A Mathematical Introduction to Data Science

Homework 2. MLE and James-Stein Estimator

Instructor: Yuan Yao
Due: 1.5 weeks

The problem below marked by * is optional with bonus credits. For the experimental problem, include the source codes which are runnable under standard settings. Since there is NO grader assigned for this class, homework will not be graded. But if you would like to submit your exercise, please send your homework to the address (datascience.hw@gmail.com) with a title "CSIC5011: Homework \#". I'll read them and give you bonus credits.

1. Maximum Likelihood Method: consider n random samples from a multivariate normal distribution, $X_{i} \in \mathbb{R}^{p} \sim \mathcal{N}(\mu, \Sigma)$ with $i=1, \ldots, n$.
(a) Show the log-likelihood function

$$
l_{n}(\mu, \Sigma)=-\frac{n}{2} \operatorname{trace}\left(\Sigma^{-1} S_{n}\right)-\frac{n}{2} \log \operatorname{det}(\Sigma)+C
$$

where $S_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)\left(X_{i}-\mu\right)^{T}$, and some constant C does not depend on μ and $\Sigma ;$
(b) Show that $f(X)=\operatorname{trace}\left(A X^{-1}\right)$ with $A, X \succeq 0$ has a first-order approximation,

$$
f(X+\Delta) \approx f(X)-\operatorname{trace}\left(X^{-1} A^{\prime} X^{-1} \Delta\right)
$$

hence formally $d f(X) / d X=-X^{-1} A X^{-1}\left(\right.$ note $\left.(I+X)^{-1} \approx I-X\right) ;$
(c) Show that $g(X)=\log \operatorname{det}(X)$ with $A, X \succeq 0$ has a first-order approximation,

$$
g(X+\Delta) \approx g(X)+\operatorname{trace}\left(X^{-1} \Delta\right)
$$

hence $d g(X) / d X=X^{-1}$ (note: consider eigenvalues of $X^{-1 / 2} \Delta X^{-1 / 2}$);
(d) Use these formal derivatives with respect to positive semi-definite matrix variables to show that the maximum likelihood estimator of Σ is

$$
\hat{\Sigma}_{n}^{M L E}=S_{n}
$$

A reference for (b) and (c) can be found in Convex Optimization, by Boyd and Vandenbergh, examples in Appendix A.4.1 and A.4.3:
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
2. Shrinkage: Suppose $y \sim \mathcal{N}\left(\mu, I_{p}\right)$.
(a) Consider the Ridge regression

$$
\min _{\mu} \frac{1}{2}\|y-\mu\|_{2}^{2}+\frac{\lambda}{2}\|\mu\|_{2}^{2}
$$

Show that the solution is given by

$$
\hat{\mu}_{i}^{\text {ridge }}=\frac{1}{1+\lambda} y_{i} .
$$

Compute the risk (mean square error) of this estimator. The risk of MLE is given when $C=I$.
(b) Consider the LASSO problem,

$$
\min _{\mu} \frac{1}{2}\|y-\mu\|_{2}^{2}+\lambda\|\mu\|_{1} .
$$

Show that the solution is given by Soft-Thresholding

$$
\hat{\mu}_{i}^{s o f t}=\mu_{s o f t}\left(y_{i} ; \lambda\right):=\operatorname{sign}\left(y_{i}\right)\left(\left|y_{i}\right|-\lambda\right)_{+} .
$$

For the choice $\lambda=\sqrt{2 \log p}$, show that the risk is bounded by

$$
\mathbb{E}\left\|\hat{\mu}^{\text {soft }}(y)-\mu\right\|^{2} \leq 1+(2 \log p+1) \sum_{i=1}^{p} \min \left(\mu_{i}^{2}, 1\right)
$$

Under what conditions on μ, such a risk is smaller than that of MLE? Note: see Gaussian Estimation by Iain Johnstone, Lemma 2.9 and the reasoning before it.
(c) Consider the l_{0} regularization

$$
\min _{\mu}\|y-\mu\|_{2}^{2}+\lambda^{2}\|\mu\|_{0}
$$

where $\|\mu\|_{0}:=\sum_{i=1}^{p} I\left(\mu_{i} \neq 0\right)$. Show that the solution is given by Hard-Thresholding

$$
\hat{\mu}_{i}^{\text {hard }}=\mu_{\text {hard }}\left(y_{i} ; \lambda\right):=y_{i} I\left(\left|y_{i}\right|>\lambda\right) .
$$

Rewriting $\hat{\mu}^{\text {hard }}(y)=(1-g(y)) y$, is $g(y)$ weakly differentiable? Why?
(d) Consider the James-Stein Estimator

$$
\hat{\mu}^{J S}(y)=\left(1-\frac{\alpha}{\|y\|^{2}}\right) y
$$

Show that the risk is

$$
\mathbb{E}\left\|\hat{\mu}^{J S}(y)-\mu\right\|^{2}=\mathbb{E} U_{\alpha}(y)
$$

where $U_{\alpha}(y)=p-\left(2 \alpha(p-2)-\alpha^{2}\right) /\|y\|^{2}$. Find the optimal $\alpha^{*}=\arg \min _{\alpha} U_{\alpha}(y)$. Show that for $p>2$, the risk of James-Stein Estimator is smaller than that of MLE for all $\mu \in \mathbb{R}^{p}$.
(e) In general, an odd monotone unbounded function $\Theta: \mathbb{R} \rightarrow \mathbb{R}$ defined by $\Theta_{\lambda}(t)$ with parameter $\lambda \geq 0$ is called shrinkage rule, if it satisfies
[shrinkage] $0 \leq \Theta_{\lambda}(|t|) \leq|t| ;$
[odd] $\Theta_{\lambda}(-t)=-\Theta_{\lambda}(t)$;
[monotone] $\Theta_{\lambda}(t) \leq \Theta_{\lambda}\left(t^{\prime}\right)$ for $t \leq t^{\prime}$;
[unbounded] $\lim _{t \rightarrow \infty} \Theta_{\lambda}(t)=\infty$.
Which rules above are shrinkage rules?
3. Necessary Condition for Admissibility of Linear Estimators. Consider linear estimator for $y \sim \mathcal{N}\left(\mu, \sigma^{2} I_{p}\right)$

$$
\hat{\mu}_{C}(y)=C y .
$$

Show that $\hat{\mu}_{C}$ is admissible only if
(a) C is symmetric;
(b) $0 \leq \rho_{i}(C) \leq 1$ (where $\rho_{i}(C)$ are eigenvalues of C);
(c) $\rho_{i}(C)=1$ for at most two i.

These conditions are satisfied for MLE estimator when $p=1$ and $p=2$.
Reference: Theorem 2.3 in Gaussian Estimation by Iain Johnstone, http://statweb.stanford.edu/~imj/Book100611.pdf
4. ${ }^{*}$ James Stein Estimator for $p=1,2$ and upper bound:

If we use SURE to calculate the risk of James Stein Estimator,

$$
R\left(\hat{\mu}^{\mathrm{JS}}, \mu\right)=\mathbb{E} U(Y)=p-\mathbb{E}_{\mu} \frac{(p-2)^{2}}{\|Y\|^{2}}<p=R\left(\hat{\mu}^{\mathrm{MLE}}, \mu\right)
$$

it seems that for $p=1$ James Stein Estimator should still have lower risk than MLE for any μ. Can you find what will happen for $p=1$ and $p=2$ cases?
Moreover, can you derive the upper bound for the risk of James-Stein Estimator?

$$
R\left(\hat{\mu}^{\mathrm{JS}}, \mu\right) \leq p-\frac{(p-2)^{2}}{p-2+\|\mu\|^{2}}=2+\frac{(p-2)\|\mu\|^{2}}{p-2+\|\mu\|^{2}} .
$$

