Accelerated Outlier Detection in Low-Rank and Structured Data: Robust PCA and Extensions

HanQin Cai
Department of Mathematics
University of California at Los Angeles

Seminar on Applied Math and Data Science
March $25^{\text {st }}, 2020$

Outline

(1) Introduction
(2) Existing Approaches with Theoretical Guarantee
(3) Proposed Approach
(4) Numerical Experiments
(5) Extension to Low-Rank Hankel Recovery
(6) Conclusion and Future Work

Principal Component Analysis (PCA)

- Principal Component Analysis (PCA), a.k.a. the best low rank approximation:

$$
\begin{aligned}
& \underset{\boldsymbol{L}^{\prime}}{\operatorname{minimize}}\left\|\boldsymbol{D}-\boldsymbol{L}^{\prime}\right\|_{F} \\
& \text { subject to } \operatorname{rank}\left(\boldsymbol{L}^{\prime}\right) \leq r
\end{aligned}
$$

- Fundamental tool for dimension reduction
- Can be efficiently solved via truncated singular-value decomposition (SVD) \mathcal{H}_{r} :

$$
\mathcal{H}_{r}(\boldsymbol{D})=\mathcal{H}_{r}\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)=\boldsymbol{U} \boldsymbol{\Sigma}_{r} \boldsymbol{V}^{T}
$$

where $\boldsymbol{\Sigma}_{r}$ keeps only the first r singular values.

Principal Component Analysis (PCA)

- PCA, a.k.a. the best low rank approximation.
- Solved efficiently via truncated SVD \mathcal{H}_{r}.
- Tolerates small (zero-mean) noise, but over-sensitive to outliers.

Robust PCA

- Given $\boldsymbol{D}=\boldsymbol{L}+\boldsymbol{S} \in \mathbb{R}^{m \times n}$, where \boldsymbol{L} is low rank and \boldsymbol{S} is sparse.

Robust PCA

- Given $\boldsymbol{D}=\boldsymbol{L}+\boldsymbol{S} \in \mathbb{R}^{m \times n}$, where \boldsymbol{L} is low rank and \boldsymbol{S} is sparse.
- Split/recover L, S from D:

$$
\begin{align*}
& \underset{\boldsymbol{L}^{\prime}, \boldsymbol{S}^{\prime}}{\operatorname{minimize}}\left\|\boldsymbol{D}-\boldsymbol{L}^{\prime}-\boldsymbol{S}^{\prime}\right\|_{F} \tag{1}\\
& \text { subject to } \operatorname{rank}\left(\boldsymbol{L}^{\prime}\right) \leq r,\left\|\boldsymbol{S}^{\prime}\right\|_{0} \leq \alpha m n
\end{align*}
$$

where α is the sparsity level of \boldsymbol{S}, compared to its size.

- Non-convex problem
- Tolerates outliers better.

Applications

- Video background subtraction with static background

Applications

- Video background subtraction with static background
- Face recognition

Applications

- Video background subtraction with static background
- Face recognition
- System identification
- Fault isolation
- Netflix problem
- and more ...

RPCA is III-Posed without Assumptions

Cannot have a unique decomposition if \boldsymbol{D} is both low rank and sparse.

$$
\begin{aligned}
{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 0
\end{array}\right] } & =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\ldots
\end{aligned}
$$

Assumption A1 for Uniqueness of Solution

- $L \in \mathbb{R}^{m \times n}$ is rank- r with μ-incoherence, i.e.,

$$
\begin{aligned}
\max _{i}\left\|\boldsymbol{e}_{i}^{T} \boldsymbol{U}\right\|_{2} & \leq \sqrt{\frac{\mu r}{m}} \\
\max _{j}\left\|\boldsymbol{e}_{j}^{T} \boldsymbol{V}\right\|_{2} & \leq \sqrt{\frac{\mu r}{n}}
\end{aligned}
$$

where $\boldsymbol{L}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ is the SVD of \boldsymbol{L}.

- $\mu \in[1, \max \{m, n\} / r]$
- Smaller μ is better, which implies the entries of L are not too spiky/sparse. - Energy is evenly distributed among the entries of \boldsymbol{L}.

Assumption A2 for Uniqueness of Solution

- $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ is α-sparse, i.e., \boldsymbol{S} has at most αn non-zero entries in each row, and at most αm non-zero entries in each column.
- Non-zero entries are not locally dense.
- Satisfied with high probability if the support of \boldsymbol{S} is drawn by some stochastic methods.
- Bernoulli process
- Uniform sampling

Outline

(1) Introduction

(2) Existing Approaches with Theoretical Guarantee

- Convex Methods
- Non-Convex Methods
(3) Proposed Approach

4) Numerical Experiments
(5) Extension to Low-Rank Hankel Recovery

6 Conclusion and Future Work

Outline

(1) Introduction

(2) Existing Approaches with Theoretical Guarantee

- Convex Methods
- Non-Convex Methods
(3) Proposed Approach

4) Numerical Experiments
(5) Extension to Low-Rank Hankel Recovery
(6) Conclusion and Future Work

Convex Relaxation

- Consider convex Principal Component Pursuit (PCP):

$$
\begin{align*}
& \underset{\boldsymbol{L}^{\prime}, \boldsymbol{S}^{\prime}}{\operatorname{minimize}}\left\|\boldsymbol{L}^{\prime}\right\|_{*}+\lambda\left\|\boldsymbol{S}^{\prime}\right\|_{1} \tag{2}\\
& \text { subject to } \boldsymbol{L}^{\prime}+\boldsymbol{S}^{\prime}=\boldsymbol{D}
\end{align*}
$$

- Nuclear norm term for low rank
$-\|\boldsymbol{L}\|_{*}=\sum_{i=1}^{r} \sigma_{i}(\boldsymbol{L})$
- Vector ℓ_{1}-norm term for sparsity, where \boldsymbol{S} is viewed as a long vector $-\|\boldsymbol{S}\|_{1}=\sum_{i j}\left|S_{i j}\right|$

Recovery Guarantee of PCP

If $\lambda=\sqrt{1 / \max \{m, n\}}$ is chosen, then, with high probability, the solution of convex PCP

$$
\begin{aligned}
& \underset{\boldsymbol{L}^{\prime}, \boldsymbol{S}^{\prime}}{\operatorname{minimize}}\left\|\boldsymbol{L}^{\prime}\right\|_{*}+\lambda\left\|\boldsymbol{S}^{\prime}\right\|_{1} \\
& \text { subject to } \boldsymbol{L}^{\prime}+\boldsymbol{S}^{\prime}=\boldsymbol{D}
\end{aligned}
$$

is exact the solution of original non-convex Robust PCA problem

$$
\begin{aligned}
& \underset{\boldsymbol{L}^{\prime}, \mathbf{\prime}^{\prime}}{\operatorname{mimize}}\left\|\boldsymbol{D}-\boldsymbol{L}^{\prime}-\boldsymbol{S}^{\prime}\right\|_{F} \\
& \text { subject to } \operatorname{rank}\left(\boldsymbol{L}^{\prime}\right) \leq r,\left\|\boldsymbol{S}^{\prime}\right\|_{0} \leq \alpha m n
\end{aligned}
$$

under some natural conditions. [Candès, Li, Ma, Wright, 2009]

Algorithms for PCP

- Off-the-shelf solver
- CVX package for Matlab
\square Based on semidefinite programming
$\square O\left(n^{6}\right)$ - expensive
\square Cannot handle problem larger than 200×200 dimension

Algorithms for PCP

- Off-the-shelf solver
- CVX package for Matlab
\square Based on semidefinite programming
$\square O\left(n^{6}\right)$ - expensive
\square Cannot handle problem larger than 200×200 dimension
- Alternating direction method of multipliers (ADMM)
- Consider the augmented Lagrangian

$$
\ell(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{Y})=\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\langle\boldsymbol{Y}, \boldsymbol{D}-\boldsymbol{L}-\boldsymbol{S}\rangle+\frac{\eta}{2}\|\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{S}\|_{F}^{2}
$$

- Updating $\boldsymbol{L}, \boldsymbol{S}$ and dual variable \boldsymbol{Y} alternatively

Algorithms for PCP

- Off-the-shelf solver
- CVX package for Matlab
\square Based on semidefinite programming
$\square O\left(n^{6}\right)$ - expensive
\square Cannot handle problem larger than 200×200 dimension
- Alternating direction method of multipliers (ADMM)
- Consider the augmented Lagrangian

$$
\ell(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{Y})=\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\langle\boldsymbol{Y}, \boldsymbol{D}-\boldsymbol{L}-\boldsymbol{S}\rangle+\frac{\eta}{2}\|\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{S}\|_{F}^{2}
$$

- Updating $\boldsymbol{L}, \boldsymbol{S}$ and dual variable \boldsymbol{Y} alternatively
- Convergence of ADMM has been well studied
- Good per-iteration complexity, but sublinear convergence rate

Outline

(1) Introduction
(2) Existing Approaches with Theoretical Guarantee

- Convex Methods
- Non-Convex Methods
- Gradient Descent
- Alternating Projections
(3) Proposed Approach
(4) Numerical Experiments
(5) Extension to Low-Rank Hankel Recovery
(6) Conclusion and Future Work

Gradient Descent (GD)

- Updating L :
- Consider $\boldsymbol{L}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=\left(\boldsymbol{U} \boldsymbol{\Sigma}^{1 / 2}\right)\left(\boldsymbol{\Sigma}^{1 / 2} \boldsymbol{V}^{T}\right):=\boldsymbol{P} \boldsymbol{Q}^{T}$
- Gradient descent on $\boldsymbol{P}, \boldsymbol{Q}$ separately, based on objective function:

$$
\begin{equation*}
\underbrace{\frac{1}{2}\left\|\boldsymbol{P} \boldsymbol{Q}^{T}+\boldsymbol{S}-\boldsymbol{D}\right\|_{F}^{2}}_{\text {loss function }}+\underbrace{\frac{1}{8}\left\|\boldsymbol{P}^{T} \boldsymbol{P}-\boldsymbol{Q}^{T} \boldsymbol{Q}\right\|_{F}^{2}}_{\text {keep scale being close }} \tag{3}
\end{equation*}
$$

- Enforce incoherence on $\boldsymbol{P}, \boldsymbol{Q}$ after gradient descent
- Updating S:
- Sparsification operator \mathcal{F}_{α}
\square Keeps only the largest α-fraction elements per row and column
\square Partial sorting on each row and column - expensive with larger α
[Yi, Park, Chen, Caramanis, 2016]

Recovery Guarantee of GD

- The output $\left(\boldsymbol{P}_{k}, \boldsymbol{Q}_{k}\right)$ of GD satisfies

$$
\left\|\boldsymbol{P}_{k} \boldsymbol{Q}_{k}^{T}-\boldsymbol{L}\right\|_{F} \leq \varepsilon
$$

in $O(\kappa \log (1 / \varepsilon))$ iterations if followings are satisfied:

- \boldsymbol{L} is μ-incoherent
$-\boldsymbol{S}$ is α-sparse with $\alpha \leq O\left(\min \left\{\frac{1}{\mu r^{1.5} \kappa^{1.5}}, \frac{1}{\mu r \kappa^{2}}\right\}\right)$
- $\gamma=2$: parameter for sparsification
- $\eta \leq 1 / 36 \sigma_{1}^{L}$: step size for gradient descent
- Linear convergence with rate of $1-O(1 / \kappa)$.
κ : condition number of L

Alternating Projections (AltProj)

Consider two sets:

- $\mathcal{M}_{r}=\left\{\boldsymbol{L} \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(\boldsymbol{L}) \leq r\right\}$
- $\mathcal{S}_{\alpha}=\left\{\boldsymbol{S} \in \mathbb{R}^{m \times n} \mid \boldsymbol{S}\right.$ is α-sparse $\}$

Alternating Projections (AltProj)

Consider two sets:

- $\mathcal{M}_{r}=\left\{\boldsymbol{L} \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(\boldsymbol{L}) \leq r\right\}$
- $\mathcal{S}_{\alpha}=\left\{\boldsymbol{S} \in \mathbb{R}^{m \times n} \mid \boldsymbol{S}\right.$ is α-sparse $\}$
- Find $\left\{(\boldsymbol{L}, \boldsymbol{S}) \mid \boldsymbol{L} \in \mathcal{M}_{r}, \boldsymbol{S} \in \mathcal{S}_{\alpha}\right.$ and $\left.\boldsymbol{L}+\boldsymbol{S}=\boldsymbol{D}\right\}$

Alternating Projections (AltProj)

Consider two sets:

- $\mathcal{M}_{r}=\left\{\boldsymbol{L} \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(\boldsymbol{L}) \leq r\right\}$
- $\mathcal{S}_{\alpha}=\left\{\boldsymbol{S} \in \mathbb{R}^{m \times n} \mid \boldsymbol{S}\right.$ is α-sparse $\}$
- Find $\left\{(\boldsymbol{L}, \boldsymbol{S}) \mid \boldsymbol{L} \in \mathcal{M}_{r}, \boldsymbol{S} \in \mathcal{S}_{\alpha}\right.$ and $\left.\boldsymbol{L}+\boldsymbol{S}=\boldsymbol{D}\right\}$

Updating:

- $\boldsymbol{L}_{\text {new }}=\mathcal{H}_{r}\left(\boldsymbol{D}-\boldsymbol{S}_{\text {old }}\right)$.
- \mathcal{H}_{r} : truncated SVD - expensive
- $\boldsymbol{S}_{\text {new }}=\mathcal{T}_{\zeta}\left(\boldsymbol{D}-\boldsymbol{L}_{\text {new }}\right)$.
$-\mathcal{T}_{\zeta}(x)=x \cdot \mathbb{1}_{\{|x|>\zeta\}}:$ hard-thresholding
- Choose ζ such that $\operatorname{supp}\left(\boldsymbol{S}_{\text {new }}\right) \subset \operatorname{supp}(\boldsymbol{S})$
[Netrapalli, Niranjan, Sanghavi, Anandkumar, Jain, 2014]

Illustration of Alternating Projections

Alternating Projections (AltProj)

Consider two sets:

- $\mathcal{M}_{r}=\left\{\boldsymbol{L} \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(\boldsymbol{L}) \leq r\right\}$
- $\mathcal{S}_{\alpha}=\left\{\boldsymbol{S} \in \mathbb{R}^{m \times n} \mid \boldsymbol{S}\right.$ is α-sparse $\}$
- Find $\left\{(\boldsymbol{L}, \boldsymbol{S}) \mid \boldsymbol{L} \in \mathcal{M}_{r}, \boldsymbol{S} \in \mathcal{S}_{\alpha}\right.$ and $\left.\boldsymbol{L}+\boldsymbol{S}=\boldsymbol{D}\right\}$

Updating:

- $\boldsymbol{L}_{\text {new }}=\mathcal{H}_{r}\left(\boldsymbol{D}-\boldsymbol{S}_{\text {old }}\right) ; \quad \boldsymbol{S}_{\text {new }}=\mathcal{T}_{\zeta}\left(\boldsymbol{D}-\boldsymbol{L}_{\text {new }}\right)$.

Break algorithm into r stages:

- At the $t^{t h}$ stage, use \mathcal{H}_{t} instead of \mathcal{H}_{r}
- Overcome the case of bad condition number of \boldsymbol{L}
[Netrapalli, Niranjan, Sanghavi, Anandkumar, Jain, 2014]

Recovery Guarantee of AltProj

- The output $\left(\boldsymbol{L}_{t, k}, \boldsymbol{S}_{t, k}\right)$ of AltProj satisfies

$$
\begin{aligned}
& \left\|\boldsymbol{L}_{t, k}-\boldsymbol{L}\right\|_{F} \leq \varepsilon, \quad\left\|\boldsymbol{S}_{t, k}-\boldsymbol{S}\right\|_{\infty} \leq \varepsilon / \sqrt{m n}, \\
& \quad \text { and } \operatorname{supp}\left(\boldsymbol{S}_{t, k}\right) \subset \operatorname{supp}(\boldsymbol{S})
\end{aligned}
$$

in $O\left(t \log _{\frac{1}{2}} \varepsilon\right)$ iterations if followings are satisfied:

- \boldsymbol{L} is μ-incoherent
- \boldsymbol{S} is α-sparse with $\alpha \leq \frac{1}{512 \mu r}$
$-\beta=4 \mu r / \sqrt{m n}$: parameter for thresholding
- Linear convergence with rate of $1 / 2$, at $t^{t h}$ stage.

Outline

(1) Introduction

(2) Existing Approaches with Theoretical Guarantee
(3) Proposed Approach

- Algorithm Design
- Theoretical Guarantee

4) Numerical Experiments
(5) Extension to Low-Rank Hankel Recovery

6 Conclusion and Future Work

Outline

(1) Introduction

(2) Existing Approaches with Theoretical Guarantee
(3) Proposed Approach

- Algorithm Design
- Theoretical Guarantee

4 Numerical Experiments
(5) Extension to Low-Rank Hankel Recovery
(6) Conclusion and Future Work

Key Idea

- AltProj is fast enough when updating \boldsymbol{S} with hard thresholding, but using truncated SVD for \boldsymbol{L} updating can still be very expensive when the problem size is larger.
- Accelerating by first projecting $\boldsymbol{D}-\boldsymbol{S}_{\text {old }}$ onto some local low dimensional subspace before obtaining a new estimate of \boldsymbol{L} via truncated SVD.

The Low Dimensional Subspace

- $\mathcal{M}_{r}=\left\{\boldsymbol{L} \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(\boldsymbol{L}) \leq r\right\}$ is a Riemannian manifold.
- Tangent space of \mathcal{M}_{r} at \boldsymbol{L}

$$
T=\left\{\boldsymbol{U} \boldsymbol{A}^{T}+\boldsymbol{B} \boldsymbol{V}^{T} \mid \boldsymbol{A} \in \mathbb{R}^{n \times r}, \boldsymbol{B} \in \mathbb{R}^{m \times r}\right\}
$$

where $\boldsymbol{L}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ is the SVD of \boldsymbol{L}.

- The low dimensional subspace we want, but don't have in practice.
- Instead, use tangent space of \mathcal{M}_{r} at $\boldsymbol{L}_{\text {old }}$.
- Project an arbitrary matrix onto the tangent space T :

$$
\begin{equation*}
\mathcal{P}_{T} \boldsymbol{Z}=\boldsymbol{U} \boldsymbol{U}^{T} \boldsymbol{Z}+\boldsymbol{Z} \boldsymbol{V} \boldsymbol{V}^{T}-\boldsymbol{U} \boldsymbol{U}^{T} \boldsymbol{Z} \boldsymbol{V} \boldsymbol{V}^{T} \tag{4}
\end{equation*}
$$

Illustration of Our Approach

Algorithm: AccAltProj

RPCA by Accelerated Alternating Projections (AccAltProj)

Initialization

$k=0$
while $\left\|\boldsymbol{D}-\boldsymbol{L}_{k}-\boldsymbol{S}_{k}\right\|_{F} /\|\boldsymbol{D}\|_{F} \geq \varepsilon$ do
$\widetilde{\boldsymbol{L}}_{k}=\operatorname{Trim}\left(\boldsymbol{L}_{k}, \mu\right) \quad / /$ Enforce Incoherence of Tangent Space
$\boldsymbol{L}_{k+1}=\mathcal{H}_{r}\left(\mathcal{P}_{\widetilde{\boldsymbol{T}}_{k}}\left(\boldsymbol{D}-\boldsymbol{S}_{k}\right)\right)$
$\zeta_{k+1}=\beta\left(\sigma_{r+1}\left(\mathcal{P}_{\widetilde{T}_{k}}\left(\boldsymbol{D}-\boldsymbol{S}_{k}\right)\right)+\gamma^{k+1} \sigma_{1}\left(\mathcal{P}_{\widetilde{T}_{k}}\left(\boldsymbol{D}-\boldsymbol{S}_{k}\right)\right)\right)$
$\boldsymbol{S}_{k+1}=\mathcal{T}_{\zeta_{k+1}}\left(\boldsymbol{D}-\boldsymbol{L}_{k+1}\right)$
$k=k+1$
end while

Accelerating Truncated SVD

Denote $\boldsymbol{Z}:=\boldsymbol{D}-\boldsymbol{S}_{k}$. Computing $\mathcal{H}_{r}\left(\mathcal{P}_{\widetilde{T}_{k}} \boldsymbol{Z}\right)$ efficiently:

$$
\text { - } \begin{aligned}
& \mathcal{P}_{\widetilde{\boldsymbol{T}}_{k}} \boldsymbol{Z}=\underbrace{\left[\begin{array}{ll}
\widetilde{\boldsymbol{U}}_{k} & \boldsymbol{Q}_{1}
\end{array}\right]}_{\text {orthogonal }} \underbrace{\left[\begin{array}{cc}
\widetilde{\boldsymbol{U}}_{k}^{T} \boldsymbol{Z} \widetilde{\boldsymbol{V}}_{k} & \boldsymbol{R}_{2}^{T} \\
\boldsymbol{R}_{1} & 0
\end{array}\right]}_{2 r \times 2 r} \underbrace{\left[\begin{array}{cc}
\widetilde{\boldsymbol{V}}_{k} & \boldsymbol{Q}_{2}
\end{array}\right]^{T}}_{\text {orthogonal }} \\
&-\boldsymbol{Q}_{1} \boldsymbol{R}_{1}=\left(\boldsymbol{I}-\widetilde{\boldsymbol{U}}_{k} \widetilde{\boldsymbol{U}}_{k}^{T}\right) \boldsymbol{Z} \widetilde{\boldsymbol{V}}_{k} \in \mathbb{R}^{m \times r} \\
&-\boldsymbol{Q}_{\mathbf{2}} \boldsymbol{R}_{\mathbf{2}}=\left(\boldsymbol{I}-\widetilde{\boldsymbol{V}}_{k} \widetilde{\boldsymbol{V}}_{k}^{T}\right) \boldsymbol{Z} \widetilde{\boldsymbol{U}}_{k} \in \mathbb{R}^{n \times r}
\end{aligned}
$$

Accelerating Truncated SVD

Denote $\boldsymbol{Z}:=\boldsymbol{D}-\boldsymbol{S}_{k}$. Computing $\mathcal{H}_{r}\left(\mathcal{P}_{\widetilde{T}_{k}} \boldsymbol{Z}\right)$ efficiently:

$$
\begin{aligned}
& \text { - } \mathcal{P}_{\widetilde{\boldsymbol{T}}_{k}} \boldsymbol{Z}=\underbrace{\left[\begin{array}{cc}
\widetilde{\boldsymbol{U}}_{k} & \boldsymbol{Q}_{1}
\end{array}\right]}_{\text {orthogonal }} \underbrace{\left[\begin{array}{cc}
\widetilde{\boldsymbol{U}}_{k}^{T} \boldsymbol{Z} \widetilde{\boldsymbol{V}}_{k} & \boldsymbol{R}_{2}^{T} \\
\boldsymbol{R}_{1} & 0
\end{array}\right]}_{2 r \times 2 r} \underbrace{\left[\begin{array}{ll}
\widetilde{\boldsymbol{V}}_{k} & \boldsymbol{Q}_{2}
\end{array}\right]^{T}}_{\text {orthogonal }} \\
&-\boldsymbol{Q}_{1} \boldsymbol{R}_{1}=\left(\boldsymbol{I}-\widetilde{\boldsymbol{U}}_{k} \widetilde{\boldsymbol{U}}_{k}^{T}\right) \boldsymbol{Z} \widetilde{\boldsymbol{V}}_{k} \in \mathbb{R}^{m \times r} \\
&-\boldsymbol{Q}_{\mathbf{2}} \boldsymbol{R}_{\mathbf{2}}=\left(\boldsymbol{I}-\widetilde{\boldsymbol{V}}_{k} \widetilde{\boldsymbol{V}}_{k}^{T}\right) \boldsymbol{Z} \widetilde{\boldsymbol{U}}_{k} \in \mathbb{R}^{n \times r}
\end{aligned}
$$

- $\mathcal{H}_{r}\left(\mathcal{P}_{\widetilde{T}_{k}} \boldsymbol{Z}\right)=\left[\begin{array}{ll}\widetilde{\boldsymbol{U}}_{k} & \boldsymbol{Q}_{1}\end{array}\right] \mathcal{H}_{r}\left(\left[\begin{array}{cc}\widetilde{\boldsymbol{U}}_{k}^{T} \boldsymbol{Z} \widetilde{\boldsymbol{V}}_{k} & \boldsymbol{R}_{2}^{T} \\ \boldsymbol{R}_{1} & 0\end{array}\right]\right)\left[\begin{array}{ll}\widetilde{\boldsymbol{V}}_{k} & \boldsymbol{Q}_{2}\end{array}\right]^{T}$
- Only need a SVD of $2 r \times 2 r$ matrix + two QR-decompositions

Accelerating Truncated SVD

Denote $\boldsymbol{Z}:=\boldsymbol{D}-\boldsymbol{S}_{k}$. Computing $\mathcal{H}_{r}\left(\mathcal{P}_{\widetilde{T}_{k}} \boldsymbol{Z}\right)$ efficiently:

- $\mathcal{P}_{\widetilde{T}_{k}} \boldsymbol{Z}=\underbrace{\left[\begin{array}{ll}\widetilde{\boldsymbol{U}}_{k} & \boldsymbol{Q}_{1}\end{array}\right]}_{\text {orthogonal }} \underbrace{\left[\begin{array}{cc}\widetilde{\boldsymbol{U}}_{k}^{T} \boldsymbol{Z} \widetilde{\boldsymbol{V}}_{k} & \boldsymbol{R}_{2}^{T} \\ \boldsymbol{R}_{1} & 0\end{array}\right]}_{2 r \times 2 r} \underbrace{\left[\begin{array}{ll}\widetilde{\boldsymbol{V}}_{k} & \boldsymbol{Q}_{2}\end{array}\right]^{T}}_{\text {orthogonal }}$

$$
\begin{aligned}
&-\boldsymbol{Q}_{1} \boldsymbol{R}_{1}=\left(\boldsymbol{I}-\widetilde{\boldsymbol{U}}_{k} \widetilde{\boldsymbol{U}}_{k}^{T}\right) \boldsymbol{Z} \widetilde{\boldsymbol{V}}_{k} \in \mathbb{R}^{m \times r} \\
&-\boldsymbol{Q}_{2} \boldsymbol{R}_{2}=\left(\boldsymbol{I}-\widetilde{\boldsymbol{V}}_{k} \widetilde{\boldsymbol{V}}_{k}^{T}\right) \boldsymbol{Z} \widetilde{\boldsymbol{U}}_{k} \in \mathbb{R}^{n \times r}
\end{aligned}
$$

- $\mathcal{H}_{r}\left(\mathcal{P}_{\widetilde{T}_{k}} \boldsymbol{Z}\right)=\left[\begin{array}{ll}\widetilde{\boldsymbol{U}}_{k} & \boldsymbol{Q}_{1}\end{array}\right] \mathcal{H}_{r}\left(\left[\begin{array}{cc}\widetilde{\boldsymbol{U}}_{k}^{T} \boldsymbol{Z} \widetilde{\boldsymbol{V}}_{k} & \boldsymbol{R}_{2}^{T} \\ \boldsymbol{R}_{1} & 0\end{array}\right]\right)\left[\begin{array}{ll}\widetilde{\boldsymbol{V}}_{k} & \boldsymbol{Q}_{2}\end{array}\right]^{T}$
- Only need a SVD of $2 r \times 2 r$ matrix + two QR-decompositions
- Complexities: $4 n^{2} r+n^{2}+O\left(n r^{2}+r^{3}\right)$ $\left[\mathcal{H}_{r} \mathcal{P}_{\widetilde{T}_{k}}\right]$

$$
O\left(n^{2} r\right) \text { with large hidden constant }
$$

Efficient S Updating with Hard Thresholding

- Updating \boldsymbol{S}_{k+1} with $\mathcal{T}_{\zeta_{k+1}}\left(\boldsymbol{D}-\boldsymbol{L}_{k+1}\right)$, where

$$
\zeta_{k+1}=\beta\left(\sigma_{r+1}\left(\mathcal{P}_{\widetilde{T}_{k}}\left(\boldsymbol{D}-\boldsymbol{S}_{k}\right)\right)+\gamma^{k+1} \sigma_{1}\left(\mathcal{P}_{\widetilde{T}_{k}}\left(\boldsymbol{D}-\boldsymbol{S}_{k}\right)\right)\right),
$$

so that we have $\operatorname{supp}\left(\boldsymbol{S}_{k+1}\right) \subset \operatorname{supp}(\boldsymbol{S})$ in theory.

Efficient S Updating with Hard Thresholding

- Updating \boldsymbol{S}_{k+1} with $\mathcal{T}_{\zeta_{k+1}}\left(\boldsymbol{D}-\boldsymbol{L}_{k+1}\right)$, where

$$
\zeta_{k+1}=\beta\left(\sigma_{r+1}\left(\mathcal{P}_{\widetilde{T}_{k}}\left(\boldsymbol{D}-\boldsymbol{S}_{k}\right)\right)+\gamma^{k+1} \sigma_{1}\left(\mathcal{P}_{\widetilde{T}_{k}}\left(\boldsymbol{D}-\boldsymbol{S}_{k}\right)\right)\right),
$$

so that we have $\operatorname{supp}\left(\boldsymbol{S}_{k+1}\right) \subset \operatorname{supp}(\boldsymbol{S})$ in theory.

- The singular values of $\mathcal{P}_{\tilde{T}_{k}}\left(\boldsymbol{D}-\boldsymbol{S}_{k}\right)$ were already computed in \boldsymbol{L} updating.
- Cost $O(1)$ for computing ζ_{k+1}

Efficient S Updating with Hard Thresholding

- Updating \boldsymbol{S}_{k+1} with $\mathcal{T}_{\zeta_{k+1}}\left(\boldsymbol{D}-\boldsymbol{L}_{k+1}\right)$, where

$$
\zeta_{k+1}=\beta\left(\sigma_{r+1}\left(\mathcal{P}_{\widetilde{T}_{k}}\left(\boldsymbol{D}-\boldsymbol{S}_{k}\right)\right)+\gamma^{k+1} \sigma_{1}\left(\mathcal{P}_{\widetilde{T}_{k}}\left(\boldsymbol{D}-\boldsymbol{S}_{k}\right)\right)\right),
$$

so that we have $\operatorname{supp}\left(\boldsymbol{S}_{k+1}\right) \subset \operatorname{supp}(\boldsymbol{S})$ in theory.

- The singular values of $\mathcal{P}_{\tilde{T}_{k}}\left(\boldsymbol{D}-\boldsymbol{S}_{k}\right)$ were already computed in \boldsymbol{L} updating.
- Cost $O(1)$ for computing ζ_{k+1}
- Complexity: $2 n^{2}+O(1)$
- No expensive partial sorting needed.

Initialization

- If choose $\boldsymbol{L}_{0}=0$, then $\boldsymbol{U}_{0}=\boldsymbol{V}_{0}=0$.
- We don't want this happen.

Initialization

- If choose $\boldsymbol{L}_{0}=0$, then $\boldsymbol{U}_{0}=\boldsymbol{V}_{0}=0$.
- We don't want this happen.

Initialization by Two Steps of AltProj

$$
\begin{aligned}
& \boldsymbol{L}_{-1}=0 \\
& \zeta_{-1}=\beta_{\text {init }} \cdot \sigma_{1}(\boldsymbol{D}) \\
& \boldsymbol{S}_{-1}=\mathcal{T}_{\zeta-1}\left(\boldsymbol{D}-\boldsymbol{L}_{-1}\right) \\
& \mathbf{L}_{0}=\mathcal{H}_{r}\left(\boldsymbol{D}-\boldsymbol{S}_{-1}\right) \\
& \zeta_{0}=\beta \cdot \sigma_{1}\left(\boldsymbol{D}-\boldsymbol{S}_{-1}\right) \\
& \mathbf{S}_{0}=\mathcal{T}_{\zeta_{0}}\left(\boldsymbol{D}-\boldsymbol{L}_{0}\right)
\end{aligned}
$$

- Two steps of AltProj give us a close enough tangent space to start with.

Illustration of Our Approach

Outline

(1) Introduction

(2) Existing Approaches with Theoretical Guarantee
(3) Proposed Approach

- Algorithm Design
- Theoretical Guarantee

4) Numerical Experiments
(5) Extension to Low-Rank Hankel Recovery
(6) Conclusion and Future Work

Main Theoretical Result

Recovery Guarantee of AccAltProj

Let \boldsymbol{L} and \boldsymbol{S} be two matrices satisfying Assumptions A1 and A2 with

$$
\alpha \leq O\left(\min \left\{\frac{1}{\mu r^{2} \kappa^{3}}, \frac{1}{\mu^{1.5} r^{2} \kappa}, \frac{1}{\mu^{2} r^{2}}\right\}\right) .
$$

If the thresholding parameters obey $\frac{\mu r \sigma_{1}^{L}}{\sqrt{m n} \sigma_{1}^{D}} \leq \beta_{\text {init }} \leq \frac{3 \mu r \sigma_{1}^{L}}{\sqrt{m n \sigma_{1}^{D}}}$ and $\beta=\frac{\mu r}{2 \sqrt{m n}}$, alone with the convergence rate parameter $\gamma \in\left(\frac{1}{\sqrt{12}}, 1\right)$, then the outputs of AccAltProj satisfy

$$
\left\|\boldsymbol{L}-\boldsymbol{L}_{k}\right\|_{F} \leq \varepsilon \sigma_{1}^{L},\left\|\boldsymbol{S}-\boldsymbol{S}_{k}\right\|_{\infty} \leq \frac{\varepsilon}{\sqrt{m n}} \sigma_{1}^{L}, \text { and } \operatorname{supp}\left(\boldsymbol{S}_{k}\right) \subset \operatorname{supp}(\boldsymbol{S})
$$

in $O\left(\log _{\gamma} \varepsilon\right)$ iterations.

- Linear convergence with rate of γ.

Proof Sketch

A Show any $m \times n$ RPCA problem can be reduced to a symmetric RPCA problem.

Proof Sketch

A Show any $m \times n$ RPCA problem can be reduced to a symmetric RPCA problem.
(B) Prove the symmetric case by mathematical induction:

Proof Sketch

© Show any $m \times n$ RPCA problem can be reduced to a symmetric RPCA problem.
(B) Prove the symmetric case by mathematical induction:

- Base case: Prove initialization by 2-step AltPorj satisfies

$$
\left\|\boldsymbol{L}_{0}-\boldsymbol{L}\right\|_{2} \leq 8 \alpha \mu r \sigma_{1}^{L},\left\|\boldsymbol{S}_{0}-\boldsymbol{S}\right\|_{\infty} \leq \frac{\mu r}{n} \sigma_{1}^{L}, \text { and } \operatorname{supp}\left(\boldsymbol{S}_{0}\right) \subset \operatorname{supp}(\boldsymbol{S})
$$

Proof Sketch

© Show any $m \times n$ RPCA problem can be reduced to a symmetric RPCA problem.
(B) Prove the symmetric case by mathematical induction:

- Base case: Prove initialization by 2-step AltPorj satisfies

$$
\left\|\boldsymbol{L}_{0}-\boldsymbol{L}\right\|_{2} \leq 8 \alpha \mu r \sigma_{1}^{L},\left\|\boldsymbol{S}_{0}-\boldsymbol{S}\right\|_{\infty} \leq \frac{\mu r}{n} \sigma_{1}^{L}, \text { and } \operatorname{supp}\left(\boldsymbol{S}_{0}\right) \subset \operatorname{supp}(\boldsymbol{S})
$$

- Induction Step: Prove following two lemmas
(1) If $\left\|\boldsymbol{L}_{k}-\boldsymbol{L}\right\|_{2} \leq 8 \alpha \mu r \gamma^{k} \sigma_{1}^{L},\left\|\boldsymbol{S}_{k}-\boldsymbol{S}\right\|_{\infty} \leq \frac{\mu r}{n} \gamma^{k} \sigma_{1}^{L}$, and $\operatorname{supp}\left(\boldsymbol{S}_{k}\right) \subset \operatorname{supp}(\boldsymbol{S})$, then

$$
\begin{aligned}
& \left\|\boldsymbol{L}_{k+1}-\boldsymbol{L}\right\|_{2} \leq 8 \alpha \mu r \gamma^{k+1} \sigma_{1}^{L} \text { and } \\
& \left\|\boldsymbol{L}_{k+1}-\boldsymbol{L}\right\|_{\infty} \leq \frac{(1-8 \alpha \mu \mu k) \mu r}{2 n} \gamma^{k+1} \sigma_{1}^{L} .
\end{aligned}
$$

Proof Sketch

© Show any $m \times n$ RPCA problem can be reduced to a symmetric RPCA problem.
(B) Prove the symmetric case by mathematical induction:

- Base case: Prove initialization by 2-step AltPorj satisfies

$$
\left\|\boldsymbol{L}_{0}-\boldsymbol{L}\right\|_{2} \leq 8 \alpha \mu r \sigma_{1}^{L},\left\|\boldsymbol{S}_{0}-\boldsymbol{S}\right\|_{\infty} \leq \frac{\mu r}{n} \sigma_{1}^{L}, \text { and } \operatorname{supp}\left(\boldsymbol{S}_{0}\right) \subset \operatorname{supp}(\boldsymbol{S})
$$

- Induction Step: Prove following two lemmas
(1) If $\left\|\boldsymbol{L}_{k}-\boldsymbol{L}\right\|_{2} \leq 8 \alpha \mu r \gamma^{k} \sigma_{1}^{L},\left\|\boldsymbol{S}_{k}-\boldsymbol{S}\right\|_{\infty} \leq \frac{\mu r}{n} \gamma^{k} \sigma_{1}^{L}$, and $\operatorname{supp}\left(\boldsymbol{S}_{k}\right) \subset \operatorname{supp}(\boldsymbol{S})$, then

$$
\begin{aligned}
& \left\|\boldsymbol{L}_{k+1}-\boldsymbol{L}\right\|_{2} \leq 8 \alpha \mu r \gamma^{k+1} \sigma_{1}^{L} \text { and } \\
& \left\|\boldsymbol{L}_{k+1}-\boldsymbol{L}\right\|_{\infty} \leq \frac{(1-8 \alpha \mu r k) \mu r}{2 n} \gamma^{k+1} \sigma_{1}^{L} .
\end{aligned}
$$

(2) If $\left\|\boldsymbol{L}_{k+1}-\boldsymbol{L}\right\|_{\infty} \leq \frac{(1-8 \alpha \mu r k) \mu r}{2 n} \gamma^{k+1} \sigma_{1}^{L}$, then

$$
\left\|\boldsymbol{S}_{k+1}-\boldsymbol{S}\right\|_{\infty} \leq \frac{\mu r}{n} \gamma^{k+1} \sigma_{1}^{L} \text { and } \operatorname{supp}\left(\boldsymbol{S}_{k+1}\right) \subset \operatorname{supp}(\boldsymbol{S})
$$

Key Properties of Tangent Space Projection (1)

- If $\boldsymbol{L}, \boldsymbol{L}_{\boldsymbol{k}}$ are two rank- r matrices, then

$$
\left\|\left(\mathcal{I}-\mathcal{P}_{T_{k}}\right)\left(\boldsymbol{L}-\boldsymbol{L}_{k}\right)\right\|_{2} \leq \frac{\left\|\boldsymbol{L}-\boldsymbol{L}_{k}\right\|_{2}^{2}}{\sigma_{r}^{L}} .
$$

- Make the local convergence analysis possible.

Key Properties of Tangent Space Projection (2)

- If \boldsymbol{L}_{k} is μ-incoherent and \boldsymbol{S} is α-sparse, then

$$
\left\|\mathcal{P}_{T_{k}} \boldsymbol{S}\right\|_{\infty} \leq 3 \alpha \mu r\|\boldsymbol{S}\|_{\infty} .
$$

- $\mathcal{P}_{T_{k}} \boldsymbol{S}$ is not sparse.
- Ensures sparsity can still be used for error bound after tangent space projection.

Overview

Algorithm	Updating S	Updating L	Tolerance of p	Iterations needed
AccAltProj	$O\left(\boldsymbol{n}^{2}\right)$	$O\left(r n^{2}\right)$	$O\left(\frac{1}{\max \left\{\mu r^{2} \kappa^{3}, \mu^{1.5} r^{2} \kappa, \mu^{2} r^{2}\right\}}\right)$	$O\left(\log \left(\frac{1}{\epsilon}\right)\right)$
AltProj	$O\left(r n^{2}\right)$	$O\left(r^{2} n^{2}\right)$	$O\left(\frac{1}{\mu r}\right)$	$O\left(\log \left(\frac{1}{\epsilon}\right)\right)$
GD	$O\left(n^{2}+p n^{2} \log (p n)\right)$	$O\left(r n^{2}\right)$	$O\left(\frac{1}{\max \left\{\mu r^{1.5} \kappa^{1.5}, \mu r \kappa^{2}\right\}}\right)$	$O\left(\kappa \log \left(\frac{1}{\epsilon}\right)\right)$

*complexities in table are based on $\boldsymbol{D} \in \mathbb{R}^{n \times n}$

We have the best per-iteration complexity, with the best order of convergence, in the class of provable non-convex Robust PCA algorithms.

Outline

(1) Introduction
(2) Existing Approaches with Theoretical Guarantee
(3) Proposed Approach
(4) Numerical Experiments

- Synthetic Datasets
- Video Background Subtraction
(5) Extension to Low-Rank Hankel Recovery
(6) Conclusion and Future Work

Outline

(1) Introduction
(2) Existing Approaches with Theoretical Guarantee
(3) Proposed Approach
(4) Numerical Experiments

- Synthetic Datasets
- Video Background Subtraction
(5) Extension to Low-Rank Hankel Recovery

6 Conclusion and Future Work

Setup

- $\boldsymbol{L}=\boldsymbol{P} \boldsymbol{Q}^{T}$, where $\boldsymbol{P}, \boldsymbol{Q} \in \mathbb{R}^{n \times r}$ are random matrices where their entries are drawn i.i.d. from standard normal distribution.
- $\operatorname{supp}(\boldsymbol{S})$ is sampled uniformly without replacement.
- The values of non-zero entries of \boldsymbol{S} are drawn i.i.d from uniform distribution over the domain $\left[-c \cdot \mathbb{E}\left(\left|L_{i j}\right|\right), c \cdot \mathbb{E}\left(\left|L_{i j}\right|\right)\right]$.
- Smaller c gives a harder splitting task (unless it becomes too small to be outliers, like 10^{-8})

Setup - Continue

- Compare among three non-convex algorithms:
- GD
\square Use 1.1α for sparsification \mathcal{F}
- AltProj
\square Only time the $r^{\text {th }}$ stage
- AccAltProj with Trimming
\square Use 1.1μ for trimming
- AccAltProj without Trimming
\square Skip the step $\tilde{\boldsymbol{L}}_{k}=\operatorname{Trim}\left(\boldsymbol{L}_{k}, \mu\right)$
- PROPACK is used for large size truncated SVD
- Good for AltProj which uses it every iteration

Speed Comparison: Dimension vs Runtime

Speed Comparison: Sparsity vs Runtime

$r=5, c=1, n=2500$, stop at $e r_{k}<10^{-4}$.

Speed Comparison: Relative Error vs Runtime

$r=5, \alpha=0.1, c=1, n=2500$.

Rate of Success for Varying c and α

$c=0.2$	0.3	0.35	0.4	0.45	0.5	0.55	0.6
AccAltProj w/ trimming	10	10	10	10	10	10	10
AccAltProj w/o trimming	10	10	10	10	10	10	10
AltProj	10	10	10	10	10	10	10
GD	10	10	10	0	0	0	0
$c=1$	0.3	0.35	0.4	0.45	0.5	0.55	0.6
AccAltProj w/ trimming	10	10	10	10	10	10	10
AccAltProj w/o trimming	10	10	10	10	10	10	10
AltProj	10	10	10	10	10	10	10
GD	10	10	10	10	9	0	0
$c=5$	0.3	0.35	0.4	0.45	0.5	0.55	0.6
AccAltProj w/ trimming	10	10	10	10	10	10	10
AccAltProj w/o trimming	10	10	10	10	10	10	10
AltProj	10	10	10	10	10	10	10
GD	10	10	10	10	10	10	7

$$
r=5, n=2500
$$

Outline

(1) Introduction

(2) Existing Approaches with Theoretical Guarantee
(3) Proposed Approach
(4) Numerical Experiments

- Synthetic Datasets
- Video Background Subtraction
(5) Extension to Low-Rank Hankel Recovery

6 Conclusion and Future Work

Setup

- Each frame in the video is vectorized, and becomes a row (or a column) in a data matrix.
- The static background is the low rank component of the matrix.
- The moving objects, i.e., foreground, forms the sparse components of the matrix.

Demo

https://youtu.be/k6uaeQky2sc

Comparison of Video Outputs

- Shoppingmall(S): 256×320 frame size; 1000 frames
- Restaurant(R): 120×160 frame size; 3055 frames

	AccAltProj w/ trim		AccAltProj w/o trim		AltProj		GD	
	runtime	μ	runtime	μ	runtime	μ	runtime	μ
S	$38.98 s$	2.12	$38.79 s$	2.26	$82.97 s$	2.13	$161.1 s$	2.85
R	$28.09 s$	5.16	$27.94 s$	5.25	$69.12 s$	5.28	$107.3 s$	6.07

Trimming helps the consistency a litter bit among the frames of the background, while only uses slightly more time.

AccAltProj has been published as:

Cai, HanQin, Jian-Feng Cai, and Ke Wei. "Accelerated alternating projections for robust principal component analysis." The Journal of Machine Learning Research 20.1 (2019): 685-717.

Code can be found at:
https://github.com/caesarcai/AccAltProj_for_RPCA

Outline

(1) Introduction
(2) Existing Approaches with Theoretical Guarantee
(3) Proposed Approach
(4) Numerical Experiments
(5) Extension to Low-Rank Hankel Recovery
(6) Conclusion and Future Work

Form a Hankel Matrix

Given a complex vector $\boldsymbol{x} \in \mathbb{C}^{n}$, we can form a corresponding Hankel matrix $\mathcal{H}(\boldsymbol{x}) \in \mathbb{C}^{n_{1} \times n_{2}}$ by

$$
\mathcal{H}(\boldsymbol{x})=\left[\begin{array}{ccccc}
x_{0} & x_{1} & x_{2} & \cdots & x_{n_{2}-1} \\
x_{1} & x_{2} & x_{3} & \cdots & x_{n_{2}} \\
x_{2} & x_{3} & x_{4} & \cdots & x_{n_{2}+1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{n_{1}-1} & x_{n_{1}} & x_{n_{1}+1} & \cdots & x_{n-1}
\end{array}\right]
$$

where $n_{1}+n_{2}=n+1$.

- We try to keep the matrix (almost) square: when n is odd, we choose $n_{1}=n_{2}=\frac{n+1}{2}$; when n is even, we choose $n_{1}=\frac{n}{2}+1$ and $n_{2}=\frac{n}{2}$.
*We try to using consistent notation with the paper, which is unfortunately inconsistent with the notation in previous sections.

Low-Rank Hankel Matrix

Not all Hankel matrices are low-rank, but low-rank Hankel matrix appears in many applications:

- Spectrally sparse signal
- Magnetic resonance image (MRI)
- Nuclear magnetic resonance (NMR) spectroscopy
- Fluorescence microscopy
- Analog-to-digital conversion
- Earthquake-induced vibration data
- Dynamic sampling
- Auto-regression

Hankel Outlier Detection Problem

- To recover the vector \boldsymbol{x} from the corrupted observation $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{s} \in \mathbb{C}^{n}$ (or equivalently $\mathcal{H}(\boldsymbol{y})=\mathcal{H}(\boldsymbol{x})+\mathcal{H}(\boldsymbol{s}) \in \mathbb{C}^{n_{1} \times n_{2}}$), we want to solve the minimization problem:

$$
\begin{align*}
& \underset{\boldsymbol{x}, \boldsymbol{s}}{\operatorname{minimize}}\|\boldsymbol{y}-\boldsymbol{x}-\boldsymbol{s}\|_{2} \tag{5}\\
& \text { subject to } \operatorname{rank}(\mathcal{H}(\boldsymbol{x})) \leq r,\|\boldsymbol{s}\|_{0} \leq \alpha n
\end{align*}
$$

- The sparse vector scan be:
- Impulse noise in MRI/NMR signals.
- Corrupted time snap in dynamic sampling
- Black swan events on financial marketing

AAP-Hankel

Accelerated Alternating Projections for Hankel Recovery

Initialization, set $k=0$
$\boldsymbol{w h i l e}_{\sim}\left\|\boldsymbol{y}-\boldsymbol{x}_{k}-\boldsymbol{s}_{k}\right\| /\|\boldsymbol{z}\| \geq \epsilon$ do
$\widetilde{\boldsymbol{L}}_{k}=\operatorname{Trim}\left(\boldsymbol{L}_{k}, \mu\right)$
$\boldsymbol{L}_{k+1}=\mathcal{D}_{r} \mathcal{P}_{\widetilde{T}_{k}} \mathcal{H}\left(\boldsymbol{y}-\boldsymbol{s}_{k}\right)$
$\boldsymbol{x}_{k+1}=\mathcal{H}^{\dagger}\left(\boldsymbol{L}_{k+1}\right)$
$\zeta_{k+1}=\beta\left(\sigma_{r+1}\left(\mathcal{P}_{\widetilde{T}_{k}} \mathcal{H}\left(\boldsymbol{z}-\boldsymbol{s}_{k}\right)\right)+\gamma^{k+1} \sigma_{1}\left(\mathcal{P}_{\widetilde{T}_{k}} \mathcal{H}\left(\boldsymbol{z}-\boldsymbol{s}_{k}\right)\right)\right)$
$\boldsymbol{s}_{k+1}=\mathcal{T}_{\zeta_{k+1}}\left(\boldsymbol{z}-\boldsymbol{x}_{k+1}\right)$
$k=k+1$

end while

- Trim: Enforce incoherence on a low rank matrix
- \mathcal{D}_{r} : the best rank r approximation
- $\mathcal{P}_{\widetilde{T}_{k}}$: Projection onto subspace $\widetilde{T}_{k}=\left\{\widetilde{\boldsymbol{U}}_{k} \boldsymbol{A}^{T}+\boldsymbol{B} \widetilde{\boldsymbol{V}}_{k}^{*} \mid \boldsymbol{A} \in \mathbb{R}^{n_{2} \times r}, \boldsymbol{B} \in \mathbb{R}^{n_{1} \times r}\right\}$
- \mathcal{H}^{\dagger}, normalized dual of \mathcal{H} such that $\mathcal{H}^{\dagger} \mathcal{H}=\mathcal{I}$
- \mathcal{T}_{ζ} : Hard thresholding

Computational Complexity of Updating x

- Due to the construction of Hankel matrix, a Hankel matrix and vector multiplication can be re-formula to a vector-vector convolution, which can be computed via FFT. Hence, a Hankel matrix and matrix multiplication only needs $O(r n \log (n))$ flops.
- With a SVD of $2 r \times 2 r$ matrix + two QR-decompositions, we need $O\left(n r^{2}+n \log (n) r+r^{3}\right)$ flops for updating \boldsymbol{L}.

Computational Complexity of Updating x

- Due to the construction of Hankel matrix, a Hankel matrix and vector multiplication can be re-formula to a vector-vector convolution, which can be computed via FFT. Hence, a Hankel matrix and matrix multiplication only needs $O(r n \log (n))$ flops.
- With a SVD of $2 r \times 2 r$ matrix + two QR-decompositions, we need $O\left(n r^{2}+n \log (n) r+r^{3}\right)$ flops for updating \boldsymbol{L}.
- $\boldsymbol{x}_{k+1}=\mathcal{H}^{\dagger}\left(\boldsymbol{L}_{k+1}\right)=\sum_{i=1}^{r} \boldsymbol{\Sigma}_{k+1}^{(i, i)} \omega_{j} \sum_{a+b=j} \boldsymbol{U}_{k+1}^{(a, i)} \overline{\boldsymbol{V}}_{k+1}^{(b, i)}$,
- ω_{j} is the weight for averaging $j^{\text {th }}$ anti-diagonal
- Convolutions can be computed by FFT. r of the convolutions result $O(n \log (n) r)$ complexity.
- Overall, need $O\left(n r^{2}+n \log (n) r+r^{3}\right)$ flops for updating \boldsymbol{x}.

Assumptions

A1 $\mathcal{H}(\boldsymbol{x}) \in \mathbb{C}^{n_{1} \times n_{2}}$ is μ-incoherence: there exists a numerical constant $\mu_{0}>0$ such that

$$
\sigma_{r}\left(\boldsymbol{E}_{L}^{*} \boldsymbol{E}_{L}\right) \geq \frac{n_{1}}{\mu_{0}}, \quad \sigma_{r}\left(\boldsymbol{E}_{R}^{*} \boldsymbol{E}_{R}\right) \geq \frac{n_{2}}{\mu_{0}}
$$

where $\mathcal{H}(\boldsymbol{x})=\boldsymbol{E}_{L} \boldsymbol{D} \boldsymbol{E}_{R}^{T}$ is its Vandermonde decomposition.

- In the undamped spectrally sparse signals, this assumption is guaranteed with at least $\frac{2}{n}$ separations between the non-zero frequencies [LiaoFannjiang'2016].

A2 $\boldsymbol{s} \in \mathbb{C}^{n}$ is α-sparse: no more than αn non-zero entries in the vector.

- this implies that $\mathcal{H}(\boldsymbol{s})$ is no more than 2α-sparse matrix.

Main Theoretical Result of AAP-Hankel

Recovery Guarantee of AAP-Hankel

Let \boldsymbol{x} and \boldsymbol{s} be two matrices satisfying Assumptions A1 and A2 with

$$
\alpha \lesssim O\left(\min \left\{\frac{1}{\mu r^{2} \kappa^{3}}, \frac{1}{\mu^{1.5} r^{2} \kappa}, \frac{1}{\mu^{2} r^{2}}\right\}\right) .
$$

If the thresholding parameters obey $\frac{\mu r \sigma_{1}^{x}}{\sqrt{n_{1} n_{2}} \sigma_{1}^{2}} \leq \beta_{\text {init }} \leq \frac{3 \mu r \sigma_{1}^{x}}{\sqrt{n_{1} n_{2}} \sigma_{1}^{2}}$ and $\beta=\frac{\mu r}{2 \sqrt{n_{1} n_{2}}}$, alone with the convergence rate parameter $\gamma \in\left(\frac{1}{\sqrt{12}}, 1\right)$, then the outputs of Algorithm 1 satisfy

$$
\left\|\mathcal{H}\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)\right\|_{F} \leq \varepsilon \sigma_{1}^{\boldsymbol{x}},\left\|\boldsymbol{s}-\boldsymbol{s}_{k}\right\|_{\infty} \leq \frac{\varepsilon}{\sqrt{m n}} \sigma_{1}^{\boldsymbol{x}}, \text { and } \operatorname{supp}\left(\boldsymbol{s}_{k}\right) \subset \operatorname{supp}(\boldsymbol{s})
$$

in $O\left(\log _{\gamma} \varepsilon\right)$ iterations.

- σ_{1}^{x} denotes the largest singular value of $\mathcal{H}(\boldsymbol{x})$.
- Linear convergence with rate of γ.

Speed Comparison: Dimension vs Runtime

$$
r=5, \alpha=0.1, c=1, \text { stop at } e r r_{k}<10^{-4}
$$

Speed Comparison: Sparsity vs Runtime

$$
n=400^{2}, \alpha=0.1, c=1, \text { stop at err }{ }_{k}<10^{-4} .
$$

Speed Comparison: Relative Error vs Runtime

$$
n=400^{2}, r=5, \alpha=0.1, c=1
$$

Phase Transition

Robus-EMaC

SAP

AAP-Hankel

Impulse Corrupted NMR Singal

$n=32768,50 \%$ corruption.

AAP-Hankel is under review, you can found it on arXiv:

Cai, HanQin, Jian-Feng Cai, Tianming Wang, and Guojian Yin. "Fast and Robust Spectrally Sparse Signal Recovery: A Provable Non-Convex Approach via Robust Low-Rank Hankel Matrix Reconstruction." arXiv preprint arXiv:1910.05859 (2019).

Code can be found at:
https://github.com/caesarcai/AAP-Hankel

Outline

(1) Introduction
(2) Existing Approaches with Theoretical Guarantee
(3) Proposed Approach
(4) Numerical Experiments
(5) Extension to Low-Rank Hankel Recovery
(6) Conclusion and Future Work

Conclusion

We present a new algorithm for Robust PCA and extend it to low-rank Hankel recovery problem.

- Non-convex with theoretical guarantee
- Best per-iteration complexity
- Guaranteed linear convergence
- Significant speed advantage over the other state-of-the-art algorithms
- High robustness in practice

Future Work

- Recovery guarantee proof for "without Trimming"
- Relax tolerance of α to match our experimental results
- Study partial observed Robust PCA
- Acceleration with guaranteed recovery
- Study recovery stability with additive noise
- Theoretically and practically

Thank you!

Any Question?

