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Introduction

Learning parts of images – Image reconstruction

Original image – Cycle
(1938) by M.C. Escher

Reconstructed image
usinglearned dictionary

11 by 11 Dictionary learned
from Cycleby M.C. Escher

(basis)

Dic�onary learned from
Cycle by M. C. Escher

Original image -
Cycle by M. C. Escher (1928)

Reconstructed image
using learned dic�onary

I Dictionary learning enables a compressed representation of complex objects
using a few dictionary elements.

I Used in data compression, reconstruction, transfer learning, etc.
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Learning parts of images – Image reconstruction

Original image – Cycle
(1938) by M.C. Escher

Reconstructed image
usinglearned dictionary

11 by 11 Dictionary learned
from Cycleby M.C. Escher

(basis)

Dic�onary learned from
Cycle by M. C. Escher

Original image -
Cycle by M. C. Escher (1928)

Reconstructed image
using learned dic�onary

I Dictionary learning enables a compressed representation of complex objects
using a few dictionary elements.

I Used in data compression, reconstruction, transfer learning, etc.
I Img recons. = (local approx. by dict.) + (Averaging)

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams



Introduction

Simultaneous dictionary learning and outlier detection

 

  
  

 
 

Detected outlier 

 

Corrupted image Reconstructed image 
by ORNMF 
Dictionary learned  

I What defines an outlier? How can we detect them?

I Low-rank based approach – Outlier = Data - Low-rank approx.

I Dictionary-based approach – Outlier = Data - Reconstruction from dictionary

I Dictionary learning has to be done in a robust way
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Introduction

I Matrix Factorization is a fundamental tool in dictionary learning problems.
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I Formulated as an optimization problem:

minimize ‖X −WH‖+ λ1‖H‖1 (Reconstruction error)

subject to W ∈ C, H ∈ C′ (Constraints)

I Non-convex optimization problem → No guarantee for global convergence
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Introduction

I Robust Matrix Factorization enables simultaneous dictionary learning and
outlier detection
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Matrix Factorization - other examples

I Singular Value Decomposition (SVD):

minimize
W∈Rd×r ,H∈Rr×n

‖X −WH‖F

I Non-negative Matrix Factorization (NMF):

minimize
W∈Rd×r

≥0
,H∈Rr×n

≥0

‖X −WH‖F

- Corresponding dictionary columns can be interpreted as ‘parts’ of the data
matrix (Lee, Seung ’99 [lee1999learning])

I Subspace Clustering (may have r > d):

minimize
W∈Rd×r ,H group sparse

‖X −WH‖F

Matrix Completion, Probabilistic PCA, Sparse PCA, Robust PCA, Poisson PCA,

Heteroscedastic PCA, Bilinear Inverse Problems, Robust NMF, Max-Plus Factorization

... Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams
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Illustration of RMF application to images
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Online RMF

I Data matrix could be too large to be loaded in a memory or processed at once

I Only sub-matrices of a huge data set may be available through sampling

I We may want to learn from a complicated probability distribution on the
sample space of data – e.g., posterior distribution

I The Online Matrix Factorization (OMF) problem concerns a similar matrix
factorization problem for a sequence of input matrices (Xt)t≥0. 
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Reminder of matrix factorization

I Robust Matrix Factorization
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I Online RMF for streaming data:

Learn Robust Dictionary W from a seq. of data matrices (Xt)t≥0.

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams



ORMF algorithm and convergence result

2. ORMF algorithm and convergence result
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ORMF algorithm and convergence result

Online MF as Empirical Loss Minimization

I Fix λ > 0 and define the following the quadratic loss function

`(X ,W ) = inf
H∈C′⊆Rr×n, S∈Rd×n

‖X −WH − S‖2F + λ1‖H‖1 + λ2‖S‖1

Define the expected loss and empirical loss functions

f (W ) = EX∼π[`(X ,W )], ft(W ) =
1

t

t∑
s=1

`(Xs ,W )

I If (Xt)t≥0 is i.i.d. with common distribution π, then by SLLN,

lim
t→∞

ft(W ) = f (W ) a.s. for all W ∈ C.

I Same holds if (Xt)t≥0 is a Markov chain (irreducible, aperiodic, Harris
recurrent) by Markov chain ergodic theorem.

I Furthermore, for C compact, by Glivenko-Cantelli

lim
t→∞

sup
W∈C
‖ft(W )− f (W )‖ → 0 a.s.
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ORMF algorithm and convergence result

Online MF as Empirical Loss Minimization

I Fix λ > 0 and define the following the quadratic loss function

`(X ,W ) = inf
H∈C′⊆Rr×n

‖X −WH − S‖2F + λ‖H‖1,

Define the expected loss and empirical loss functions

f (W ) = EX∼π[`(X ,W )], ft(W ) =
1

t

t∑
s=1

`(Xs ,W )

I Empirical Loss (Risk) Minimization for Online RMF:

Input: (Markovian) Sequence of data matrices (Xt)t≥0, Xt ∼ π.

Objective: Wt = argminW∈Cft(W )

I But how do we minimize the empirical loss ft?

- ft is non-convex
- Each `(Xs ,W ) involves separate optimization
- Need to store all data X1, · · · ,Xt .
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ORMF algorithm and convergence result

Asymptotic solution minimizing surrogate loss function

I Online surrogate optimization algorithm:

Given Xt :

{
(Ht ,St) = argminH∈C′‖Xt −Wt−1H − S‖2F + λ1‖H‖1 + λ2‖S‖1
Wt = argminW∈C f̂t(W ),

where f̂t(W ) is a surrogate loss defined by

(ft(W ) ≤) f̂t(W ) =
1

t

t∑
s=1

(‖Xs −WHs − S‖2F + λ1‖Hs‖1 + λ2‖Ss‖1).

I Recycle the previously found codes H1, · · · ,Ht and outliers S1, · · · ,St and use
them as approximate solutions of the sub-problems.

I Block optimization + Majorization - Minimization (MM) + Convex relaxation

I Wt = argminW tr(WAtW
T )− 2tr(WBt) for summary matrices At , Bt
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ORMF algorithm and convergence result

Solving joint sparse coding problem

I We solve the following joint sparse coding problem by proximal gradient:

(Ht ,St) = argminH∈C′‖Xt −Wt−1H − S‖2F + λ1‖H‖1 + λ2‖S‖1 (1)

I Fix Wt−1 ∈ Rd×n and parameters α, β > 0. Define a d × (r + d) matrix

Gt−1 = [Wt−1, βId ]. (2)

Consider the following constrained LASSO problem

Vt = argmin V=[H,S′]

(H,S′)∈Ccode×Rd×n

‖Xt − Gt−1V ‖2F + α‖V ‖1. (3)

I Equivalent to the original problem for the choice α = λ1 and β = λ1/λ2:

‖Xt − Gt−1V ‖2F + α‖V ‖1 = ‖Xt −Wt−1H − βS ′‖2F + α‖H‖1 + α‖S ′‖1
= ‖Xt −Wt−1H − S‖2F + α‖H‖1 + (α/β)‖S‖1,

with change of variable S = βS ′.
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Consider the following constrained LASSO problem

Vt = argmin V=[H,S′]

(H,S′)∈Ccode×Rd×n

‖Xt − Gt−1V ‖2F + α‖V ‖1. (3)

I Equivalent to the original problem for the choice α = λ1 and β = λ1/λ2:

‖Xt − Gt−1V ‖2F + α‖V ‖1 = ‖Xt −Wt−1H − βS ′‖2F + α‖H‖1 + α‖S ′‖1
= ‖Xt −Wt−1H − S‖2F + α‖H‖1 + (α/β)‖S‖1,

with change of variable S = βS ′.

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams



ORMF algorithm and convergence result

f = expected loss, ft = empirical loss, f̂t = surrogate loss

Theorem (Cai, Lyu, Needell ’20+)

Suppose (Xt)t≥0 is a Hidden Markov chain (irreducible, aperiodic, finite state).
Let (Wt ,Ht ,St)t≥1 be a solution to the ORMF algorithm before.

(i) limt→∞ E[ft(Wt)] = limt→∞ E[f̂t(Wt)] <∞.

(ii) ft(Wt)− f̂t(Wt)→ 0 as t →∞ almost surely.

(iii) Wt → Set of critical points of f as t →∞ almost surely.

I IDEA: Condition on distant past + Control conditional error by MC mixing +
Control unconditional error by MC uniform functional CLT

I First convergence result for ORMF algorithms for Markovian input (even i.i.d.)

I A similar result was obtained for non-robust version by Lyu, Needell, and
Balzano 19’ for dependent data matrices.

I The first result of this kind was obtained for non-robust version by MBPS 10’
for i.i.d. data matrices.

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams



ORMF algorithm and convergence result

f = expected loss, ft = empirical loss, f̂t = surrogate loss

Theorem (Cai, Lyu, Needell ’20+)

Suppose (Xt)t≥0 is a Hidden Markov chain (irreducible, aperiodic, finite state).
Let (Wt ,Ht ,St)t≥1 be a solution to the ORMF algorithm before.

(i) limt→∞ E[ft(Wt)] = limt→∞ E[f̂t(Wt)] <∞.

(ii) ft(Wt)− f̂t(Wt)→ 0 as t →∞ almost surely.

(iii) Wt → Set of critical points of f as t →∞ almost surely.

I IDEA: Condition on distant past + Control conditional error by MC mixing +
Control unconditional error by MC uniform functional CLT

I First convergence result for ORMF algorithms for Markovian input (even i.i.d.)

I A similar result was obtained for non-robust version by Lyu, Needell, and
Balzano 19’ for dependent data matrices.

I The first result of this kind was obtained for non-robust version by MBPS 10’
for i.i.d. data matrices.

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams



ORMF algorithm and convergence result

f = expected loss, ft = empirical loss, f̂t = surrogate loss

Theorem (Cai, Lyu, Needell ’20+)

Suppose (Xt)t≥0 is a Hidden Markov chain (irreducible, aperiodic, finite state).
Let (Wt ,Ht ,St)t≥1 be a solution to the ORMF algorithm before.

(i) limt→∞ E[ft(Wt)] = limt→∞ E[f̂t(Wt)] <∞.

(ii) ft(Wt)− f̂t(Wt)→ 0 as t →∞ almost surely.

(iii) Wt → Set of critical points of f as t →∞ almost surely.

I IDEA: Condition on distant past + Control conditional error by MC mixing +
Control unconditional error by MC uniform functional CLT

I First convergence result for ORMF algorithms for Markovian input (even i.i.d.)

I A similar result was obtained for non-robust version by Lyu, Needell, and
Balzano 19’ for dependent data matrices.

I The first result of this kind was obtained for non-robust version by MBPS 10’
for i.i.d. data matrices.

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams



ORMF algorithm and convergence result

f = expected loss, ft = empirical loss, f̂t = surrogate loss

Theorem (Cai, Lyu, Needell ’20+)

Suppose (Xt)t≥0 is a Hidden Markov chain (irreducible, aperiodic, finite state).
Let (Wt ,Ht ,St)t≥1 be a solution to the ORMF algorithm before.

(i) limt→∞ E[ft(Wt)] = limt→∞ E[f̂t(Wt)] <∞.

(ii) ft(Wt)− f̂t(Wt)→ 0 as t →∞ almost surely.

(iii) Wt → Set of critical points of f as t →∞ almost surely.

I IDEA: Condition on distant past + Control conditional error by MC mixing +
Control unconditional error by MC uniform functional CLT

I First convergence result for ORMF algorithms for Markovian input (even i.i.d.)

I A similar result was obtained for non-robust version by Lyu, Needell, and
Balzano 19’ for dependent data matrices.

I The first result of this kind was obtained for non-robust version by MBPS 10’
for i.i.d. data matrices.

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams



ORMF algorithm and convergence result

f = expected loss, ft = empirical loss, f̂t = surrogate loss

Theorem (Cai, Lyu, Needell ’20+)

Suppose (Xt)t≥0 is a Hidden Markov chain (irreducible, aperiodic, finite state).
Let (Wt ,Ht ,St)t≥1 be a solution to the ORMF algorithm before.

(i) limt→∞ E[ft(Wt)] = limt→∞ E[f̂t(Wt)] <∞.

(ii) ft(Wt)− f̂t(Wt)→ 0 as t →∞ almost surely.

(iii) Wt → Set of critical points of f as t →∞ almost surely.

I IDEA: Condition on distant past + Control conditional error by MC mixing +
Control unconditional error by MC uniform functional CLT

I First convergence result for ORMF algorithms for Markovian input (even i.i.d.)

I A similar result was obtained for non-robust version by Lyu, Needell, and
Balzano 19’ for dependent data matrices.

I The first result of this kind was obtained for non-robust version by MBPS 10’
for i.i.d. data matrices.

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams



ORMF algorithm and convergence result

f = expected loss, ft = empirical loss, f̂t = surrogate loss

Theorem (Cai, Lyu, Needell ’20+)

Suppose (Xt)t≥0 is a Hidden Markov chain (irreducible, aperiodic, finite state).
Let (Wt ,Ht ,St)t≥1 be a solution to the ORMF algorithm before.

(i) limt→∞ E[ft(Wt)] = limt→∞ E[f̂t(Wt)] <∞.

(ii) ft(Wt)− f̂t(Wt)→ 0 as t →∞ almost surely.

(iii) Wt → Set of critical points of f as t →∞ almost surely.

I IDEA: Condition on distant past + Control conditional error by MC mixing +
Control unconditional error by MC uniform functional CLT

I First convergence result for ORMF algorithms for Markovian input (even i.i.d.)

I A similar result was obtained for non-robust version by Lyu, Needell, and
Balzano 19’ for dependent data matrices.

I The first result of this kind was obtained for non-robust version by MBPS 10’
for i.i.d. data matrices.

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams



ORMF algorithm and convergence result

Notations

I Fix λ > 0 and define the following the quadratic loss function

`(X ,W ) = inf
H∈C⊆Rr×n,S∈Rr×d

‖X −WH − S‖2F + λ1‖H‖1 + λ2‖S‖1,

Define the expected loss and empirical loss functions

f (W ) = EX∼π[`(X ,W )], ft(W ) =
1

t

t∑
s=1

`(Xs ,W )

I Online surrogate optimization algorithm:

Given Xt :

{
(Ht ,St) = argminH∈C′‖Xt −Wt−1H − S‖2F + λ1‖H‖1 + λ2‖S‖1
Wt = argminW∈C f̂t(W ),

where f̂t(W ) is a surrogate loss defined by

(ft(W ) ≤) f̂t(W ) =
1

t

t∑
s=1

(‖Xs −WHs − S‖2F + λ1‖Hs‖1 + λ2‖Ss‖1).

I WTS:Wt converges to the set of critical points of the expected loss f
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ORMF algorithm and convergence result

f = expected loss, ft = empirical loss, f̂t = surrogate loss

Proposition

(i) f̂t+1(Wt+1)− f̂t(Wt) ≤ 1
t+1 (`(Xt+1,Wt)− ft(Wt)).

(ii) 0 ≤ 1
t+1

(
f̂t(Wt)− ft(Wt)

)
≤ 1

t+1
(`(Xt+1,Wt)− ft(Wt)) + f̂t(Wt)− f̂t+1(Wt+1).

Sketch of main argument:

I
∑∞

t=0 E
[

1
t+1 (`(Xt+1,Wt)− ft(Wt))+

]
<∞ implies E[f̂t(Wt)] converges.

I
∑∞

t=0 E
[

1
t+1

(
f̂t(Wt)− ft(Wt)

)]
<∞ implies f̂t(Wt)− ft(Wt)→ 0 a.s.

I ft ≤ f̂t , Wt = argmin f̂t , f̂t(Wt)− ft(Wt)→ 0 a.s. imply

Wt → Set of critical points of f a.s.

Suffices to show
∞∑
t=0

∣∣∣∣E [ 1

t + 1
(`(Xt+1,Wt)− ft(Wt))

]∣∣∣∣ <∞
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ORMF algorithm and convergence result

Key estimate in the i.i.d. case

I Suffices to show
∑∞

t=0

∣∣∣E [ 1
t+1 (`(Xt+1,Wt)− ft(Wt))

]∣∣∣ <∞

I Suppose data matrices Xt are i.i.d. and let Ft denote the information up to
time t. Then∣∣∣∣E [`(Xt+1,Wt)− ft(Wt)

∣∣∣∣Ft

]∣∣∣∣ ≤ |EX∼π[`(X ,Wt)]− ft(Wt)|

= |f (Wt)− ft(Wt)| ≤ ‖f − ft‖∞

I ‖f − ft‖∞→ 0 Glivenko-Cantelli Thm. (W ∈ Compact set)
I E[t1/2‖f − ft‖∞] = O(1) by uniform functional CLT
I Averaging over Ft , this gives∣∣∣∣E [ 1

t + 1
(`(Xt+1,Wt)− ft(Wt))

]∣∣∣∣ ≤ E
[∣∣∣∣E [ (`(Xt+1,Wt)− ft(Wt))

t + 1

∣∣∣∣Ft

]∣∣∣∣]
≤ t−3/2E[t1/2‖f − ft‖∞]

= O(t−3/2).
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ORMF algorithm and convergence result

Key estimate in the Markovian case

I If (Xt)t≥0 is Markovian, then

E[`(Xt+1,W ) | Ft ] 6= EX∼π[`(X ,W )] = f (Wt).

I Instead, condition on a distant past Ft−N and see how much the chain
mixes to the stationary distribution during [t − N, t].∣∣∣∣E[`(Xt+1,W ) | Ft−N ]− f (W )

∣∣∣∣ ≤ 2‖`(·,W )‖∞‖PN+1(x, ·)− π‖TV .

I The TV distance decays exponentially in N

I Choose N = N(t) appropriately and average over Ft−N .
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Applications: Dictionary learning from networks

3. Applications: Dictionary learning from Facebook networks
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Applications: Dictionary learning from networks

Facebook100 network data - UCLA26

I Traud, Mucha, Porter ’12

I Snapshot of UCLA FB ntwk
on Sep. 2005

I (i , j)-entry =
1(user i and j are friends)

I Number of nodes = 20467

I Number of edges = 747613

I Edge density = 0.00357

I Figure shows only the
network on first 3000 nodes
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Applications: Dictionary learning from networks

Facebook100 network data - Caltech36

I Traud, Mucha, Porter ’12

I Snapshot of Caltech FB ntwk
on Sep. 2005

I (i , j)-entry =
1(user i and j are friends)

I Number of nodes = 769

I Number of edges = 8328

I Edge density = 0.05640
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Applications: Dictionary learning from networks

 

  

Cycle (1938) by M.C. Escher 

Image Dictionary  

Network 
Dictionary  
Learning 

Network data   

reconstruction  

Interpretable parts 

(Dictionary) 

Network  

Motif  

Sample  

MCMC Motif sampling  

Memoli, Lyu, Sivakoff (2019+) 

Dictionary  

Dictionary  

Dictionary  

⋮ 

𝐷𝑎𝑡𝑎  

𝐷𝑎𝑡𝑎  

𝐷𝑎𝑡𝑎  

⋮ 

Lyu, Needell, Balzano (2019+) 

Online Matrix Factorization  
for Markovian data 

+  

(Low-rank basis) 

UCLA26 Facebook network Caltech36 Facebook network 

Network Dictionary  Network Dictionary  

Main question: Can we learn parts of networks like we do for the images?

Answer: Network Dictionary Learning (Lyu, Needell, and Balzano ’19)

I Theoretical background: MCMC, motif sampling, Markov chains, Optimizaion,
Online Matrix Factorization.

I Applications: Network + (compression, completion, comparison, classification,
visualization, inference)
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Applications: Dictionary learning from networks

MCMC motif sampling + OMF dictionary learning

 

z  

 

MCMC Motif sampling from network 

11 by 11 Network Dictionary 
from UCLA FB network 

Reconstructed UCLA FB 
network 

Original UCLA FB network 

Minibatches of collected 
subgraph patterns  

⋮ 

⋮ Limiting Dictionary 

⋮ 

Online Nonnegative Matrix Factorization 

Dictionary  

Dictionary  

Dictionary  
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Applications: Dictionary learning from networks

Network Dictionary Learning – UCLA26

Original UCLA26FBnetwork 25 Network Dictionary of size21
learned from UCLA26FBntwk
25 Dic�onary of size 21
learned from UCLA26 FB ntwk

Original UCLA26 FB Ntwk

I Extract k-node subgraph patterns by k-chain motif sampling from UCLA26

I Let k = 21, so that dim(all subgraph patterns) =
(
21
2

)
− 20 = 200.

I On the right: rank-25 (approximate) basis for subgraph patterns in UCLA26
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Applications: Dictionary learning from networks

Network Dictionary Learning – Reconstructing UCLA from UCLA

z11 by 11Network Dictionary
from UCLAFBnetwork

Reconstructed UCLAFB
network

Original UCLAFBnetwork25 Dic�onary learned from
UCLA26 FB ntwk

Original UCLA26 FB Ntwk Reconstructed UCLA Ntwk
using Dict. learned from UCLA

I Can we reconstruct the original network using the learned dictionary?
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Learning parts of networks – Reconstructing UCLA from UCLA

z11 by 11Network Dictionary
from UCLAFBnetwork

Reconstructed UCLAFB
network

Original UCLAFBnetwork25 Dic�onary learned from
UCLA26 FB ntwk

Original UCLA26 FB Ntwk Reconstructed UCLA Ntwk
using Dict. learned from UCLA

I 95% of reconstruction accuracy (# common edges)/(# edges in original)

I Ntwk recons. = (local approx. by dict.) + (Averaging) + (Rounding)

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams
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Network Dictionary Learning – Caltech36

Original Caltech36FBntwk 25Network Dictionary of size21
learned from Caltech36FBntwkOriginal Caltech FB Ntwk 25 Dic�onary of size 21
learned from Caltech36 FB ntwk

I Extract k-node subgraph patterns by k-chain motif sampling from Caltech36

I We choose k = 21, so that dim(all subgraph patterns) =
(
21
2

)
− 20 = 200.

I On the right: rank-25 (approximate) basis for subgraph patterns in Caltech36

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams
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Network Dictionary Learning – Reconstructing Caltech from Caltech

Original Caltech FB
network

21 by 21 Network Dictionary
from CaltechFBnetwork

Reconstructed Caltech FB
network

25 Dic�onary learned from
Caltech36 FB ntwk

Original Caltech36 FB Ntwk Recons. Caltech ntwk using
Dict. learned from Caltech

I 85% of reconstruction accuracy (# common edges)/(# edges in original)

I Ntwk recons. = (local approx. by dict.) + (Averaging) + (Rounding)

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams
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Network Dictionary Learning - Self-reconstruction accuracies
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Learning parts of networks – Reconstructing Caltech from Escher

21 by21Dictionary learned
fromCycleby M.C. Escher

Original CaltechFBnetwork Reconstructed Caltechntwk
from Dict. learned from Escher

100 Dic�onary learned from
Cycle by M. C. Escher

Original Caltech FB Ntwk
Reconstructed Caltech Ntwk
using Dict. learned from Escher

I Can we use dictionary learned from Escher to reconstruct Caltech?

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams
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Learning parts of networks – Reconstructing Caltech from Escher

21 by21Dictionary learned
fromCycleby M.C. Escher

Original CaltechFBnetwork Reconstructed Caltechntwk
from Dict. learned from Escher

100 Dic�onary learned from
Cycle by M. C. Escher

Original Caltech FB Ntwk
Reconstructed Caltech Ntwk
using Dict. learned from Escher

I # edges in original ntwk = 16656

I # edges in reconstructed ntwk = 34

I # common edges = 0. (Zero reconstruction accuracy)

I Non-example of transfer learning

Hanbaek Lyu (UCLA) Online robust matrix factorization for dependent data streams
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 Caltech from Caltech 
Caltech from UCLA 
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Network Dictionary Learning - Cross-reconstruction accuracies
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Related current/future works

1. Applications/Implications of Network Dictionary Learning
I Completion, inference, and transfer learning for social network data (joint

with Kureh and Porter)
I Edge completion, outlier detection on networks

2. Deep neural networks + Matrix factorization
I Topic-aware chatbot using Recurrent NN and NMF (joint with summer

REU students and Needell)

3. Learning parts of tensor data
I Hyper-motif sampling from hyper-networks
I Online tensor factorization for Markovian data (joint with Needell,

Strohmeier) (c.f., no convergence known even for the i.i.d. case)
Applications: Dict. learning for video, and trajectory of evolving networks,

dynamic topic modeling

4. Further extension of Online Matrix Factorization
I OMF for variable number of dictionaries (added optimization dimension)
I OMF for non-stationary data matrices (what do we want to learn in this

case?)
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Thanks!
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