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Objectives

Our goals in this project is to
• illustrate the potential of robust principal
component analysis in revealing correlations
between stock prices time-series data.

Introduction
Principal Component Analysis (PCA) is a
fundamental technique to understand
high-dimensional big datasets. In short, PCA
computes a low-dimensional subspace onto
which a data matrix can be optimally projected
(in an ℓ2-norm sense).
However, in practice, the subspace computed by
PCA is often sensitive to outliers or to
non-Gaussianity in the distribution of the data
matrix, which is often the case in financial
time-series data. To overcome these
shortcomings, Candes [1] proposed a framework
called Robust PCA. In this project we present a
comparative analysis between PCA and Robust
PCA when applied to estimate financial
networks from time-series stock data. We
consider a financial network as an undirected,
weighted graph denoted as a triple
G = (V ,E ,W), where V = {1, 2, . . . , p} is
the vertex (or node) set, E is the edge set that is
a subset of the set of all possible unordered
pairs of p nodes such that (i, j) ∈ E iff nodes i
and j are connected. We denote the number of
elements in E by |E |. W ∈ Rp×p

+
is the

symmetric weighted adjacency matrix that
satisfiesWii = 0,Wij > 0 iff (i, j) ∈ E ,Wij =
0 otherwise.

Data Explanation

We use time-series price data from stocks that
belong to the S&P500 Index. Denote pi(t) the
price of the i-th stock at the t-th day. Stock price
data are known to be non-stationary,
approximately following a Brownian motion
process. To remove the non-stationarity, we first
compute the log-returns of each time-series,
which are defined as

log(1+ ri(t)) , log(pi(t))− log(pi(t− 1)), (1)

The quantity log(1+ ri(t)) is ultimately what we
use in the tasks that will follow.

PCA and Robust PCA
Classical Principal Component Analysis (PCA)
seeks the best rank-k estimate (in an ℓ2-norm
sense) of a matrixM by solving

minimize
L

‖M− L‖2,

subject to rank(L) ≤ k.
(2)

Due to the squared error used in PCA, it cannot
provide meaningful results when the data
matrixM contains outliers or when its features
are not Gaussian distributed.
To overcome those limitations, Robust PCA
(RPCA) has been proposed by [1]. The
assumption underlying RPCA is that the data
matrixM can be decomposed asM = L+ S,
where L and S are the low-rank and sparse
components, respectively. RPCA can be
formulated as the following convex optimization
problem

minimize
L,S

‖L‖∗ + λ‖S‖1,

subject to L+ S =M,
(3)

where ‖ · ‖∗ and ‖ · ‖1 are the nuclear and ℓ1
norms used to impose low-rankness and
sparsity, respectively.

Results
Figure 1 illustrates 5-year worth of price data of
a subset of stocks from the S&P500 index.

Jan 02

2014

Jul 01

2014

Jan 02

2015

Jul 01

2015

Jan 04

2016

Jul 01

2016

Jan 03

2017

Jul 03

2017

Jan 02

2018

Jul 02

2018

Dec 31

2018

Price data from a subset of S&P500 stocks 2014−01−02 08:00:00 / 2018−12−31 08:00:00

100

200

300

100

200

300

Figure: Stock prices illustration.

Figure: Graphical network obtained naively from the
sample correlation matrix.

Figure: Graphical network obtained with PCA.

Figure: Graphical network obtained with Robust PCA.

Important Result

Results

Discussion
To estimate financial network graphs, we select
130 stocks from three sectors (Industrials,
Consumer Staples, and Energy), from the period
of 2014 to 2018. Stocks within sectors should
show a more correlated behaviour. Figure 2
shows a naive graph estimated directly from the
sample correlation matrix of the stocks
time-series. From Figure 2, it is difficult to
distinguish which stocks belong to each sector.
Each color represent one sector. Figure 3 shows
the graph estimated using classical PCA where
we set the rank of the matrix to be equals 3 (i.e.,
the number of known sectors). Figure 4 shows
the same graph, but estimated with Robust PCA.
As we can notice, Robust PCA presents an
improvement on the estimation of the financial
networks, as revealed by a clear graph.

Conclusion
In this project, we use both PCA and robust PCA
to estimate the correlation among stocks data.
As for robust PCA, we add sparse constraint to
reduce the noise information involved in the
estimated covariance matrix. Based on the
shown graph, it is easy to see the improvement
by using robust PCA for the noisy stock data.
What’s more, estimating financial networks still
remains a challenge and an active research
topic [2].
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