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Generative Models in Manifold Learning



Spectral Geometric EmbeddingDimensionality Reduction
Given x1, . . . , xn ∈ M ⊂ RN ,
Find y1, . . . , yn ∈ Rd where d << N

ISOMAP (Tenenbaum, et al, 00)
LLE (Roweis, Saul, 00)
Laplacian Eigenmaps (Belkin, Niyogi, 01)
Local Tangent Space Alignment (Zhang, Zha, 02)
Hessian Eigenmaps (Donoho, Grimes, 02)
Diffusion Maps (Coifman, Lafon, et al, 04)

Related: Kernel PCA (Schoelkopf, et al, 98)

Geometric Methods and Manifold Learning – p. 25



Meta-Algorithm
• Construct a neighborhood graph
• Construct a positive semi-definite kernel
• Find the spectrum decomposition

Kernel Spectrum



Recall: ISOMAP
Isomap

1. Construct Neighborhood Graph.
2. Find shortest path (geodesic) distances.

Dij is n × n

3. Embed using Multidimensional Scaling.

Geometric Methods and Manifold Learning – p. 27



Recall: LLE
• Construct a neighborhood Graph 

G=(V,E)
• Solve weights

• Compute Embedding

!6
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e.g.2. k-nearest neighbor, (i, j) ⇤ E ⇥ j ⇤ Nk(i), which leads to a directed
graph.

2. Construct a positive semi-definite matrix K (kernel).

3. Eigen-decomposition K = U�UT , then Yd = Ud�
1
2
d , where choose d eigen-

vectors (top or bottom) Ud.

Example 3 (PCA). G is complete, K = ⇥̂n is a covariance matrix.

Example 4 (MDS). G is complete, K = � 1
2HDHT , where Dij = d2(xi, xj).

Example 5 (ISOMAP). G is incomplete.

Dij =

�
d(xi, xj) if (i, j) ⇤ E,

d̂g(xi, xj) if (i, j) ⌅⇤ E.

where d̂g is a graph shorted path. Then

K = �1

2
HDHT .

Note that K is positive semi-definite if and only if D is a squared distance matrix.

Example 6 (LLE). G is incomplete. K = (I �W )T (I �W ), where

Wn�n
ij =

�
wij j ⇤ N (i),

0 other’s.

and wij solves the following optimization problem

minP
j wij=1

�Xi �
⇥

j⇥N (i)

wijX̄j�2, X̄j = Xj �Xi.

After obtaining W , compute the global embedding d-by-n embedding matrix Y =
[Y1, . . . , Yn],

min
Y

n⇥

i=1

�Yi �
n⇥

j=1

WijYj�2 = trace((I �W )Y TY (I �W )T ).

This is equivalent to find smallest eigenvectors of K = (I �W )T (I �W ).

2. ISOMAP

ISOMAP is an extension of MDS, where pairwise euclidean distances between
data points are replaced by geodesic distances, computed by graph shortest path
distances.

(1) Construct a neighborhood graph G = (V,E, dij) such that
V = {xi : i = 1, . . . , n}
E = {(i, j) : if j is a neighbor of i, i.e. j ⇤ Ni}, e.g. k-nearest

neighbors, �-neighbors
dij = d(xi, xj), e.g. Euclidean distance when xi ⇤ Rp

(2) Compute graph shortest path distances
dij = minP=(xi,...,xj)(�xi � xt1�+ . . .+ �xtk�1 � xj�), is the length

of a graph shortest path connecting i and j
Dijkstra’s algorithm (O(kn2 log n)) and Floyd’s Algorithm (O(n3))
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(2) Local fitting:
Pick up a point xi and its neighbors Ni

Compute the local fitting weights

minP
j2Ni wij=1

kxi �

X

j2Ni

wijxjk
2,

which is equivalent to

minP
j2Ni wij=1

k

X

j2Ni

wij(xj � xi)k
2,

that is, finding a linear combination (possibly not unique!) for the sub-
space spanned by {(xj � xi) : j 2 Ni}. This can be done by Lagrange
multiplier method, i.e. solving

min
wij

1

2
k

X

j2Ni

wij(xj � xi)k
2 + �(1 �

X

j2Ni

wij).

Let wi = [wij1 , . . . wijk ]T 2 Rk, X̄i = [xj1 �xi, . . . , xjk �xi], and the local
Gram (covariance) matrix Ci(j, k) = hxj �xi, xk�xii, whence the weights
are

(80) wi = �C†
i 1,

where the Lagrange multiplier equals to the following normalization pa-
rameter

(81) � =
1

1TC†
i 1

,

and C†
i is a Moore-Penrose (pseudo) inverse of Ci. Note that Ci is often

ill-conditioned and to find its Moore-Penrose inverse one can use regular-
ization method (Ci + µI)�1 for some µ > 0.

(3) Global alignment
Define a n-by-n weight matrix W :

Wij =

⇢
wij , j 2 Ni

0, otherwise

Compute the global embedding d-by-n embedding matrix Y ,

min
Y

X

i

kyi �

nX

j=1

Wijyjk
2 = trace(Y (I � W )T (I � W )Y T )

In other words, construct a positive semi-definite matrix B = (I �

W )T (I�W ) and find d+1 smallest eigenvectors of B, v0, v1, . . . , vd associ-
ated smallest eigenvalues �0, . . . , �d. Drop the smallest eigenvector which
is the constant vector explaining the degree of freedom as translation and
set Y = [v1/

p
(�1), . . . , vd/

p
�d]T .

The benefits of LLE are:

• Neighbor graph: k-nearest neighbors is of O(kn)
• W is sparse: kn/n2 = k/n non-zeroes
• B = (I � W )T (I � W ) is guaranteed to be positive semi-definite



Local Tangent Space Alignment
17/48
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Illustration

Find a good approximation of tangent space of curve using discrete samples.  
— Principal curve/manifold (Hastie-Stuetzle’89, Zha-Zhang’02)



Recall LTSA (Zha-Zhang’02)
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in the spirit of principal curve or principal manifold proposed by Werner Stuetzle
and Trevor Hastie [HS89]. Zhenyue Zhang and Hongyuan Zha (2002) [ZZ02]
propose to use sampled data to find a good approximation of tangent space via local
PCA, then the reconstruction data coordinates tries to preserve such approximate
tangent space at each point to reach a global alignment.

Algorithm 6: LTSA Algorithm

Input: A weighted undirected graph G = (V,E) such that
1 V = {xi 2 Rp : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors

Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rk⇥n of data.
3 Step 1 (local PCA): Compute local SVD on neighborhood of xi, xij 2 N (xi),

X̃
(i) = [xi1 � µi, ..., xik � µi]

p⇥k = Ũ
(i)⌃̃(Ṽ (i))T ,

where µi =
Pk

j=1 xij . Define

Gi = [1/
p
k, Ṽ1

(i)
, ..., Ṽd

(i)
]k⇥(d+1);

4 Step 2 (tangent space alignment): Alignment (kernel) matrix

K
n⇥n =

nX

i=1

SiWiW
T
i S

T
i , W

k⇥k
i = I �GiG

T
i ,

where selection matrix S
n⇥k
i : [xi1 , ..., xik ] = [x1, ..., xn]Sn⇥k

i ;
5 Step 3 : Find smallest d + 1 eigenvectors of K and drop the smallest eigenvector,

the remaining d eigenvectors will give rise to a d-embedding.

For each xi in Rd with neighbor Ni of size |Ni| = ki�1, let X(i) = [xj1 , xj2 , . . . , xjki
] 2

Rp⇥ki be the coordinate matrix. Consider the local SVD (PCA)

X̃(i) = [xi1 � µi, ..., xiki
� µi]

p⇥ki = X(i)H = Ũ (i)⌃̃(Ṽ (i))T ,

where H = I �
1
ki

1ki1
T
ki

. Left singular vectors {Ũ (i)
1 , ..., Ũ (i)

d } give an orthonormal
basis of the approximate d-dimensional tangent space at xi. Right singular vectors

(Ṽ (i)
1 , . . . , Ṽ (i)

d ) · ⌃̃ 2 Rki⇥d present the d-coordinates of ki samples with respect to
the tangent space basis.

Let Yi 2 Rd⇥ki be the embedding coordinates of the samples in Rd and Li :

Rp⇥d be an estimated basis of the tangent space at xi in Rp. Let ⇥i = Ũ (i)
d ⌃̃d(Ṽ

(i)
d )T 2

Rp⇥ki be the truncated SVD using top d components. LTSA looks for the minimizer
of the following problem

(84) min
Y,L

X

i

kEik
2 =

X

i

����Yi(I �
1

n
11T ) � LT

i ⇥i

����
2

.

One can estimate LT
i = Yi(1 �

1
n11T )⇥†

i . Hence it reduces to

(85) min
Y

X

i

kEik
2 =

X

i

����Yi(I �
1

n
11T )(I � ⇥†

i⇥i)

����
2

where I � ⇥†
i⇥i is the projection to the normal space at xi. This is equivalent to

define

Gi = [1/
p

ki, Ṽ1
(i)

, ..., Ṽd
(i)

]ki⇥(d+1),



Comparisons on Swiss Roll
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https://nbviewer.jupyter.org/url/
math.stanford.edu/~yuany/course/
data/plot_compare_methods.ipynb

https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb


Hessian LLE
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a weight matrix,

W ki⇥ki
i = I � GiG

T
i ,

and a positive semi-definite kernel matrix for alignment,

Kn⇥n = � =
nX

i=1

SiWiW
T
i ST

i

where the selection matrix Sn⇥ki
i : [xi1 , ..., xiki

] = [x1, ..., xn]Si. Notice that con-
stant vector is an eigenvector corresponding to the 0 eigenvalue. Hence similar to
the LLE, one can choose bottom d+1 eigenvectors and drop the constant eigenvec-
tor, which gives embedding matrix Y (n⇥d). An error analysis is given in [ZZ09],
which shows that LTSA may recover the global coordinates asymptotically.

Remark. We note that LTSA can be also applied to the situation that we are
given local pairwise distances between samples. Since MDS and PCA are dual to
each other, one can replace the local PCA in the algorithm by local MDS which

leads to the same results as only right singular vectors ˜V (i) are used there.

5. Hessian LLE

Figure 5. Local coordinate system at the origin O = xi.

In LLE, one chooses the weights wij to minimize the following energy

minP
j2Ni wij=1

k

X

j2Ni

wij(xj � xi)k
2.

In the ideal case, if the points x̃j = xj � xi are linearly dependent, then there
is some wij , possibly not unique, such that 0 =

P
j2Ni

wij x̃j . In this local chart
(Figure 5), we have

0 =
X

j2Ni

wij x̃j , and 1 =
X

j2Ni

wij .

For any smooth function y(x), consider its Taylor expansion up to the second order

y(x) = y(0) + xT
ry(0) +

1

2
xT (Hy)(0)x + o(kxk

2).
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Therefore

(I � W )y(0) := y(0) �

X

j2Ni

wijy(x̃i)

⇡ y(0) �

X

j2Ni

wijy(0) �

X

j2Ni

wij x̃
T
i ry(0) �

1

2

X

j2Ni

x̃T
i (Hy)(0)x̃i

= �
1

2

X

j2Ni

x̃T
i (Hy)(0)x̃i.

Since the Hessian matrix (Hy)(0) := [ @2y(x)
@x(i)@x(j) ]x=0, if function y(x) is a linear

transform of the coordinates x 2 Rp in the tangent space at xi, the Hessian will
vanish and (I � W )y(0) = 0, reaching a minimizer. In other words, the kernel of
(Hy) has dimension d + 1, consisting the constant function and d linearly indepen-
dent coordinates. Inspired by such an observation, Donoho and Grimes [DG03b]
proposed Hessian LLE (Eigenmap) in search of

min
y?1

Z
kHyk

2, kyk = 1.

The basic algorithmic idea is as follows.
1. G is incomplete, often k-nearest neighbour graph.
2. Local SVD on neighbourhood of xi, for xij 2 N (xi),

X̃(i) = [xi1 � µi, ..., xik � µi]
p⇥k = Ũ (i)⌃̃(Ṽ (i))T ,

where µi =
Pk

j=1 xij = 1
kXi1, Ũ (i) = [Ũ (i)

1 , ..., Ũ (i)
k ] is an approximate tangent

space at xi.
3. Hessian estimation, assumed d-dimension: define

M = [1, Ṽ1, ..., Ṽk, Ṽ1Ṽ2, ..., Ṽd�1Ṽd] 2 Rk⇥(1+d+(d2))

where ṼiṼj = [ṼikṼjk]T 2 Rk denotes the elementwise product (Hadamard product)
between vector Ṽi and Ṽj .

Now we perform a Gram-Schmidt Orthogonalization procedure on M , get

M̃ = [1, v̂1, ..., v̂k, ŵ1, ŵ2, ..., ŵ(d2)�1] 2 Rk⇥(1+d+(d2))

Define null Hessian by

[H(i)]T = [last

✓
d

2

◆
columns of M̃ ]k⇥(d2)

,

as the first d + 1 columns of M̃ consists an orthonormal basis for the kernel of
Hessian together with the constant vector.

Define a selection matrix S(i)
2 Rn⇥k which selects those data in N (xi), i.e.

[x1, .., xn]S(i) = [xi1 , ..., xik ]

Then the kernel matrix is defined to be

K =
nX

i=1

S(i)H(i)TH(i)S(i)T
2 Rn⇥n

Find smallest d + 1 eigenvectors of K and drop the smallest eigenvector, the re-
maining d eigenvectors will give rise to a d dimensional embedding of data points.
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Therefore

(I � W )y(0) := y(0) �

X

j2Ni

wijy(x̃i)

⇡ y(0) �

X

j2Ni

wijy(0) �

X

j2Ni

wij x̃
T
i ry(0) �

1

2

X

j2Ni

x̃T
i (Hy)(0)x̃i

= �
1

2

X

j2Ni

x̃T
i (Hy)(0)x̃i.

The Hessian matrix

(Hy)(0) :=


@2y(x)

@x(i)@x(j)

�

x=0

= 0,

if function y(x) is a linear transform of the coordinates x 2 Rp in the tangent space
at xi. In this case (I � W )y(0) = 0 and y reaches a minimizer.

In other words, the kernel of (Hy) has dimension d+1, consisting the constant
function and d linearly independent coordinates. Inspired by such an observation,
Donoho and Grimes [DG03b] proposed Hessian LLE (Eigenmap) in search of

min
y?1

Z
kHyk

2, kyk = 1.

The basic algorithmic idea is as follows.
1. G is incomplete, often k-nearest neighbour graph.
2. Local SVD on neighbourhood of xi, for xij 2 N (xi),

X̃(i) = [xi1 � µi, ..., xik � µi]
p⇥k = Ũ (i)⌃̃(Ṽ (i))T ,

where µi =
Pk

j=1 xij = 1
kXi1, Ũ (i) = [Ũ (i)

1 , ..., Ũ (i)
k ] is an approximate tangent

space at xi.
3. Hessian estimation, assumed d-dimension: define

M = [1, Ṽ1, ..., Ṽk, Ṽ1Ṽ2, ..., Ṽd�1Ṽd] 2 Rk⇥(1+d+(d2))

where ṼiṼj = [ṼikṼjk]T 2 Rk denotes the elementwise product (Hadamard product)
between vector Ṽi and Ṽj .

Now we perform a Gram-Schmidt Orthogonalization procedure on M , get

M̃ = [1, v̂1, ..., v̂k, ŵ1, ŵ2, ..., ŵ(d2)�1] 2 Rk⇥(1+d+(d2))

Define null Hessian by

[H(i)]T = [last

✓
d

2

◆
columns of M̃ ]k⇥(d2)

,

as the first d + 1 columns of M̃ consists an orthonormal basis for the kernel of
Hessian together with the constant vector.

Define a selection matrix S(i)
2 Rn⇥k which selects those data in N (xi), i.e.

[x1, .., xn]S(i) = [xi1 , ..., xik ]

Then the kernel matrix is defined to be

K =
nX

i=1

S(i)H(i)TH(i)S(i)T
2 Rn⇥n
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i (Hy)(0)x̃i.

The Hessian matrix

(Hy)(0) :=


@2y(x)

@x(i)@x(j)

�

x=0

= 0,

if function y(x) is a linear transform of the coordinates x 2 Rp in the tangent space
at xi. In this case (I � W )y(0) = 0 and y reaches a minimizer.

In other words, the kernel of (Hy) has dimension d+1, consisting the constant
function and d linearly independent coordinates. Inspired by such an observation,
Donoho and Grimes [DG03b] proposed Hessian LLE (Eigenmap) in search of

min
y?1

Z
kHyk

2, kyk = 1.

The basic algorithmic idea is as follows.
1. G is incomplete, often k-nearest neighbour graph.
2. Local SVD on neighbourhood of xi, for xij 2 N (xi),

X̃(i) = [xi1 � µi, ..., xik � µi]
p⇥k = Ũ (i)⌃̃(Ṽ (i))T ,

where µi =
Pk

j=1 xij = 1
kXi1, Ũ (i) = [Ũ (i)

1 , ..., Ũ (i)
k ] is an approximate tangent

space at xi.
3. Hessian estimation, assumed d-dimension: define

M = [1, Ṽ1, ..., Ṽk, Ṽ1Ṽ2, ..., Ṽd�1Ṽd] 2 Rk⇥(1+d+(d2))

where ṼiṼj = [ṼikṼjk]T 2 Rk denotes the elementwise product (Hadamard product)
between vector Ṽi and Ṽj .

Now we perform a Gram-Schmidt Orthogonalization procedure on M , get

M̃ = [1, v̂1, ..., v̂k, ŵ1, ŵ2, ..., ŵ(d2)�1] 2 Rk⇥(1+d+(d2))

Define null Hessian by

[H(i)]T = [last

✓
d

2

◆
columns of M̃ ]k⇥(d2)

,

as the first d + 1 columns of M̃ consists an orthonormal basis for the kernel of
Hessian together with the constant vector.

Define a selection matrix S(i)
2 Rn⇥k which selects those data in N (xi), i.e.

[x1, .., xn]S(i) = [xi1 , ..., xik ]

Then the kernel matrix is defined to be

K =
nX

i=1

S(i)H(i)TH(i)S(i)T
2 Rn⇥n
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Then the kernel matrix is defined to be

K =
nX

i=1

S(i)H(i)TH(i)S(i)T
2 Rn⇥n

Find smallest d + 1 eigenvectors of K and drop the smallest eigenvector, the re-
maining d eigenvectors will give rise to a d dimensional embedding of data points.

Algorithm 7: Hessian LLE Algorithm

Input: A weighted undirected graph G = (V,E, d) such that
1 V = {xi 2 Rp : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors

Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rd⇥n of data.
3 Step 1 : Compute local PCA on neighborhood of xi, for,

X̃
(i) = [xi1 � µi, ..., xik � µi]

p⇥k = Ũ
(i)⌃̃(Ṽ (i))T , xij 2 N (xi),

where µi =
Pk

j=1 xij = 1
kXi1;

4 Step 2 : Hessian estimation, assumed d-dimension: define

M = [1, Ṽ1, ..., Ṽk, Ṽ1Ṽ2, ..., Ṽd�1Ṽd] 2 Rk⇥(1+d+(d2))

where ṼiṼj = [ṼikṼjk]
T 2 Rk denotes the elementwise product (Hadamard

product) between vector Ṽi and Ṽj . Now we perform a Gram-Schmidt
Orthogonalization procedure on M , get

M̃ = [1, v̂1, ..., v̂k, ŵ1, ŵ2, ..., ŵ(d2)
] 2 Rk⇥(1+d+(d2))

Define

[H(i)]T = [last

 
d

2

!
columns of M̃ ]

k⇥(d2)
.

Step 3 : Define

K =
nX

i=1

S
(i)
H

(i)T
H

(i)
S

(i)T 2 Rn⇥n
, [x1, .., xn]S(i) = [xi1 , ..., xik ],

find smallest d + 1 eigenvectors of K and drop the smallest eigenvector, and the
remaining d eigenvectors will give rise to a d-embedding.

5.1. Convergence of Hessian LLE. There are two assumptions for the con-
vergence of ISOMAP:

• Isometry: the geodesic distance between two points on manifolds equals
to the Euclidean distances between intrinsic parameters.

• Convexity: the parameter space is a convex subset in Rd.

Therefore, if the manifold contains a hole, ISOMAP will not faithfully recover
the intrinsic coordinates. Hessian LLE above is provable to find local orthogonal
coordinates for manifold reconstruction, even in nonconvex case. Figure [?] gives
an example.

Donoho and Grimes [DG03b] relaxes the conditions above into the following
ones.

• Local Isometry: in a small enough neighborhood of each point, geodesic
distances between two points on manifolds are identical to Euclidean dis-
tances between parameter points.
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Therefore

(I � W )y(0) := y(0) �

X

j2Ni

wijy(x̃i)

⇡ y(0) �

X

j2Ni

wijy(0) �

X

j2Ni

wij x̃
T
i ry(0) �

1

2

X

j2Ni

x̃T
i (Hy)(0)x̃i

= �
1

2

X

j2Ni

x̃T
i (Hy)(0)x̃i.

If function y(x) is a linear transform of the d-coordinates of x in the tangent space
at xi, then the Hessian matrix

(Hy)(0) :=


@2y(x)

@x(i)@x(j)

�

x=0

= 0.

In this case (I � W )y(0) = 0 and y reaches a minimizer.
In other words, the kernel of Hessian operator H has dimension d+1, consisting

the constant function and d linearly independent coordinates. Inspired by such an
observation, Donoho and Grimes [DG03b] proposed Hessian LLE (Eigenmap) in
search of

min
y?1

Z
kHyk

2, kyk = 1.

The basic algorithmic idea is as follows.
1. G is incomplete, often k-nearest neighbour graph.
2. Local SVD on neighbourhood of xi, for xij 2 N (xi),

X̃(i) = [xi1 � µi, ..., xik � µi]
p⇥k = Ũ (i)⌃̃(Ṽ (i))T ,

where µi =
Pk

j=1 xij = 1
kXi1. Here

• Left top singular vectors {Ũ (i)
1 , ..., Ũ (i)

d } give an orthonormal basis of the
approximate tangent space at xi,

• Right top singular vectors [Ṽ (i)
1 , ..., Ṽ (i)

d ] are representation coordinates in
the tangent space of local sample points around xi.

3. Null Hessian estimation: define

M = [1, Ṽ1, ..., Ṽk, Ṽ1Ṽ2, ..., Ṽd�1Ṽd] 2 Rk⇥(1+d+(d2))

where ṼiṼj = [ṼikṼjk]T 2 Rk denotes the element-wise product (Hadamard prod-
uct) between vector Ṽi and Ṽj .

Now we perform a Gram-Schmidt Orthogonalization procedure on M , get

M̃ = [1, v̂1, ..., v̂k, ŵ1, ŵ2, ..., ŵ(d2)�1] 2 Rk⇥(1+d+(d2))

Define null Hessian by

[H(i)]T = [last

✓
d

2

◆
columns of M̃ ]k⇥(d2)

,

as the first d + 1 columns of M̃ consists an orthonormal basis for the kernel of
Hessian together with the constant vector.

Define a selection matrix S(i)
2 Rn⇥k which selects those data in N (xi), i.e.

[x1, .., xn]S(i) = [xi1 , ..., xik ]
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Then the kernel matrix is defined to be

K =
nX

i=1

S(i)H(i)TH(i)S(i)T
2 Rn⇥n

Find smallest d + 1 eigenvectors of K and drop the smallest eigenvector, the re-
maining d eigenvectors will give rise to a d dimensional embedding of data points.

Algorithm 7: Hessian LLE Algorithm

Input: A weighted undirected graph G = (V,E, d) such that
1 V = {xi 2 Rp : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors

Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rd⇥n of data.
3 Step 1 : Compute local PCA on neighborhood of xi, for,

X̃
(i) = [xi1 � µi, ..., xik � µi]

p⇥k = Ũ
(i)⌃̃(Ṽ (i))T , xij 2 N (xi),

where µi =
Pk

j=1 xij = 1
kXi1;

4 Step 2 : Null Hessian estimation: define

M = [1, Ṽ1, ..., Ṽk, Ṽ1Ṽ2, ..., Ṽd�1Ṽd] 2 Rk⇥(1+d+(d2))

where ṼiṼj = [ṼikṼjk]
T 2 Rk denotes the elementwise product (Hadamard

product) between vector Ṽi and Ṽj . Now we perform a Gram-Schmidt
Orthogonalization procedure on M , get

M̃ = [1, v̂1, ..., v̂k, ŵ1, ŵ2, ..., ŵ(d2)
] 2 Rk⇥(1+d+(d2))

Define

[H(i)]T = [last

 
d

2

!
columns of M̃ ]

k⇥(d2)
.

Step 3 : Define

K =
nX

i=1

S
(i)
H

(i)T
H

(i)
S

(i)T 2 Rn⇥n
, [x1, .., xn]S(i) = [xi1 , ..., xik ],

find smallest d + 1 eigenvectors of K and drop the smallest eigenvector, and the
remaining d eigenvectors will give rise to a d-embedding.

5.1. Convergence of Hessian LLE. There are two assumptions for the con-
vergence of ISOMAP:

• Isometry: the geodesic distance between two points on manifolds equals
to the Euclidean distances between intrinsic parameters.

• Convexity: the parameter space is a convex subset in Rd.

Therefore, if the manifold contains a hole, ISOMAP will not faithfully recover
the intrinsic coordinates. Hessian LLE above is provable to find local orthogonal
coordinates for manifold reconstruction, even in nonconvex case. Figure [?] gives
an example.

Donoho and Grimes [DG03b] relaxes the conditions above into the following
ones.

• Local Isometry: in a small enough neighborhood of each point, geodesic
distances between two points on manifolds are identical to Euclidean dis-
tances between parameter points.
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Two Assumptions on ISOMAP
3 Isomap

In an insightful article, Tenenbaum, de Silva, and Langford [1] proposed a method that, under
certain assumptions, could indeed recover the underlying parametrization of a data manifold.
The assumptions were:

(ISO1) Isometry. The mapping ⇥ preserves geodesic distances. That is, define a distance between
two points m and m� on the manifold according to the distance travelled by a bug walking
along the manifold M according to the shortest path between m and m�. Then the
isometry assumption says that

G(m, m�) = |� � ��|, ⌅m ⇥ �,m� ⇥ ��,

where | · | denotes Euclidean distance in Rd.

(ISO2) Convexity. The parameter space � is a convex subset of Rd. That is, if �, �� is a pair of
points in �, then the entire line segment {(1� t)� + t�� : t ⇤ (0, 1)} lies in �.

Tenenbaum et al. [1] introduced a procedure, Isomap, which, under these assumptions,
recovered � up to rigid motion. That is, up to a choice of origin and a rotation and possible
mirror imaging about that origin, Isomap recovered �. In their paper, they gave an example
showing successful recovery of articulation parameters from an image database that showed
many views of a wrist rotating and a hand opening at various combinations of rotation/opening.

The stated assumptions lead to two associated questions:

(Q1) Whether interesting articulation manifolds have isometric structure; and

(Q2) Whether interesting parameter spaces are truly convex.

Donoho and Grimes [4, 5] studied these questions in the case of image libraries. Namely,
they modeled images m as continuous functions m(x, y) defined on the plane (x, y) ⇤ R2, and
focused attention on images in special articulation families defined by certain mathematical
models. As one example, they considered images of a ball on a white background, where the
underlying articulation parameter is the position of the ball’s center. In this model, let B�

denotes the ball of radius 1 centered at � ⇤ R2, and define

m�(x, y) = 1B�
(x, y).

This establishes a correspondence between � ⇤ R2 and m� in L2(R2). After dealing with
technicalities associated with having L2(R2) as the ambient space in which M is embedded,
they derived expressions for the metric structure induced from L2(R2) and showed that indeed,
if � is a convex subset of R2, then isometry holds:

G(�, ��) = |� � ��|, ⌅�, �� ⇤ �

They found that isometry held for a dozen examples of interesting image articulation families,
including cartoon faces with articulated eyes, lips, and brows. Hence (Q1) admits of positive
answers in a number of interesting cases.

4

Convexity is hard to meet: consider two balls in an image which never  
intersect, whose center coordinate space (x1,y1,x2,y2) must have a hole.



Relaxations  
(Donoho-Grimes’2003)

On the other hand, in their studies of image articulation families, Donoho and Grimes [4, 5]
noted that (Q2) can easily have a negative answer. A simple example occurs with images
showing two balls which articulate by translation, as in the single-ball case mentioned above,
but where the ball centers obey exclusion: the two balls never overlap. In this case, the
parameter space � ⇤ R4 becomes nonconvex; writing � = (�1, �2) as a concatenation of the
parameters of the two ball centers, we see that it is missing a tube where |�1 � �2| ⇥ 1.

The case of two balls moving independently and subject to exclusion is merely one in a series
of examples where the articulation manifold fails to obey (ISO1) and (ISO2), but instead obeys
something weaker:

(LocISO1) Local Isometry. In a small enough neighborhood of each point m, geodesic distances to
nearby points m� in M are identical to Euclidean distances between the corresponding
parameter points � and ��.

(LocISO2) Connectedness. The parameter space � is a open connected subset of Rd.

In such settings, the original assumptions of Isomap are violated, and, as shown in [4, 6], the
method itself fails to recover the parameter space up to a linear mapping. Donoho and Grimes
[6] pointed out the possibility of recovering non-convex � by applying Isomap to a suitable
decomposition of M into overlapping geodesically convex pieces. However, a fully automatic
procedure based on a general principle would be preferable in solving this problem. In this
paper we propose such a procedure.

4 The H-Functional

We now set up notation to define the quadratic form H(f) referred to in the abstract and
introduction.

We suppose that M ⇤ Rn is a smooth manifold, and so the tangent space Tm(M) is well-
defined at each point m ⇧ M . Thinking of the tangent space as a subspace of Rn, we can
associate to each such tangent space Tm(M) ⇤ Rn an orthonormal coordinate system using the
inner product inherited from Rn. (It will not matter in the least how this choice of coordinate
system varies from point to point in M).

Think momentarily of Tm(M) as an a⇥ne subspace of Rn which is tangent to M at m, with
the origin 0 ⇧ Tm(M) identified with m ⇧M . There is a neighborhood Nm of m such that each
point m� ⇧ Nm has a unique closest point V � ⇧ Tm(M), and such that the implied mapping
m� ⌃⌅ V � is smooth. The point in Tm(M) has coordinates given by our choice of orthonormal
coordinates for Tm(M). In this way, we obtain local coordinates for a neighborhood Nm of

m ⇧ M . call them x(tan,m)
1 , ... , x(tan,m)

d , where we retain tan, m in the notation to remind us
that they depend on the way in which coordinates were defined on Tm(M).

We now use the local coordinates to define the Hessian of a function f : M ⌃⌅ R which is C2

near m. Suppose that m� ⇧ Nm has local coordinates x = x(tan,m). Then the rule g(x) = f(m�)
defines a function g : U ⌃⌅ R, where U is a neighborhood of 0 in Rd. Since the mapping m� ⌃⌅ x
is smooth, the function g is C2 We define the Hessian of f at m in tangent coordinates as the
ordinary Hessian of g:

(H tan
f (m))i,j =

⇥

⇥xi

⇥

⇥xj
g(x)

���
x=0

.

5
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In short, at each point m, we use the tangent coordinates and di⇥erentiate f in that coordinate
system. We call this construction the tangent Hessian for short.

We remark that, unfortunately, there is some ambiguity in this definition of the Hessian,
because the entries in the Hessian matrix Htan

f depend on the choice of coordinate system on the
underlying tangent space Tm(M). More properly, if we consider another choice of orthonormal
coordinates in Tm(M), we get another system of local coordinates in Nm, and for that set of
local coordinates, we get another Hessian matrix, which can be quite di⇥erent.

Luckily, it is possible to extract invariant information about f . Comparing two di⇥erent
Hessians, H and H �, say, which could be obtained as a result of two di⇥erent choices in the
local coordinate system, we have the relation

H � = UHUT , (1)

where U is the orthonormal matrix translating one set of coordinates into the other. Although
this says that H and H � can di⇥er a great deal in their entries, it turns out that their sizes must
be similar. For a d by d matrix A, let ⇥A⇥F = (

�
ij A2

ij)
1/2 denote the usual Frobenius norm of

matrices; then for two matrices H and H � obeying (1), we have ⇥H �⇥F = ⇥H⇥F . Consequently,

provided we always restrict attention just to the Frobenius norm of H(tan)
f , our recipe gives a

well-defined quantity.
We now consider a quadratic form defined on C2 functions by

H(f) =

⇥

M

||H(tan)
f (m)||2F dm,

where dm stands for a probability measure on M which has strictly positive density everywhere
on the interior of M . H(f) measures the average ‘curviness’ of f over the manifold M .

Theorem 1 Suppose M = ⌅(�) where � is an open connected subset of Rd, and ⌅ is a locally
isometric embedding of � into Rn. Then H(f) has a d + 1 dimensional nullspace, consisting of
the constant function and a d-dimensional space of functions spanned by the original isometric
coordinates.

We give the proof in Appendix A.

Corollary 2 Under the same assumptions as Theorem 1, the original isometric coordinates �
can be recovered, up to a rigid motion, by identifying a suitable basis for the null space of H(f).

We sketch the argument for the corollary. Fix a point m0 in M . Recall the orthogonal
coordinate system chosen for Tm0(M) gives us a local coordinate system – a set of d functions

x(tan,m0)
1 , ..., x(tan,m0)

d – defined on a neighborhood Nm0 � M . The nullspace of H is d + 1
dimensional; consider the subspace V � nullspace(H) consisting of those functions f orthogonal
to 1 in the L2(M, dm) inner product. Within V , we can find a linearly independent set of
functions ⌅1,..., ⌅d making a basis for V , and such that, if x refers to local coordinates x(tan,m0)

in the vicinity of m0, then ⌅j(m) = xj(m) + o(dist(m, m0)2). The functions ⌅j provide the
required basis of V . The vector function ⌅(m) = (⌅j(m))d

j=1 gives an inverse to ⇤, up to a rigid
motion, i.e. we have ⌅(⇤(�)) = U� + ⇥, where the orthonormal matrix U e⇥ects orthogonal
rotation, and adding ⇥ e⇥ects a location shift. Hence, this recovers the original coordinates up
to rigid motion under an exact isometric embedding ⌅. 2

6
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2

3x
∑

wixi = 0

∑

wi = 1

Hessian H. Taylor expansion :

f(xi) = f(0) + xt
i∇f +

1

2
xt

iHxi + o(∥xi∥
2)

(I − W )f(0) = f(0) −
∑

wif(xi) ≈ f(0) −
∑

wif(0) −
∑

i

wix
t
i∇f −

1

2

∑

i

xt
iHxi =

= −
1

2

∑

i

xt
iHxi ≈ −trH = ∆f

Geometric Methods and Manifold Learning – p. 34

when x_i becomes an orthonormal basis…



Discrete Laplacian
Justification

Find y1, . . . , yn ∈ R

min
∑

i,j

(yi − yj)
2Wij

Tries to preserve locality

Geometric Methods and Manifold Learning – p. 40



A Fundamental IdentityA Fundamental Identity

But

1

2

∑

i,j

(yi − yj)
2Wij = yT Ly

∑

i,j

(yi − yj)
2Wij =

∑

i,j

(y2
i + y2

j − 2yiyj)Wij

=
∑

i

y2
i Dii +

∑

j

y2
j Djj − 2

∑

i,j

yiyjWij

= 2yT Ly

Geometric Methods and Manifold Learning – p. 41
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where cWi is the embedding of Wi 2 Rki⇥si into Rn⇥si ,

cWi(j, :) =

8
<

:

�1Tsi , j = i,
Wi, j 2 Ni,
0, otherwise.

The error analysis of MLLE is similar to that of LTSA [ZW], hence it is ex-
pected both lead to similar results in applications. However, since MLLE computes
a full spectrum of Ci in each neighbour, it is more expensive than the partial local
SVD in LTSA and more sensitive to the noise than LTSA. Yet due to the adaptive
choice of si, MLLE can be adaptive to the heterogeneity in manifold curvature
variations. Python scikit-learn package contains an implementation of MLLE.

4. Laplacian LLE (Eigenmap)

Consider the graph Laplacian with heat kernels [BN01, BN03]. Define a
weight matrix W = (wij) 2 Rn⇥n by

wij =

(
e�

kxi�xjk
2

t j 2 N (i),

0 otherwise.

Let D = diag(
P

j2Ni
wij) be the diagonal matrix with weighted degree as diagonal

elements.
Define the unnormalized graph Laplacian by

L = D � W,

and the normalized graph Laplacian by

L = D� 1
2 (D � W )D� 1

2 .

Note that eigenvectors of L are also generalized eigenvectors of L up to a scaling
matrix. This can be seen in the following reasoning.

L� = ��

, D� 1
2 (D � W )D� 1

2 � = ��

, Lv = (D � W )v = �Dv, v = D� 1
2 �

Generalized eigenvectors v of L are also right eigenvectors of row Markov matrix
P = D�1W . (* Pv = �v , D�1Wv = �v , (I � D�1W )v = (1 � �)v )
(D � W )v = (1 � �)Dv).

Depending on the meaning of eigenvectors above, we can always choose bot-
tom d + 1 eigenvectors, and dropped the smallest eigenvector (the constant vector
associated with eigenvalue 0) and use the remaining d vectors to construct a d
dimensional embedding of data.

4.1. Convergence of Laplacian Eigenmap. Why choose Laplacian? Con-
sider a linear chain graph,

(df)(i) = fi+1 � fi = [(z � 1)f ](i)

d2f = (z � 1)2f = (z2 � 2z + 1)f ! fi+1 � 2fi + fi�1

On graphs, d2f = (D � W )f = Lf

fTLf =
X

i�j

wij(fi � fj)
2

� 0 ⇠

Z
krMfk

2 =

Z
(trace(fT

Hf))2
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where cWi is the embedding of Wi 2 Rki⇥si into Rn⇥si ,
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Wi, j 2 Ni,
0, otherwise.

The error analysis of MLLE is similar to that of LTSA [ZW], hence it is ex-
pected both lead to similar results in applications. However, since MLLE computes
a full spectrum of Ci in each neighbour, it is more expensive than the partial local
SVD in LTSA and more sensitive to the noise than LTSA. Yet due to the adaptive
choice of si, MLLE can be adaptive to the heterogeneity in manifold curvature
variations. Python scikit-learn package contains an implementation of MLLE.

4. Laplacian LLE (Eigenmap)

Consider the graph Laplacian with heat kernels [BN01, BN03]. Define a
weight matrix W = (wij) 2 Rn⇥n by

wij =

(
e�

kxi�xjk
2

t j 2 N (i),

0 otherwise.

Let D = diag(
P

j2Ni
wij) be the diagonal matrix with weighted degree as diagonal

elements.
Define the unnormalized graph Laplacian by

L = D � W,

and the normalized graph Laplacian by

L = D� 1
2 (D � W )D� 1

2 .

Note that eigenvectors of L are also generalized eigenvectors of L up to a scaling
matrix. This can be seen in the following reasoning.

L� = ��

, D� 1
2 (D � W )D� 1

2 � = ��

, Lv = (D � W )v = �Dv, v = D� 1
2 �

Generalized eigenvectors v of L are also right eigenvectors of row Markov matrix
P = D�1W . (* Pv = �v , D�1Wv = �v , (I � D�1W )v = (1 � �)v )
(D � W )v = (1 � �)Dv).

Depending on the meaning of eigenvectors above, we can always choose bot-
tom d + 1 eigenvectors, and dropped the smallest eigenvector (the constant vector
associated with eigenvalue 0) and use the remaining d vectors to construct a d
dimensional embedding of data.

4.1. Convergence of Laplacian Eigenmap. Why choose Laplacian? Con-
sider a linear chain graph,

(df)(i) = fi+1 � fi = [(z � 1)f ](i)

d2f = (z � 1)2f = (z2 � 2z + 1)f ! fi+1 � 2fi + fi�1

On graphs, d2f = (D � W )f = Lf

fTLf =
X

i�j

wij(fi � fj)
2

� 0 ⇠

Z
krMfk

2 =

Z
(trace(fT

Hf))2



Embedding of Unnormalized 
Laplacian Eigenmap

Embedding

λ = 0 → y = 1

min
yT 1=0

yT Ly

Let Y = [y1y2 . . .ym]

∑

i,j

||Yi − Yj ||
2Wij = trace(Y T LY )

subject to Y T Y = I.

Use eigenvectors of L to embed.

Geometric Methods and Manifold Learning – p. 42

Uniform sampling:

Nonuniform (GEV):

1378 M. Belkin and P. Niyogi

criterion for choosing a “good” map is to minimize the following objective
function,

∑

ij
(yi − yj)

2 Wij,

under appropriate constraints. The objective function with our choice of
weights Wij incurs a heavy penalty if neighboring points xi and xj are
mapped far apart. Therefore, minimizing it is an attempt to ensure that
if xi and xj are “close,” then yi and yj are close as well.

It turns out that for any y, we have

1
2

∑

i,j
(yi − yj)

2 Wij = yTLy, (3.1)

where as before, L = D − W. To see this, notice that Wij is symmetric and
Dii =

∑

j Wij. Thus,

∑

i,j
(yi − yj)

2 Wij =
∑

i,j
(y2

i + y2
j − 2 yiyj)Wij

=
∑

i
y2

i Dii +
∑

j
y2

j Djj − 2
∑

i,j
yiyjWij = 2 yTLy.

Note that this calculation also shows that L is positive semidefinite.
Therefore, the minimization problem reduces to finding

argmin
y

yTDy=1

yTLy.

The constraint yTDy = 1 removes an arbitrary scaling factor in the embed-
ding. Matrix D provides a natural measure on the vertices of the graph.
The bigger the value Dii (corresponding to the ith vertex) is, the more “im-
portant” is that vertex. It follows from equation 3.1 that L is a positive
semidefinite matrix, and the vector y that minimizes the objective function
is given by the minimum eigenvalue solution to the generalized eigenvalue
problem:

Ly = λDy.

Let 1 be the constant function taking 1 at each vertex. It is easy to see that 1
is an eigenvector with eigenvalue 0. If the graph is connected, 1 is the only
eigenvector for λ = 0. To eliminate this trivial solution, which collapses all
vertices of G onto the real number 1, we put an additional constraint of
orthogonality and look for

argmin
yTDy=1

yTD1=0

yTLy.



How to find weights? 
Heat kernels…

!23

The Heat Kernel

Ht(x, y) =
∑

i e
−λitφi(x)φi(y)

in Rd, closed form expression

Ht(x, y) =
1

(4πt)d/2
e−

∥x−y∥2

4t

Goodness of approximation depends on the gap
∣

∣

∣

∣

Ht(x, y) −
1

(4πt)d/2
e−

∥x−y∥2

4t

∣

∣

∣

∣

Ht is a Mercer kernel intrinsically defined on manifold.
Leads to SVMs on manifolds.

Geometric Methods and Manifold Learning – p. 59

good for small t



Laplacian Eigenmaps (I) 
[Belkin-Niyogi]

6. LAPLACIAN LLE (EIGENMAP) 85

or generalized eigenvectors

min
yTD1=0

=
yTLy

yTDy
.

A generalized eigenvector v of L are also right eigenvectors of row Markov matrix
P = D�1W . To see this,

* (D � W )v = �Dv , (I � D�1W )v = �v , D�1Wv = (1 � �)v

) Pv = (1 � �)v.

So eigenvectors are the same but only the eigenvalues are translated from � to 1��.
Hence generalized eigenvectors are in fact suggested in [BN03] for Laplacian LLE
which connects to random walk on graphs and di↵usion map to be discussed later.

Algorithm 8: Laplacian Eigenmap

Input: An adjacency graph G = (V,E, d) such that
1 V = {xi : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors,

✏-neighbors
3 dij = d(xi, xj), e.g. Euclidean distance for xi ⇠ xj are in neighbor

Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rk⇥n of data.
4 Step 1 : Choose weights

5 (a) Heat kernel weights (parameter t):

Wij =

(
e
�

kxi�xjk
2

t , i ⇠ j,

0, otherwise.

(b) Simple-minded (t ! 1), Wij = 1 if i and j are connected by an edge and
Wij = 0 otherwise.

6 Step 2 (Eigenmap): Let D = diag(
P

j Wij) and L = D �W . Compute smallest
d + 1 generalized eigenvectors

Lyl = �lDyl, l = 0, 1, . . . , d,

such that 0 = �0  �1  . . .  �d. Drop the zero eigenvalue �0 and constant

eigenvector y0, and construct Yd = [y1, . . . , yd] 2 Rn⇥d.

Note that eigenvectors of normalized Laplacian L are related to generalized
eigenvectors of L up to a scaling matrix. This can be seen in the following reasoning.

L� = ��

, D� 1
2 (D � W )D� 1

2 � = ��

, Lv = (D � W )v = �Dv, v = D� 1
2 �

Depending on the meaning of eigenvectors above, we can always choose bot-
tom d + 1 eigenvectors, and dropped the smallest eigenvector (the constant vector
associated with eigenvalue 0) and use the remaining d vectors to construct a d
dimensional embedding of data.



Hessian vs. Laplacian

Note that: 

€ 

Δ( f ) = trace H( f )( )

62 5. NONLINEAR DIMENSIONALITY REDUCTION

4. Laplacian LLE (Eigenmap)

Consider the graph Laplacian with heat kernels [BN01, BN03]. Define a
weight matrix W = (wij) ⌥ Rn⇥n by

wij =

�
e�

⇥xi�xj⇥
2

t j ⌥ N (i),

0 otherwise.

Let D = diag(
⇥

j⌅Ni
wij) be the diagonal matrix with weighted degree as diagonal

elements.
Define the unnormalized graph Laplacian by

L = D �W,

and the normalized graph Laplacian by

L = D� 1
2 (D �W )D� 1

2 .

Note that eigenvectors of L are also generalized eigenvectors of L up to a scaling
matrix. This can be seen in the following reasoning.

L⇥ = �⇥

⌃ D� 1
2 (D �W )D� 1

2⇥ = �⇥

⌃ Lv = (D �W )v = �Dv, v = D� 1
2⇥

Generalized eigenvectors v of L are also right eigenvectors of row Markov matrix
P = D�1W . (⇥ Pv = �v ⌃ D�1Wv = �v ⌃ (I � D�1W )v = (1 � �)v �
(D �W )v = (1� �)Dv).

Depending on the meaning of eigenvectors above, we can always choose bot-
tom d+ 1 eigenvectors, and dropped the smallest eigenvector (the constant vector
associated with eigenvalue 0) and use the remaining d vectors to construct a d
dimensional embedding of data.

4.1. Convergence of Laplacian Eigenmap. Why choose Laplacian? Con-
sider a linear chain graph,

(df)(i) = fi+1 � fi = [(z � 1)f ](i)

d2f = (z � 1)2f = (z2 � 2z + 1)f ⇧ fi+1 � 2fi + fi�1

On graphs, d2f = (D �W )f = Lf

fTLf =
⇤

i⇤j

wij(fi � fj)
2 ⇤ 0 ⌅

⌅
��Mf�2 =

⌅
(trace(fTHf))2

where H = [⌃2/⌃i⌃j ] ⌥ Rd⇥d is the Hessian matrix.
Some rigorous results about convergence of Laplacian eigenmaps are given

in [BN08]. Assume that M is a compact manifold with vol(M) = 1. Let the
Laplacian-Beltrami operator

�M : C(M) ⇧ L2(M)

f �⇧ �÷ (�f)

• Laplacian LLE

• Hessian LLE

• Laplacian kernel: const + linear + bilinear
• Hessian kernel: const + linear functions

5. HESSIAN LLE 63

Consider the following operator

L̂t,n : C(M) ⇥ C(M)

f ⇧⇥ 1

t(4⇤t)k/2

⇧
⌥

i

e�
⇥y�xi⇥

4t f(y)�
⌥

i

e
⇥y�xi⇥

2

4t f(xi)

⌃

where (L̂t,nf)(y) is a function on M, and

Lt : L2(M) ⇥ L2(M)

f ⇧⇥ 1

t(4⇤t)k/2

��

M
e�

⇥y�x⇥
4t f(y)dx�

�

M
e

⇥y�x⇥2
4t f(x)dx

⇥
.

Then [BN08] shows that when those operators have no repeated eigenvalues,
the spectrum of L̂t,n converges to Lt as n ⇥ ⇤ (variance), where the latter con-
verges to that of �M with a suitable choice of t ⇥ ⇤ (bias). The following gives
a summary.

Theorem 4.1 (Belkin-Niyogi). Assume that all the eigenvalues in consideration
are of multiplicity one. For small enough t, let �̂t

n,i be the i-th eigenvalue of L̂t,n

and v̂tn,i be the corresponding eigenfunction. Let �i and vi be the corresponding
eigenvalue and eigenfunction of �M. Then there exists a sequence tn ⇥ 0 such
that

lim
n⇤⌅

�̂tn
n,i = �i

lim
n⇤⌅

 v̂tnn,i � vi = 0

where the limits are taken in probability.

From above one can see that Laplacian LLE minimizes trace of Hessian. Is
that what you desire? Why not the original Hessian?

5. Hessian LLE

Laplacian Eigenmap looks for coordinate curves

min

�
 ⌦Mf 2,  f = 1

while Hessian Eigenmap looks for

min

�
 Hf 2,  f = 1

Donoho and Grimes (2003) [DG03b] replaces the graph Laplacian, or the trace
of Hessian matrix, by the whole Hessian. This is because the kernel of Hessian,

⇤
f(y1, . . . , yd) :

⌃2f

⌃yi⌃yj
= 0

⌅

must be constant function or linear functions in yi (i = 1, . . . , d). Therefore this
kernel space is a linear subspace of dimension d+1. Minimizing Hessian will exactly
leads to a basis with constant function and d independent coordinate functions.

1. G is incomplete, often k-nearest neighbor graph.
2. Local SVD on neighborhood of xi, for xij ⌅ N (xi),

X̃(i) = [xi1 � µi, ..., xik � µi]
p⇥k = Ũ (i)⇥̃(Ṽ (i))T ,



Comparisons on Swiss Roll

!26

https://
nbviewer.jupyter.or
g/url/
math.stanford.edu/
~yuany/course/
data/
plot_compare_met
hods.ipynb

https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
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https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
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Connection to Markov Chain
• L = D-W
• P = I - D-1L = D-1W is a markov matrix
• v is generalized eigenvector of L: L v = λ D v
• v is also a right eigenvector of P with 

eigenvalue 1-λ
• P is lumpable iff v is piece-wise constant
• So Laplacian eigenmaps have Markov 

Chain interpretations (Diffusion Map), with 
more connection to topology …
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Data Graph
• Given	n points	xi,	i=1,…,n,	as	vertices	in	V
• Similarity	weight	between	xi and	xj is	wij=wji,	
e.g.

• Undirected	weighted	graph	G(V,E,W)

86 5. MANIFOLD LEARNING

Algorithm 8: Laplacian Eigenmap

Input: An adjacency graph G = (V,E, d) such that
1 V = {xi : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors,

✏-neighbors
3 dij = d(xi, xj), e.g. Euclidean distance for xi ⇠ xj are in neighbor

Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rk⇥n of data.
4 Step 1 : Choose weights

5 (a) Heat kernel weights (parameter t):

Wij =

(
e
�

kxi�xjk
2

t , i ⇠ j,

0, otherwise.

(b) Simple-minded (t ! 1), Wij = 1 if i and j are connected by an edge and
Wij = 0 otherwise.

6 Step 2 (Eigenmap): Let D = diag(
P

j Wij) and L = D �W . Compute smallest
d + 1 generalized eigenvectors

Lyl = �lDyl, l = 0, 1, . . . , d,

such that 0 = �0  �1  . . .  �d. Drop the zero eigenvalue �0 and constant

eigenvector y0, and construct Yd = [y1, . . . , yd] 2 Rn⇥d.

To embed the data on to a d-dimensional Euclidean space, we can always
choose bottom d+1 eigenvectors, drop the smallest eigenvector (the constant vector
associated with eigenvalue 0), and use the remaining d vectors to construct a d
dimensional embedding of data.

6.1. Convergence of Laplacian Eigenmap. Some rigorous results about
convergence of Laplacian eigenmaps are given in [BN08]. Assume that M is a
compact manifold with vol(M) = 1. Let the Laplacian-Beltrami operator

�M : C(M) ! L2(M)

f 7! �div(rf)

Consider the following operator

L̂t,n : C(M) ! C(M)

f 7!
1

t(4⇡t)k/2

 
X

i

e�
ky�xik

4t f(y) �

X

i

e
ky�xik

2

4t f(xi)

!

where (L̂t,nf)(y) is a function on M, and

Lt : L2(M) ! L2(M)

f 7!
1

t(4⇡t)k/2

✓Z

M
e�

ky�xk
4t f(y)dx �

Z

M
e

ky�xk2
4t f(x)dx

◆
.

Then [BN08] shows that when those operators have no repeated eigenvalues,
the spectrum of L̂t,n converges to Lt as n ! 1 (variance), where the latter con-
verges to that of �M with a suitable choice of t ! 1 (bias). The following gives
a summary.

Theorem 6.1 (Belkin-Niyogi). Assume that all the eigenvalues in consideration
are of multiplicity one. For small enough t, let �̂t

n,i be the i-th eigenvalue of L̂t,n
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Random Walk on Graphs
• Degree	di =	Σk wik,	D	=	diag(di)
• Random	walk	on	G(V,E,W)
– Transition	probability	P	=	D-1	W	where	pij =	wij/di
– Stationary	distribution	πi ~	di
– primitive	(G	is	connected	with	a	finite	diameter)

– Reversible	wij =	wji πi pij =	πj pji
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Symmetric Kernel

• P	=	D-1W	is	similar	to	S	=	D-1/2WD-1/2,	as	P	=	D-1/2SD1/2

• S	is	real	symmetric,	whence	eigen-decomposition
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Spectrum of P
• Eigenvalues of	S	and	P	are	the	same,	so	

• Φ and	Ψ are	right and	left eigenvector	matrix	of	P,	
respectively,	ΦTΨ	=	VTV	=	I

• In	particular,	P	1	=	1,	whence
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Diffusion Map
• For	primitive	P

• Diffusion	map	of	xi is	defined	via	right eigenvectors	

• Laplacian	LLE	is	the	special	case	with	t=0	and	top	d+1	
eigenvectors

7. DIFFUSION MAP 87

and v̂tn,i be the corresponding eigenfunction. Let �i and vi be the corresponding
eigenvalue and eigenfunction of �M. Then there exists a sequence tn ! 0 such
that

lim
n!1

�̂tnn,i = �i

lim
n!1

kv̂tnn,i � vik = 0

where the limits are taken in probability.

7. Di↵usion Map

A detailed discussion on Di↵usion Map will be after introducing random walks
on graphs. In this section, we just make an introduction in comparison with Lapla-
cian LLE.

Recall that for xi 2 Rd, i = 1, 2, · · · , n, one can define a undirected weighted
graph G = (V, E, W ) with V = {xi : i = 1, . . . , n}, oriented edge set E = {(i, j)},

and symmetric weight W = [wij ] by heat kernel wij = wji = exp
⇣
�

d(xi,xj)
2

t

⌘
for

i ⇠ j and wij = 0 otherwise. Assume that G is connected and thus has a finite
diameter. Let di =

Pn
j=1 Wij and D = diag(di).

A random walk on graph G can be defined through the following row Markov
matrix,

P = D�1W,

which is primitive (any two points can be connected by path of length no more
than the diameter) and thus admits the following spectral decomposition

P = �⇤ T ,

where

1) ⇤ = diag(�i) with 1 = �0 � �1 � �2 . . . � �n�1 > �1;
2) � = [�0,�2, · · · ,�n�1] are right eigenvectors of P , P� = �⇤;
3)  = [ 0, 2, · · · , n�1] are left eigenvectors of P ,  TP = ⇤ T . Note

that �0 = 1 2 Rn and  0(i) = di/
P

i di. Thus  0 is the same eigenvector
as the stationary distribution ⇡(i) = di/

P
i di (⇡T1 = 1) up to a scaling

factor;
4) � and  are bi-orthogonal basis, i.e. �Ti  j = �ij or simply �T = I.

To see this, consider the normalized Laplacian

L = D�1/2(D � W )D�1/2,

which is symmetric and positive semi-definite, hence

S = D�1/2WD�1/2 = I � L

has n orthogonal eigenvectors V = [v1, v2, · · · , vn]

S = V ⇤V T , ⇤ = diag(�i), V TV = I,

where 1 = �0 � �1 � �2 . . . � �n�1. Define � = D�1/2V and  = D�1/2V .
One can obtain the spectral decomposition of P . Hence for any ⌧ � 0, P ⌧ =
�⇤⌧ T defines a di↵usion process on graph G, one can define a multiscale Euclidean
embedding of data points.

Define di↵usion map at scale t [CLL+05], by dropping the constant eigenvector
�0 for connected graph G,

�⌧ (xi) = [�⌧1�1(i), · · · ,�⌧n�1�n�1(i)], ⌧ � 0.
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Dimensionality Reduction
• λ0	=	1	and	φ0=	1,	so	it	does	not	distinguish	points
• Threshold	by	δ,	for	those	

• Define

• Varying	t	or	δ leads	to	a	multiscale	analysis
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Diffusion Distance
• Define	the	diffusion	distance	between	points	
at	scale	t

• This	is	exactly	the	weighted	2-distance	
between	diffusion	profiles
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Diffusion Distance Example
1. DIFFUSION MAP AND DIFFUSION DISTANCE 129

Figure 1. Di↵usion Distances dt(A, B) >> dt(B, C) while graph
shortest path dgeod(A, B) ⇠ dgeod(B, C).

Figure 2. Two circles

Figure 3. EX2 single circle

where A1 is a n1 ⇥ n1 matrix, A2 is a n2 ⇥ n2 matrix, n1 + n2 = n.
Notice that the eigenvalue �0 = 1 of A is of multiplicity 2, the two eigenvectors

are �0 = 1n and �
0

0 = [c11Tn1, c21
T
n2]

T c1 6= c2.

Di↵usion Map :

⇢
�1D

t (x1), · · · , �1D
t (xn1) = c1

�1D
t (xn1+1), · · · , �1D

t (xn) = c2

EX2: ring graph. ”single circle”
In this case, W is a circulant matrix

W =

0

BBBBB@

1 1 0 0 · · · 1
1 1 1 0 · · · 0
0 1 1 1 · · · 0
...

...
...

... · · ·
...

1 0 0 0 · · · 1

1

CCCCCA

The eigenvalue of W is �k = cos 2⇡k
n k = 0, 1, · · · , n

2 and the corresponding eigen-

vector is (uk)j = ei
2⇡
n kj j = 1, · · · , n. So we can get �2D

t (xi) = (cos 2⇡kj
n , sin 2⇡kj

n )ct

EX3: order the face. Let
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General Diffusion Map
• Gaussian	kernel
• Normalize	kernel

• Renormalized	kernel

– α=1,	Laplacian-Beltrami	operator,	separate	
geometry	from	density

– α=0,	classical	normalized	graph	Laplacian
– α=1/2,	backward	Fokkar-Planck	operator

This image cannot currently be displayed.

Coifman-Lafon 2006.	Diffusion	Maps.
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Comparisons of Manifold Learning 
Techniques

• MDS
• PCA
• ISOMAP
• LLE
• Hessian	LLE
• Laplacian LLE
• Diffusion	Map
• Local	Tangent	Space	Alignment
• Matlab codes:	mani.m

Courtesy	of	Todd	Wittman
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Diffusion Map vs.
Stochastic Neighbor Embedding
• In	Diffusion	Map,	it	looks	for	MDS	embedding	
which	preserves	diffusion	distances

• SNE	considers	to	find	a	low-dimensional	
Euclidean	embedding	Y	which	preserves	the	
distribution	Pi*
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Stochastic Neighbor Embedding

• Like	diffusion	map,	consider	the	conditional	
probability	that	one	data	point	will	pick	the	
other	data	point	as	its	neighbor	

• However,	to	reconstruct	the	probability	rather	
than	clusters	in	embedding:
– Use	the	pairwise	distances	in	the	low-dimensional	
map	to	define	the	probability	that	a	map	point	will	
pick	another	map	point	as	its	neighbor.

– Compute	the	Kullback-Leibler divergence	between	
the	probabilities	in	the	high-dimensional	and	low-
dimensional	spaces.

ijp |
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A	probabilistic	local	method

• Each	point	in	high-D	has	a	
conditional	probability	of	picking	
each	other	point	as	its	neighbor.

• The	distribution	over	neighbors	is	
based	on	the	high-D	pairwise
distances.
– If	we	do	not	have	coordinates	

for	the	datapoints we	can	use	
a	matrix	of	dissimilarities	
instead	of	pairwise distances.

High-D Space
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Evaluating	an	arrangement	of	the	data	in	a	low-dimensional	
space	Y

• Give	each	data	point	a	location	
in	the	low- dimensional	space	
Y.
– Evaluate	this	
representation	by	
seeing	how	well	the	
low-D	probabilities	
model	the	high-D	ones.

Low-D Space
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The	cost	function	for	a	low-dimensional	representation

• For	points	where	pij is	large	and	qij	is	small	we	lose	a	lot.
– Nearby	points	in	high-D	really	want	to	be	nearby	in	low-D

• For	points	where	qij is	large	and	pij is	small	we	lose	a	little	
because	we	waste	some	of	the	probability	mass	in	the	Qi
distribution.
– Widely	separated	points	in	high-D	have	a	mild	preference	
for	being	widely	separated	in	low-D.

ijq
ijp

i j
ijpQ

i
iPKLCost i

|

|log|)||( ååå ==



!44

Gradient	Descent

• Points	are	pulled		towards	
each	other	if	the	p�s	are	
bigger	than	the	q�s	and	
repelled	if	the	q�s	are	
bigger	than	the	p�s
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VISUALIZING DATA USING T-SNE

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.
Data: data set X = {x1,x2, ...,xn},
cost function parameters: perplexity Perp,
optimization parameters: number of iterations T , learning rate η, momentum α(t).
Result: low-dimensional data representation Y (T ) = {y1,y2, ...,yn}.
begin

compute pairwise affinities p j|i with perplexity Perp (using Equation 1)
set pi j =

p j|i+pi| j
2n

sample initial solution Y (0) = {y1,y2, ...,yn} from N (0,10−4I)
for t=1 to T do

compute low-dimensional affinities qi j (using Equation 4)
compute gradient δC

δY (using Equation 5)
set Y (t) = Y (t−1) +η δC

δY +α(t)
(
Y (t−1)−Y (t−2))

end
end

is proportional to their pairwise distance in the low-dimensional map, which may cause dissimilar
datapoints to move much too far away from each other.

Taken together, t-SNE puts emphasis on (1) modeling dissimilar datapoints by means of large
pairwise distances, and (2) modeling similar datapoints by means of small pairwise distances. More-
over, as a result of these characteristics of the t-SNE cost function (and as a result of the approximate
scale invariance of the Student t-distribution), the optimization of the t-SNE cost function is much
easier than the optimization of the cost functions of SNE and UNI-SNE. Specifically, t-SNE in-
troduces long-range forces in the low-dimensional map that can pull back together two (clusters
of) similar points that get separated early on in the optimization. SNE and UNI-SNE do not have
such long-range forces, as a result of which SNE and UNI-SNE need to use simulated annealing to
obtain reasonable solutions. Instead, the long-range forces in t-SNE facilitate the identification of
good local optima without resorting to simulated annealing.

3.4 Optimization Methods for t-SNE

We start by presenting a relatively simple, gradient descent procedure for optimizing the t-SNE cost
function. This simple procedure uses a momentum term to reduce the number of iterations required
and it works best if the momentum term is small until the map points have become moderately well
organized. Pseudocode for this simple algorithm is presented in Algorithm 1. The simple algorithm
can be sped up using the adaptive learning rate scheme that is described by Jacobs (1988), which
gradually increases the learning rate in directions in which the gradient is stable.

Although the simple algorithm produces visualizations that are often much better than those
produced by other non-parametric dimensionality reduction techniques, the results can be improved
further by using either of two tricks. The first trick, which we call “early compression”, is to force
the map points to stay close together at the start of the optimization. When the distances between
map points are small, it is easy for clusters to move through one another so it is much easier to
explore the space of possible global organizations of the data. Early compression is implemented
by adding an additional L2-penalty to the cost function that is proportional to the sum of squared
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Data	from	sne	paper Unsupervised 
SNE embedding 
of the digits 0-4. 
Not all the data 
is displayed
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Picking	the	radius	of	the	gaussian	that	
is	used	to	compute	the	p’s

• We	need	to	use	different	radii	in	different	parts	of	the	
space	so	that	we	keep	the	effective	number	of	
neighbors about	constant.	

• A	big	radius	leads	to	a	high	entropy	for	the	distribution	
over	neighbors of	i.

• A	small	radius	leads	to	a	low	entropy.
• So	decide	what	entropy	you	want	and	then	find	the	
radius	that	produces	that	entropy.

• Its	easier	to	specify	2^entropy
– This	is	called	the	perplexity
– It	is	the	effective	number	of	neighbors.

VAN DER MAATEN AND HINTON

a small q j|i to model a large p j|i), but there is only a small cost for using nearby map points to
represent widely separated datapoints. This small cost comes from wasting some of the probability
mass in the relevant Q distributions. In other words, the SNE cost function focuses on retaining the
local structure of the data in the map (for reasonable values of the variance of the Gaussian in the
high-dimensional space, σi).

The remaining parameter to be selected is the variance σi of the Gaussian that is centered over
each high-dimensional datapoint, xi. It is not likely that there is a single value of σi that is optimal
for all datapoints in the data set because the density of the data is likely to vary. In dense regions,
a smaller value of σi is usually more appropriate than in sparser regions. Any particular value of
σi induces a probability distribution, Pi, over all of the other datapoints. This distribution has an
entropy which increases as σi increases. SNE performs a binary search for the value of σi that
produces a Pi with a fixed perplexity that is specified by the user.3 The perplexity is defined as

Perp(Pi) = 2H(Pi),

where H(Pi) is the Shannon entropy of Pi measured in bits

H(Pi) = −∑
j
p j|i log2 p j|i.

The perplexity can be interpreted as a smooth measure of the effective number of neighbors. The
performance of SNE is fairly robust to changes in the perplexity, and typical values are between 5
and 50.

The minimization of the cost function in Equation 2 is performed using a gradient descent
method. The gradient has a surprisingly simple form

δC
δyi

= 2∑
j
(p j|i−q j|i+ pi| j−qi| j)(yi− y j).

Physically, the gradient may be interpreted as the resultant force created by a set of springs between
the map point yi and all other map points y j. All springs exert a force along the direction (yi− y j).
The spring between yi and y j repels or attracts the map points depending on whether the distance
between the two in the map is too small or too large to represent the similarities between the two
high-dimensional datapoints. The force exerted by the spring between yi and y j is proportional to its
length, and also proportional to its stiffness, which is the mismatch (p j|i−q j|i+ pi| j−qi| j) between
the pairwise similarities of the data points and the map points.

The gradient descent is initialized by sampling map points randomly from an isotropic Gaussian
with small variance that is centered around the origin. In order to speed up the optimization and to
avoid poor local minima, a relatively large momentum term is added to the gradient. In other words,
the current gradient is added to an exponentially decaying sum of previous gradients in order to
determine the changes in the coordinates of the map points at each iteration of the gradient search.
Mathematically, the gradient update with a momentum term is given by

Y (t) = Y (t−1) +η
δC
δY +α(t)

(
Y (t−1)−Y (t−2)

)
,

3. Note that the perplexity increases monotonically with the variance σi.
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Symmetric	SNE

• There	is	a	simpler	version	of	SNE	which	seems	
to	work	about	equally	well.

• Symmetric	SNE	works	best	if	we	use	different	
procedures	for	computing	the	p�s	and	the	q�s
– This	destroys	the	nice	property	that	if	we	embed	
in	a	space	of	the	same	dimension	as	the	data,	the	
data	itself	is	the	optimal	solution.
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Computing	the	p�s	for	symmetric	SNE

• Each	high	dimensional	point,	i,	
has	a	conditional probability of	
picking	each	other	point,	j,		as	
its	neighbor.

• The	conditional	distribution	
over	neighbors	is	based	on	the	
high-dimensional	pairwise	
distances.
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Turning	conditional	probabilities	
into	pairwise	probabilities

To	get	a	symmetric	probability	between	i	and	j	we	sum	the	two	
conditional	probabilities	and	divide	by	the	number	of	points	
(points	are	not	allowed	to	choose	themselves).

This	ensures	that	all	the	pairwise	probabilities	sum	to	1	so	they	
can	be	treated	as	probabilities.	
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Evaluating	an	arrangement	of	the	points	in	the	low-dimensional	
space

• Give	each	data-point	a	location	
in	the	low- dimensional	space.
– Define	low-dimensional	
probabilities	symmetrically.

– Evaluate	the	representation	
by	seeing	how	well	the	low-D	
probabilities	model	the	high-
D	affinities.

Low-D Space
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The	cost	function	for	a	low-dimensional	representation

• It�s	a	single	KL	instead	of	the	sum	of	one	KL	for	each	
datapoint.
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The	forces	acting	on	the	low-dimensional	points

• Points	are	pulled		towards	each	
other	if	the	p�s	are	bigger	than	
the	q�s	and	repelled	if	the	q�s	
are	bigger	than	the	p�s
– Its	equivalent	to	having	
springs	whose	stiffnesses	
are	set	dynamically.
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Why	SNE	does	not	have	gaps	between	classes

• In	the	high-dimensional	space	there	are	many	pairs	of	
points	that	are	moderately	close	to	each	other.
– The	low-D	space	cannot	model	this.	It	doesn�t	have	
enough	room	around	the	edges.

• So	there	are	many	pij�s	that	are	modeled	by	smaller	qij�s.
– This	has	the	effect	of	lots	of	weak	springs	pulling	
everything	together	and	crushing	different	classes	
together	in	the	middle	of	the	space.

• One	solution
– Use	light	tail	Gaussian	kernel	for	high-D	pij but;	
– Heavy	tail	for	low-D	qij
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t-SNE

• Use	a	heavy	tailed	Student	t-distribution	
(Cauchy)	for	q	which	allows	a	moderate	
distance	in	high-dimensional	space	to	be	
faithfully	represented	by	a	larger	distance	
(push	away)	in	low-dimensional	embedding
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Gradient	of	t-SNE

VAN DER MAATEN AND HINTON
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(c) Gradient of t-SNE.

Figure 1: Gradients of three types of SNE as a function of the pairwise Euclidean distance between
two points in the high-dimensional and the pairwise distance between the points in the
low-dimensional data representation.

selection of the Student t-distribution is that it is closely related to the Gaussian distribution, as the
Student t-distribution is an infinite mixture of Gaussians. A computationally convenient property
is that it is much faster to evaluate the density of a point under a Student t-distribution than under
a Gaussian because it does not involve an exponential, even though the Student t-distribution is
equivalent to an infinite mixture of Gaussians with different variances.

The gradient of the Kullback-Leibler divergence between P and the Student-t based joint prob-
ability distribution Q (computed using Equation 4) is derived in Appendix A, and is given by

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j)

(
1+∥yi− y j∥2

)−1
. (5)

In Figure 1(a) to 1(c), we show the gradients between two low-dimensional datapoints yi and y j as
a function of their pairwise Euclidean distances in the high-dimensional and the low-dimensional
space (i.e., as a function of ∥xi− x j∥ and ∥yi− y j∥) for the symmetric versions of SNE, UNI-SNE,
and t-SNE. In the figures, positive values of the gradient represent an attraction between the low-
dimensional datapoints yi and y j, whereas negative values represent a repulsion between the two
datapoints. From the figures, we observe two main advantages of the t-SNE gradient over the
gradients of SNE and UNI-SNE.

First, the t-SNE gradient strongly repels dissimilar datapoints that are modeled by a small pair-
wise distance in the low-dimensional representation. SNE has such a repulsion as well, but its effect
is minimal compared to the strong attractions elsewhere in the gradient (the largest attraction in our
graphical representation of the gradient is approximately 19, whereas the largest repulsion is approx-
imately 1). In UNI-SNE, the amount of repulsion between dissimilar datapoints is slightly larger,
however, this repulsion is only strong when the pairwise distance between the points in the low-
dimensional representation is already large (which is often not the case, since the low-dimensional
representation is initialized by sampling from a Gaussian with a very small variance that is centered
around the origin).

Second, although t-SNE introduces strong repulsions between dissimilar datapoints that are
modeled by small pairwise distances, these repulsions do not go to infinity. In this respect, t-SNE
differs from UNI-SNE, in which the strength of the repulsion between very dissimilar datapoints

2586

VAN DER MAATEN AND HINTON

High−dimensional distance >

Lo
w−

di
m

en
sio

na
l d

ist
an

ce
 >

 

 

0
2
4
6
8
10
12
14
16
18

(a) Gradient of SNE.

High−dimensional distance >

Lo
w−

di
m

en
sio

na
l d

ist
an

ce
 >

 

 

−4
−2
0
2
4
6
8
10
12
14

(b) Gradient of UNI-SNE.

High−dimensional distance >

Lo
w−

di
m

en
sio

na
l d

ist
an

ce
 >

 

 

−1

−0.5

0

0.5

1

(c) Gradient of t-SNE.

Figure 1: Gradients of three types of SNE as a function of the pairwise Euclidean distance between
two points in the high-dimensional and the pairwise distance between the points in the
low-dimensional data representation.

selection of the Student t-distribution is that it is closely related to the Gaussian distribution, as the
Student t-distribution is an infinite mixture of Gaussians. A computationally convenient property
is that it is much faster to evaluate the density of a point under a Student t-distribution than under
a Gaussian because it does not involve an exponential, even though the Student t-distribution is
equivalent to an infinite mixture of Gaussians with different variances.

The gradient of the Kullback-Leibler divergence between P and the Student-t based joint prob-
ability distribution Q (computed using Equation 4) is derived in Appendix A, and is given by

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j)

(
1+∥yi− y j∥2

)−1
. (5)

In Figure 1(a) to 1(c), we show the gradients between two low-dimensional datapoints yi and y j as
a function of their pairwise Euclidean distances in the high-dimensional and the low-dimensional
space (i.e., as a function of ∥xi− x j∥ and ∥yi− y j∥) for the symmetric versions of SNE, UNI-SNE,
and t-SNE. In the figures, positive values of the gradient represent an attraction between the low-
dimensional datapoints yi and y j, whereas negative values represent a repulsion between the two
datapoints. From the figures, we observe two main advantages of the t-SNE gradient over the
gradients of SNE and UNI-SNE.
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wise distance in the low-dimensional representation. SNE has such a repulsion as well, but its effect
is minimal compared to the strong attractions elsewhere in the gradient (the largest attraction in our
graphical representation of the gradient is approximately 19, whereas the largest repulsion is approx-
imately 1). In UNI-SNE, the amount of repulsion between dissimilar datapoints is slightly larger,
however, this repulsion is only strong when the pairwise distance between the points in the low-
dimensional representation is already large (which is often not the case, since the low-dimensional
representation is initialized by sampling from a Gaussian with a very small variance that is centered
around the origin).

Second, although t-SNE introduces strong repulsions between dissimilar datapoints that are
modeled by small pairwise distances, these repulsions do not go to infinity. In this respect, t-SNE
differs from UNI-SNE, in which the strength of the repulsion between very dissimilar datapoints
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Figure 1: Gradients of three types of SNE as a function of the pairwise Euclidean distance between
two points in the high-dimensional and the pairwise distance between the points in the
low-dimensional data representation.
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First, the t-SNE gradient strongly repels dissimilar datapoints that are modeled by a small pair-
wise distance in the low-dimensional representation. SNE has such a repulsion as well, but its effect
is minimal compared to the strong attractions elsewhere in the gradient (the largest attraction in our
graphical representation of the gradient is approximately 19, whereas the largest repulsion is approx-
imately 1). In UNI-SNE, the amount of repulsion between dissimilar datapoints is slightly larger,
however, this repulsion is only strong when the pairwise distance between the points in the low-
dimensional representation is already large (which is often not the case, since the low-dimensional
representation is initialized by sampling from a Gaussian with a very small variance that is centered
around the origin).

Second, although t-SNE introduces strong repulsions between dissimilar datapoints that are
modeled by small pairwise distances, these repulsions do not go to infinity. In this respect, t-SNE
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t-SNE	allows	more	points	in	moderate	distance	neighbors
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Two	other	state-of-the-art	dimensionality	
reduction	methods	on	the	6000	MNIST	digits

Isomap Locally Linear Embedding



!58

t-SNE	on	the	6000	MNIST	digits
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SNE	vs.	Laplacian	Eigenmap

• Miguel	Carreira-Perpinan (ICML	2010)	showed	
that		the	original	SNE	cost	function	can	be	
rewritten	so	that	it	is	equivalent	to	Laplacian	
Eigenmaps with	an	extra	repulsion	term	that	
spreads	out	the	map	points.

• This	led	to	a	much	faster	optimization	
method.	The	fast	code	is	now	on	the	t-SNE	
webpage.
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SNE	vs.	Laplacian	LLE	->
Elastic	Embedding

The Elastic Embedding Algorithm for Dimensionality Reduction

lapse (as happens with related methods such as LLE).

There is a fundamental relation between LE and SNE.
Expanding (3) and ignoring terms that do not depend
on X, we have that

ESNE(X) =
N∑

n,m=1

pnm ∥xn − xm∥
2

+
N∑

n=1

log
∑

n̸=m

exp (−∥xn − xm∥
2) (5)

since
∑N

m=1 pnm = 1 for each n. The first term
in the RHS is identical to the LE objective if using
normalised affinities as in diffusion maps (i.e., taking
wnm = pnm). It is a local distance term, and also a
data-dependent term (since it depends on the data Y
through the pnm). The second term encourages latent
points to separate from each other as much as possible
(or until the exponentials become negligible). It is a
global distance term, symmetric wrt xn and xm, which
pushes apart all point pairs equally, irrespective of
whether their high-dimensional counterparts are close
or far in data space. It is also a data-independent term,
since it does not depend on the data Y.

Therefore, SNE may be seen as LE with a data-
independent prior that blows points apart from each
other. It is thus more accurate to say that the SNE ob-
jective function enforces keeping the images of nearby
objects nearby while pushing all images apart from
each other, rather than to say that it enforces both
keeping the images of nearby objects nearby and keep-
ing the images of widely separated objects relatively
far apart. However, this prior does cause the result
from SNE to be radically different from that of LE,
improving the spacing of points and clusters, and bet-
ter representing the manifold structure. We are now
ready to introduce our algorithm.

4. The Elastic Embedding (EE)

We define the objective function

E(X;λ) =
N∑

n,m=1

w+
nm ∥xn − xm∥

2

+ λ
N∑

n,m=1

w−
nm exp (−∥xn − xm∥

2) (6)

where w−
nm = w−

nm ∥yn − ym∥
2 and we have two

graphs: one with attractive weights W+ = (w+
nm) and

the other with repulsive weights W− = (w−
nm), both

nonnegative. The left (+) term is the LE term and

preserves local distances, where w+
nm could be (nor-

malised) Gaussian affinities, geodesic distances, com-
muting times or other affinities, possibly nonsymmet-
ric or sparse. The right (−) term preserves global
distances or separates latent points as in SNE but
in a simpler way. This repulsion becomes negligible
once neigbouring xs are farther apart than a charac-
teristic, λ-dependent scale, so the map remains some-
what compact. The regularisation parameter λ ≥ 0
trades off both terms. For simplicity, consider full
graphs w+

nm = exp (− 1
2 ∥(yn − ym)/σ∥2) and w−

nm = 1
∀n ≠ m, with w+

nn = w−
nn = 0 ∀n; although some of

our results use sparse graphs. Note that the X re-
sulting from EE are equivalent up to rigid motions,
and that globally rescaling the data simply rescales λ:
E(X;λ;Y,σ) = E(X;λ/α2;αY,ασ).

We can then obtain the gradient of E from eq. (6):

∂E

∂xn

= 4
N∑

m ̸=n

wnm(xn − xm) (7)

G(X;λ) =
∂E

∂X
= 4X(L+ − λL̃−) = 4XL (8)

where we define the affinities

w̃−
nm = w−

nm exp (−∥xn − xm∥
2) (9)

wnm = w+
nm − λw̃−

nm (10)

and their graph Laplacians L̃ = D̃− W̃, L = D−W
in the usual way. Note that L+ is the usual (unnor-
malised) graph Laplacian that appears in Laplacian
eigenmaps. W can be considered a learned affinity
matrix and contains negative weights for λ > 0. Both
the objective function and the gradient of EE are quite
less nonlinear than those of SNE and its variations
because we have eliminated the cumbersome log-sum
term. This results in an easier optimisation and pre-
sumably fewer local optima.

At a minimiser (for each λ) we have G(X;λ) = 0, so
the embedding X(λ) satisfies XL = 0 and therefore
consists of eigenvectors of the nullspace of the graph
Laplacian L for the learned graph affinity matrix W.
In minimising E at each λ, we both construct this
graph and find its nullspace eigenvectors (a spectral
problem). Note that this does not mean that EE at
a given λ is equivalent to LE using as affinity matrix
W, as LE would find the eigenvectors associated with
the algebraically smallest eigenvalues, which for large
enough λ are negative.

4.1. Study of the case N = 2

The simple case of N = 2 points in 1D is surprisingly
informative. Take w.l.o.g. one point at the origin and
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in the usual way. Note that L+ is the usual (unnor-
malised) graph Laplacian that appears in Laplacian
eigenmaps. W can be considered a learned affinity
matrix and contains negative weights for λ > 0. Both
the objective function and the gradient of EE are quite
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because we have eliminated the cumbersome log-sum
term. This results in an easier optimisation and pre-
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At a minimiser (for each λ) we have G(X;λ) = 0, so
the embedding X(λ) satisfies XL = 0 and therefore
consists of eigenvectors of the nullspace of the graph
Laplacian L for the learned graph affinity matrix W.
In minimising E at each λ, we both construct this
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problem). Note that this does not mean that EE at
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4.1. Study of the case N = 2

The simple case of N = 2 points in 1D is surprisingly
informative. Take w.l.o.g. one point at the origin and
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ist, such as the Sammon mapping (Sammon, 1969),
which are generally difficult to optimise and prone
to bad local optima. Stochastic neighbour em-
bedding (SNE) (Hinton & Roweis, 2003) preserves
probabilities instead of distances, and earlier papers
(Hinton & Roweis, 2003; van der Maaten & Hinton,
2008) have shown its superiority over other MDS-like
methods when dealing with data that lies in nonlin-
ear, clustered manifolds (though the optimisation is
still difficult). We will focus on SNE-type methods.
SNE defines the following normalised, non-symmetric
affinities pnm and qnm for each data point n in the
data and latent spaces, respectively:

pnm =
exp (−d2

nm)∑
n̸=m′ exp (−d2

nm′)
pnn = 0 (1)

qnm =
exp (−∥xn − xm∥

2)
∑

n̸=m′ exp (−∥xn − xm′∥2)
. (2)

We will take d2
nm = 1

2 ∥(yn − ym)/σn∥
2, that is,

Gaussian affinities, though other types of affinity may
be used. Each width σn is chosen by a binary search
so the entropy of the distribution Pn over neighbours
is roughly log k (for a user-provided k ≪ N , which is
then the perplexity, or effective number of neighbours).
SNE minimises the following objective function:

ESNE(X) =
N∑

n=1

D (Pn∥Qn) =
N∑

n,m=1

pnm log
pnm

qnm

(3)

and so tries to match the latent-space distributions
over neighbours to the data-space ones.

One important disadvantage of SNE is that its
gradient-based optimisation is slow and requires care
to find good optima. The user must tune for each
dataset several parameters (learning rate, momentum
rate, amount of gradient jitter, etc., and all these must
be adapted by hand as the optimisation proceeds).
Some versions of SNE have been proposed that slightly
simplify the gradient by symmetrising the objective
function (Venna & Kaski, 2007) or the probabilities
(Cook et al., 2007), but the normalisation term in the
qnm terms still makes it very nonlinear.

When the dimensionality L of the latent space
is smaller than the intrinsic dimensionality of the
data, the resulting map is unavoidably distorted.
For purposes of visualisation (rather than of faith-
ful dimensionality reduction), Cook et al. (2007) and
van der Maaten & Hinton (2008) have proposed two
ways of improving the separation of clusters in this
case, UNI-SNE and t-SNE, resp. UNI-SNE biases each
qnm by a fixed constant, while t-SNE defines Q as a t-
distribution with one degree of freedom. In both cases

Q has longer tails, which allows x-points correspond-
ing to y-pairs at a moderate distance to separate more.

SNE and our EE (described later) are related with the
elastic net (EN) (Durbin et al., 1989), originally pro-
posed to approximate the travelling salesman prob-
lem. The EN minimises the sum of a log-sum term
(Gaussian-mixture likelihood) that moves Y-space
centroids towards the data, and a data-independent
quadratic prior on the centroids (a graph Laplacian
prior), using a homotopy method. In the EN, the
centroids move in the data, rather than the latent,
space; and the quadratic prior on them enforces a
predetermined topology rather than being based on
data affinities. An interesting connection with EE
(see section 6), is that the EN prior is provably
equivalent to a certain Mexican-hat interaction term
(Carreira-Perpiñán & Goodhill, 2004).

EE (and SNE) can be seen as symmetrising the con-
straints of Laplacian eigenmaps, where both types of
mistakes are penalised: placing far apart latent points
that correspond to similar data points, and placing
close together latent points that correspond to dis-
similar data points. A related phenomenon occurs
with principal curves (Hastie & Stuetzle, 1989) and
Dimensionality Reduction by Unsupervised Regres-
sion (Carreira-Perpiñán & Lu, 2008); the latter may
be seen as a symmetrised version of the former that
penalises errors in the data and the latent space. Clos-
ing the loop in this way seems to lead to better em-
beddings.

In the rest of the paper, we show a relation between
SNE and Laplacian eigenmaps (sec. 3) that immedi-
ately suggests our EE algorithm, which we then study
(sec. 4) and apply in practice (sec. 5).

3. A Relation between SNE and LE

Laplacian eigenmaps (LE) (Belkin & Niyogi, 2003) is
a spectral method that optimises

ELE(X) =
N∑

n,m=1

wnm ∥xn − xm∥
2 (4)

subject to quadratic and linear constraints, and has a
unique solution given by the nontrivial trailing eigen-
vectors of the normalised version of the graph Lapla-
cian matrix L = D −W, where WN×N is the sym-
metric affinity matrix (typically Gaussian) and D =
diag

( ∑N
n=1 wnm

)
the degree matrix. LE discourages

placing far apart latent points that correspond to simi-
lar data points, but places no direct constraint on pairs
associated with distant data points. This often leads
to distorted maps where large clusters of points col-
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lapse (as happens with related methods such as LLE).
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the objective function and the gradient of EE are quite
less nonlinear than those of SNE and its variations
because we have eliminated the cumbersome log-sum
term. This results in an easier optimisation and pre-
sumably fewer local optima.

At a minimiser (for each λ) we have G(X;λ) = 0, so
the embedding X(λ) satisfies XL = 0 and therefore
consists of eigenvectors of the nullspace of the graph
Laplacian L for the learned graph affinity matrix W.
In minimising E at each λ, we both construct this
graph and find its nullspace eigenvectors (a spectral
problem). Note that this does not mean that EE at
a given λ is equivalent to LE using as affinity matrix
W, as LE would find the eigenvectors associated with
the algebraically smallest eigenvalues, which for large
enough λ are negative.

4.1. Study of the case N = 2

The simple case of N = 2 points in 1D is surprisingly
informative. Take w.l.o.g. one point at the origin and

Elastic	Embedding	
(EE):	
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Figure 2. EE trained with homotopy with a 2D spiral.
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Figure 3. Swiss roll. Top: EE with homotopy; we show X for different λ. Bottom: true X and results with other methods.

the right plot). We used the homotopy method with
80 values of λ from 10−2 to 102. For each λ we ran
the optimisation until the relative function change was
less than 10−3 or we reached 50 iterations. The step
size was 1 nearly always, 0.8 occasionally. The right
plot shows that more iterations are required shortly
after the λ∗

1 bifurcation; occasional spikes in that plot
indicate subsequent bifurcations as new minima arise
and the map changes. The initial X do not unfold
the spiral correctly, but eventually they do, and this
deep minimum is tracked henceforth. As λ increases,
initial local clustering and boundary effects typically
associated with an LE embedding are removed and the
result is a perfectly spaced sequence matching the data
spacing. The initial affinities wnm of eq. (9) are Gauss-
ian, but as λ increases they develop negative lobes and
adopt a Mexican-hat form (the plot shows wnm for
two interior and two extreme points). As λ further
increases (enlarging the map and forcing points to be
equidistant) wnm become much more negative.

Fig. 3 shows the result of EE with a 3D Swiss roll
with N = 2000 points, w+

nm as k-nearest-neighbour
Gaussian affinities and w−

nm = 1 ∀n,m. We set
k = 12, σ = 15 for all methods. The bounds indi-
cate λ∗

1 ∈ [5 · 10−9, 10−8], so we varied λ from 10−7 to
107. After the critical λ∗

1, X expands along the 1D LE
solution and later on the 2D map unfolds. This small-
λ solution globally unfolds the Swiss roll but shows

defects similar to those of spectral methods (local clus-
ters and gaps, boundary effects; see the LE plot). But
these disappear as λ increases; X for λ ∈ [10−1, 101] is
extremely similar to the true X (see also the result of
Isomap, ideally suited to this problem). For very large
λ, in the region of log-growth of the scale (see fig. 1
right), the point-separating prior dominates and the
2D arrangement tends to a round hexagonal grid (that
still preserves the global structure, though). SNE at-
tains a good map, better than LE’s but worse than
EE’s. However, t-SNE does poorly, grouping points
in local clusters that push away from each other. As
noted in the introduction, t-SNE was designed to cor-
rect the map when the its dimension does not match
the intrinsic one (not the case here). Initialising X
from the true X produces similar results for SNE and
t-SNE, indicating this is not just a bad local optimum.
For SNE, perhaps better results would be obtained if
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Figure 4. Affinities wnm = w
+
nm − λw

−

nm exp (−∥xn − xm∥2)
learned for a point xn near the centre of the Swiss roll for
λ = 101 (right plot: zoom view).


