ = Ax + BT z + w , (1)

where

(Ax)(i , j) := xi − xj , gradient, as Borda profile, (2a)

(Bŷ)(i , j , k) := ŷij + ŷjk + ŷki , trianglar cycle/curl, Condorcet
(2b)

w ∈ ker(AT ) ∩ ker(B), harmonic, Condorcet. (2c)

In other words

im(A)⊕ ker(AAT + BTB)⊕ im(BT )

Yuan Yao Applied Hodge Theory
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Hodge Decomposition

Why? Hodge Decomposition in Linear Algebra

For inner product spaces X , Y, and Z, consider

X A−→ Y B−→ Z.

and ∆ = AA∗ + B∗B : Y → Y where (·)∗ is adjoint operator of (·).
If

B ◦ A = 0,

then ker(∆) = ker(A∗) ∩ ker(B) and orthogonal decomposition

Y = im(A) + ker(∆) + im(B∗)

Note: ker(B)/ im(A) ' ker(∆) is the (real) (co)-homology group
(R→ rings; vector spaces→module).

Yuan Yao Applied Hodge Theory
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Hodge Decomposition

Examples

Homology: X = C2(χG ,Z), Y = C1(χG ,Z), and
Z = C0(χG ,Z),
• boundary map: ∂2 : C2(χG )→ C1(χG ) by
∂2(eijk) = eij + ejk + eki with est = −ets ;
∂1 : C1(χG )→ C0(χG ) defined by ∂1(eij) = ei − ej
• Closedness: ∂1 ◦ ∂2 = 0
• Homology group: H1(χG ,Z) = ker(∂1)/ im(∂2)

Cohomology: X = C 0(χG ,R), Y = C 1(χG ,R), and
Z = C 2(χG ,R),
• coboundary map: δ0 : C 0 → C 1 by (δ0f )(i , j) = fi − fj ;
δ1 : C 1 → C 2 by (δ1g)(i , j , k) = gij + gjk + gki
• Closedness: δ1 ◦ δ0 = 0
• Co-homology group: H1(χG ,R) = ker(δ1)/ im(δ0)

Yuan Yao Applied Hodge Theory



Outline Social Choice Hodge Theory Random Graphs Game Theory

Hodge Decomposition

Hodge Decomposition=Rank-Nullity Theorem

Take product space V = X × Y × Z, define

D =

 0 0 0
A 0 0
0 B 0

 , BA = 0,

Rank-nullity Theorem: im(D) + ker(D∗) = V , in particular

Y = im(A) + ker(A∗)

= im(A) + ker(A∗)/ im(B∗) + im(B∗), since im(A) ⊆ ker(B)

= im(A) + ker(A∗) ∩ ker(B) + im(B∗)

Laplacian

L = (D+D∗)2 = diag(A∗A,AA∗+B∗B,BB∗) = diag(L0, L1, L
(down)
2 )

Yuan Yao Applied Hodge Theory
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Hodge Decomposition

Hence, in our case

Note B ◦ A = 0 since

(B ◦ Ax)(i , j , k) = (xi − xj) + (xj − xk) + (xk − xi ) = 0.

Hence

AT ŷ = AT (Ax + BT z + w) = ATAx ⇒ x = (ATA)†AT ŷ

Bŷ = B(Ax + BT z + w) = BBT z ⇒ z = (BBT )†Bŷ

ATw = Bw = 0⇒ w ∈ ker(∆1), ∆1 = AAT + BTB.

Yuan Yao Applied Hodge Theory
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Combinatorial Hodge Theory on Simplicial Complexes

Combinatorial Hodge Theory on Simplicial Complexes

0→ Ω0(X )
d0−→ Ω1(X )

d1−→ · · · dn−1−−−→ Ωn(X )
dn−→ · · ·

X is finite

χ(X ) ⊆ 2X : simplicial complex formed by X ⇔ if τ ∈ χ(X )
and σ ⊆ τ , then σ ∈ χ(X )

k-forms or cochains as alternating functions

Ωk(X ) = {u : χk+1(X )→ R, uiσ(0),...,iσ(k)
= sign(σ)ui0,...,ik}

coboundary maps dk : Ωk(X )→ Ωk+1(X ) alternating
difference

(dku)(i0, . . . , ik+1) =
k+1∑
j=0

(−1)j+1u(i0, . . . , ij−1, ij+1, . . . , ik+1)

dk ◦ dk−1 = 0

Yuan Yao Applied Hodge Theory
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Combinatorial Hodge Theory on Simplicial Complexes

Example: graph and clique complex

G = (X ,E ) is a undirected but oriented graph

Clique complex χG ⊆ 2X collects all complete subgraph of G

k-forms or cochains Ωk(χG ) as alternating functions:
• 0-forms: v : V → R ∼= Rn

• 1-forms as skew-symmetric functions: wij = −wji

• 2-forms as triangular-curl:
zijk = zjki = zkij = −zjik = −zikj = −zkji
coboundary operators as alternating difference operators:
• (d0v)(i , j) = vj − vi =: (grad v)(i , j)
• (d1w)(i , j , k) = (±)(wij + wjk + wki ) =: (curlw)(i , j , k)

d1 ◦ d0 = curl(grad u) = 0

Yuan Yao Applied Hodge Theory
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Combinatorial Hodge Theory on Simplicial Complexes

Hodge Laplacian

combinatorial Laplacian ∆ = dk−1d
∗
k−1 + d∗kdk

• k = 0, ∆0 = d∗0d0 is the (unnormalized) graph Laplacian
• k = 1, 1-Hodge Laplacian (Helmholtzian)

∆1 = curl ◦ curl∗− div ◦ grad

Hodge decomposition holds for Ωk(X )
• Ωk(X ) = im(dk−1)⊕ ker(∆k)⊕ im(δk)
• dim(ker(∆k)) = βk(χ(X )), k-harmonics

Figure: Courtesy by Asu Ozdaglar
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Combinatorial Hodge Theory on Simplicial Complexes

Generalized Borda Count estimator

Gradient flow ŷ (g) := (Ax)(i , j) = xi − xj gives the generalized
Borda count score, x which solves Graph Laplacian equation

min
x∈R|V |

∑
α,(i ,j)∈E

ωαij (xi − xj − yαij )2 ⇔ ∆0x = AT ŷ

where ∆0 = ATA is the unnormalized graph Laplacian of G .

In theory, nearly linear algorithms for such equations, e.g.
Spielman-Teng’04, Koutis-Miller-Peng’12, etc.

But in practice? ...

Yuan Yao Applied Hodge Theory
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Combinatorial Hodge Theory on Simplicial Complexes

Online HodgeRank [Xu-Huang-Yao’2012]

Robbins-Monro (1951) algorithm for ∆0x = b̄ := δ∗0 ŷ ,

xt+1 = xt − γt(Atxt − bt), x0 = 0, E(At) = ∆0, E(bt) = b̄

Note:

For each Yt(it+1, jt+1), updates only occur locally

Step size: γt = a(t + b)−1/2 (e.g. a=1/λ1(∆0) and b large)

Optimal convergence of xt to x∗ (population solution) in t

E‖xt − x∗‖2 ≤ O
(
t−1 · λ−2

2 (∆0)
)

where λ2(∆0) is the Fiedler Value of graph Laplacian

Tong Zhang’s SVRG: E‖st − s∗‖2 ≤ O
(
t−1 + λ−2

2 (∆0)t−2
)

Yuan Yao Applied Hodge Theory
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Combinatorial Hodge Theory on Simplicial Complexes

Condorcet Profile splits into Local vs. Global Cycles

Residues ŷ (c) = BT z and ŷ (h) = w are cyclic rankings, accounting
for conflicts of interests:

ŷ (c), the local/triangular inconsistency, triangular curls
(Z3-invariant)

• ŷ (c)
ij + ŷ

(c)
jk + ŷ

(c)
ki 6= 0 , {i , j , k} ∈ T

Yuan Yao Applied Hodge Theory



Outline Social Choice Hodge Theory Random Graphs Game Theory

Combinatorial Hodge Theory on Simplicial Complexes

Condorcet Profile in Harmonic Ranking

ŷ (h) = w , the global inconsistency, harmonic ranking
(Zn-invariant)

ŷ
(h)
ij + ŷ

(h)
jk + ŷ

(h)
ki = 0, for each {i , j , k} ∈ T , (3a)∑

j∼i
ωij ŷ

(h)
ij = 0, for each i ∈ V . (3b)

• voting chaos: circular coordinates on V ⇒ fixed tournament
issue

Yuan Yao Applied Hodge Theory
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Robust Ranking

Cyclic Ranking and Outliers: High Dimensional Statistics

Outliers are sparse approximation of cyclic rankings
(curl+harmonic) [Xu-Xiong-Huang-Y.’13]

min
γ
‖Πker(A∗)(ŷ − γ)‖2 + λ‖γ‖1

Robust ranking can be formulated as a Huber’s LASSO

min
x ,γ
‖ŷ − Ax − γ‖2 + λ‖γ‖1

• outlier γ is incidental parameter (Neyman-Scott’1948)
• global rating x is structural parameter

Yet, LASSO is a biased estimator (Fan-Li’2001)

Yuan Yao Applied Hodge Theory
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Robust Ranking

A Differential Inclusion Approach to Sparse Learning

A Dual Gradient Descent (sparse mirror descent) dynamics
[Osher-Ruan-Xiong-Y.-Yin’2014, Huang-Sun-Xiong-Y.’2020]

ρ̇t =
1

n
XT (y − Xβt), (4a)

ρt ∈ ∂‖βt‖1. (4b)

called Inverse Scale Space dynamics in imaging

sign consistency under nearly the same conditions as LASSO
(Wainwright’99), yet returns unbiased estimator

fast and scalable discretization as linearized Bregman Iteration

Yuan Yao Applied Hodge Theory
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From Social Choice to Personalized Ranking

Conflicts are due to personalization [Xu-...-Y.’2019]

cycles = personalized ranking + position bias + noise.

Linear mixed-effects model for annotator’s pairwise ranking:

yuij = (θi + δui )− (θj + δuj ) + γu + εuij , (5)

where

θi is the common global ranking score, as a fixed effect;

δui is the annotator’s preference deviation from the common
ranking θi such that θui := θi + δui is u’s personalized ranking;

γu is an annotator’s position bias, which captures the careless
behavior by clicking one side during the comparisons;

εuij is the random noise which is assumed to be independent
and identically distributed with zero mean and being bounded.

Yuan Yao Applied Hodge Theory
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From Social Choice to Personalized Ranking

Movielens Multilevel Rankings

Figure: A two-level preference learning in MovieLens: (a) The common preference with six representative
occupation group preference. (b) The purple is the common preference, the remaining 21 paths represent the
occupation group preferences, the red are the three groups with most distinct preferences from the common, the
blue are the three groups with most similar preferences to the common, and the green ones are the others
[Xu-Xiong-Huang-Cao-Y.’2019].

Yuan Yao Applied Hodge Theory



Outline Social Choice Hodge Theory Random Graphs Game Theory

From Social Choice to Personalized Ranking

Topological Obstructions

Two topological conditions are important:

Connectivity:
• G is connected ⇒ unique global ranking is possible;

Loop-free:
• for cyclic rankings, consider clique complex χ2

G = (V ,E ,T )
by attaching triangles T = {(i , j , k)}
• dim(ker(∆1)) = β1(χ2

G ), so harmonic ranking w = 0 if χ2
G

is loop-free, here topology plays a role of obstruction of
fixed-tournament
• “Triangular arbitrage-free implies arbitrage-free”

Yuan Yao Applied Hodge Theory
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From Social Choice to Personalized Ranking

Persistent Homology: online algorithm for topology
tracking (e.g Edelsbrunner-Harer’08)

Figure: Persistent Homology Barcodes

vertice, edges, and
triangles etc.
sequentially added

online update of
homology

O(m) for surface
embeddable complex;
and O(m2.xx) in
general (m number of
simplex)
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Phase Transitions in Topology

Random Graph Models for Crowdsourcing

Recall that in crowdsourcing ranking on internet,
• unspecified raters compare item pairs randomly
• online, or sequentially sampling

random graph models for experimental designs
• P a distribution on random graphs, invariant under
permutations (relabeling)
• Generalized de Finetti’s Theorem [Aldous 1983, Kallenberg
2005]: P(i , j) (P ergodic) is an uniform mixture of

h(u, v) = h(v , u) : [0, 1]2 → [0, 1],

h unique up to sets of zero-measure
• Erdös-Rényi: P(i , j) = P(edge) =

∫ 1
0

∫ 1
0 h(u, v)dudv =: p

• edge-independent process (Chung-Lu’06)

Yuan Yao Applied Hodge Theory
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Phase Transitions in Topology

Phase Transitions in Erdös-Rényi Random Graphs

Yuan Yao Applied Hodge Theory
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Phase Transitions in Topology

Phase Transitions of Large Random Graphs

For an Erdos-Renyi random graph G (n, p) with n vertices and each
edge independently emerging with probability p(n),

(Erdös-Rényi 1959) One phase-transition for β0

• p << 1/n1+ε (∀ε > 0), almost always disconnected
• p >> log(n)/n, almost always connected

(Kahle 2009) Two phase-transitions for βk (k ≥ 1)
• p << n−1/k or p >> n−1/(k+1), almost always βk vanishes;
• n−1/k << p << n−1/(k+1), almost always βk is nontrivial

For example: with n = 16, 75% distinct edges included in G , then
χG with high probability is connected and loop-free. In general,
O(n log(n)) samples for connectivity and O(n3/2) for loop-free.
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Phase Transitions in Topology

Three sampling methods

Uniform sampling with replacement (i.i.d.) (G0(n,m)).
• Each edge is sampled from the uniform distribution on

(
n
2

)
edges,

with replacement. This is a weighted graph and the sum of weights
is m.

Uniform sampling without replacement (G (n,m)).
• Each edge is sampled from the uniform distribution on the
available edges without replacement. For m ≤

(
n
2

)
, this is an

instance of the Erdös-Rényi random graph model G (n, p) with
p = m/

(
n
2

)
.

Greedy sampling (G?(n,m)).
• Each pair is sampled to maximize the algebraic connectivity of the
graph in a greedy way: the graph is built iteratively; at each
iteration, the Fiedler vector is computed and the edge (i , j) which
maximizes (ψi − ψj)

2 is added to the graph.
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Fiedler Value Asymptotics

Asymptotic Estimates for Fiedler Values
[Braxton-Xu-Xiong-Y., ACHA16]

Key Estimates of Fiedler Value near Connectivity Threshold.

G0(n,m) :
λ2

np
≈ a1(p0, n) := 1−

√
2

p0

√
1− 2

n
(6)

G (n,m) :
λ2

np
≈ a2(p0, n) := 1−

√
2

p0

√
1− p (7)

where p0 := 2m/(n log n) ≥ 1, p = p0 log n
n and

a(p0) = 1−
√

2/p0 + O(1/p0), for p0 � 1.
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Fiedler Value Asymptotics

Without-replacement as good as Greedy!

Figure: A comparison of the Fiedler value, minimal degree, and estimates
a(p0), a1(p0), and a2(p0) for graphs generated via random sampling
with/without replacement and greedy sampling at n = 64.
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Fiedler Value Asymptotics

Active Sampling [Xu-Xiong-Chen-Huang-Y. AAAI’18]

Fisher Information Maximization: Greedy sampling above,
unsupervised

Bayesian Information Maximization: supervised sampling
• closed-form online formula based on
Sherman-Morrison-Woodbury
• faster and more accurate sampling scheme in literature

Figure: Note: Crowd-BT is proposed by Chen et al. 2013
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Fiedler Value Asymptotics

Supervised active sampling is more accurate
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Fiedler Value Asymptotics

Both supervised and unsupervised sampling reduce the
chance of ranking chaos!
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Applications of Hodge Decomposition

Boundary Value Problem (Schwarz, Chorin-Marsden’92)

Computer vision
• Optical flow decomposition and regularization
(Yuan-Schnörr-Steidl’2008, etc.)
• Retinex theory and shade-removal
(Ma-Morel-Osher-Chien’2011)
• Relative attributes (Fu-Xiang-Y. et al. 2014)

Sensor Network coverage (Jadbabai et al.’10)

Statistical Ranking or Preference Aggregation
(Jiang-Lim-Y.-Ye’2011, etc.)

Decomposition of Finite Games
(Candogan-Menache-Ozdaglar-Parrilo’2011)
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From Single Utility to Multiple Utilities
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Game Theory: Multiple Utilities

Multiple Utility Flows for Games

O F

O 3, 2 0, 0

F 0, 0 2, 3

(a) Battle of the sexes

O F

O 4, 2 0, 0

F 1, 0 2, 3

(b) Modified battle of
the sexes

It is easy to see that these two games have the same pairwise comparisons, which will lead to
identical equilibria for the two games: (O, O) and (F, F ). It is only the actual equilibrium payoffs
that would differ. In particular, in the equilibrium (O, O), the payoff of the row player is increased
by 1.

The usual solution concepts in games (e.g., Nash, mixed Nash, correlated equilibria) are defined
in terms of pairwise comparisons only. Games with identical pairwise comparisons share the same
equilibrium sets. Thus, we refer to games with identical pairwise comparisons as strategically
equivalent games.

By employing the notion of pairwise comparisons, we can concisely represent any strategic-form
game in terms of a flow in a graph. We recall this notion next. Let G = (N, L) be an undirected
graph, with set of nodes N and set of links L. An edge flow (or just flow) on this graph is a function
Y : N × N → R such that Y (p,q) = −Y (q,p) and Y (p,q) = 0 for (p,q) /∈ L [21, 2]. Note that
the flow conservation equations are not enforced under this general definition.

Given a game G, we define a graph where each node corresponds to a strategy profile, and
each edge connects two comparable strategy profiles. This undirected graph is referred to as the
game graph and is denoted by G(G) � (E, A), where E and A are the strategy profiles and pairs
of comparable strategy profiles defined above, respectively. Notice that, by definition, the graph
G(G) has the structure of a direct product of M cliques (one per player), with clique m having
hm vertices. The pairwise comparison function X : E × E → R defines a flow on G(G), as it
satisfies X(p,q) = −X(q,p) and X(p,q) = 0 for (p,q) /∈ A. This flow may thus serve as an
equivalent representation of any game (up to a “non-strategic” component). It follows directly
from the statements above that two games are strategically equivalent if and only if they have the
same flow representation and game graph.

Two examples of game graph representations are given below.

Example 2.2. Consider again the “battle of the sexes” game from Example 2.1. The game graph
has four vertices, corresponding to the direct product of two 2-cliques, and is presented in Figure 2.

(O, O) (O, F )

(F, O) (F, F )

3 2

2

3

Figure 2: Flows on the game graph corresponding to “battle of the sexes” (Example 2.2).

Example 2.3. Consider a three-player game, where each player can choose between two strategies
{a, b}. We represent the strategic interactions among the players by the directed graph in Figure
3a, where the payoff of player i is −1 if its strategy is identical to the strategy of its successor
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Example 2.3. Consider a three-player game, where each player can choose between two strategies
{a, b}. We represent the strategic interactions among the players by the directed graph in Figure
3a, where the payoff of player i is −1 if its strategy is identical to the strategy of its successor
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Extension to multiplayer games: G = (V ,E )

V = {(x1, . . . , xn) =: (xi , x−i )} =
∏n

i=1 Si , n person game;

undirected edge: {(xi , x−i ), (x ′i , x−i )} = E

each player has utility function ui (xi , x−i );

Edge flow (1-form): ui (xi , x−i )− ui (x
′
i , x−i )
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Game Theory: Multiple Utilities

Nash and Correlated Equilibrium

π(xi , x−i ), a joint distribution tensor on
∏

i Si , satisfies ∀xi , x ′i ,∑
x−i

π(xi , x−i )(ui (xi , x−i )− ui (x
′
i , x−i )) ≥ 0,

i.e. expected flow (E[·|xi ]) is nonnegative. Then,

tensor π is a correlated equilibrium (CE, Aumann 1974);

if π is a rank-one tensor,

π(x) =
∏
i

µ(xi ),

then it is a Nash equilibrium (NE, Nash 1951);

pure Nash-equilibria are sinks;

fully decided by the edge flow data.
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Game Theory: Multiple Utilities

What is a correct notion of Equilibrium?

Players are never independent in reality, e.g. Bayesian decision
process (Aumman’87)

Finding NE is NP-hard, e.g. solving polynomial equations
(Sturmfels’02, Datta’03)

Finding CE is linear programming, easy for graphical games
(Papadimitriou-Roughgarden’08)

Some natural learning processes (best-response) converges to
CE (Foster-Vohra’97)
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Game Theory: Multiple Utilities

Another simplification: Graphical Games

n-players live on a network of n-nodes

player i utility only depends on its neighbor players N(i)
strategies

correlated equilibria allows a concise representation with
parameters linear to the size of the network (Kearns et al.
2001; 2003)

π(x) =
1

Z

n∏
i=1

ψi (xN(i))

• this is not rank-one, but low-order interaction
• reduce the complexity from O(e2n) to O(ne2d )
(d = maxi |N(i)|)
• polynomial algorithms for CE in tree and chodal graphs.
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Hodge Decomposition of Finite Games

Theorem (Candogan-Menache-Ozdaglar-Parrilo,2011)

Every finite game admits a unique decomposition:

Potential Games⊕ Harmonic Games⊕ Neutral Games

Furthermore:

Shapley-Monderer Condition: Potential games ≡
quadrangular-curl free

Extending G = (V ,E ) to complex by adding quadrangular
cells, harmonic games can be further decomposed into
(quadrangular) curl games
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Hodge Decomposition of Finite Games

Bimatrix Games

For bi-matrix game (A,B),

potential game is decided by ((A + A′)/2, (B + B ′)/2)

harmonic game is zero-sum ((A− A′)/2, (B − B ′)/2)

Computation of Nash Equilibrium:
• each of them is tractable
• however direct sum is NP-hard
• approximate potential game leads to approximate NE
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Hodge Decomposition of Finite Games

Example: Hodge Decomposition of Prisoner’s Dilemma

Note: Shapley-Monderer Condition ≡ Harmonic-free ≡
quadrangular-curl free
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Hodge Decomposition of Finite Games

What Does Hodge Decomposition Tell Us?

Does it suggest myopic greedy players might lead to

transient potential games + periodic equilibrium?
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Hodge Decomposition of Finite Games

Basic Reference

Jiang, Lim, Yao, and Ye, Mathematical Programming, 127(1):
203-244, 2011

Candogan, Menache, Ozdaglar, and Parrilo, Mathematics of
Operational Research, 36(3): 474-503, 2011

Yuan Yao Applied Hodge Theory



Outline Social Choice Hodge Theory Random Graphs Game Theory

Hodge Decomposition of Finite Games

More reference

Tran, N. M. Pairwise ranking: choice of method can produce arbitrarily different rank order.
arXiv:1103.1110v1 [stat.ME], 2011

Xu, Jiang, Yao, Huang, Yan, and Lin, ACM Multimedia, 2012

Random graph sampling models: Erdös-Rényi and beyond
• Xu, Jiang, Yao, Huang, Yan, and Lin, IEEE T. Multimedia, 2012

Online algorithms
• Xu, Huang, and Yao, ACM Multimedia 2012

l1-norm ranking
• Osting, Darbon, and Osher, 2012

Robust ranking:
• Xu, Xiong, Huang, and Yao, ACM Multimedia 2013
• Xu, Yang, Jiang, Cao, Huang, and Yao, CVPR 2019

Mixed Effect/Personalized HodgeRank:
• Xu, Xiong, Cao, and Yao, ACM Multimedia 2016
• Xu, Xiong, Huang, Cao, and Yao, IEEE T. PAMI, 2019
• Xu, Sun, Yang, Jiang, and Yao, NeurIPS 2019
• Xu, Yang, Jiang, and Yao, AAAI 2020

Active sampling
• Osting, Brune, and Osher, ICML 2013
• Osting, Xiong, Xu, and Yao, ACHA 2016
• Xu, Xiong, Chen, Huang, and Yao, AAAI 2018
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Hodge Decomposition of Finite Games

Summary

New challenges from modern crowdsourced ranking data

Hodge decomposition provides generalized Borda count in
classical Social Choice
• gradient flow, as generalized Borda count scores
• curls/local cycles, as local inconsistency
• harmonic flow, as global inconsistency or voting chaos

Such a decomposition has been seen in computational fluid
mechanics, computer vision, machine learning, sensor networks,
and game theory, etc. More are coming...
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