Manifold Learning IT:
Extended Locally Linear
Embedding

Generative Models in Manifold Learning

INPUT
N N SEEK
f ‘ f THIS
AN
High-dimensional space 4
HIDDEN OUTPUT

B = T

Low-dimensional space Low-dimensional space

Spectral Geometric Embedding

Given z1,...,z, € M C RY,
Find yi,...,y, € R*where d << N
s ISOMAP (Tenenbaum, et al, 00)
s LLE (Roweis, Saul, 00)
» Laplacian Eigenmaps (Belkin, Niyogi, 01)
» Local Tangent Space Alignment (Zhang, Zha, 02)
» Hessian Eigenmaps (Donoho, Grimes, 02)
» Diffusion Maps (Coifman, Lafon, et al, 04)

Related: Kernel PCA (Schoelkopf, et al, 98)

Meta-Algorithm

* Construct a neighborhood graph
» Construct a positive semi-definite kernel
* Find the spectrum decomposition

Q oo s

Recall: ISOMAP

1. Construct Neighborhood Graph.
2. Find shortest path (geodesic) distances.

Dij IS X n

3. Embed using Multidimensional Scaling.

Recall: LLE

* Construct a neighborhood Graph
G=(V,E)
» Solve weights

min ;= Y wiizg?,

2jen; Wis=1 JEN;

« Compute Embedding

m};nz 1Y; =) Wi,V = trace((I — W)YTY (I —W)").

J=1 . .
tJ 0 other’s.

This is equivalent to find smallest eigenvectors of K = (I — W) (I —W).

Local Tangent Space Alignment

Local Tangent space approximation

Find a good approximation of tangent space of curve using discrete samples.
— Principal curve/manifold (Hastie-Stuetzle’89, Zha-Zhang'02)

Recall LTSA (Zha-Zhang'02)

Algorithm 6: LTSA Algorithm

Input: A weighted undirected graph G = (V, F) such that
1 V={x, eRP:i=1,...,n}
E ={(i,j) : if j is a neighbor of i, i.e. j € N;}, e.g. k-nearest neighbors

N

Output: Euclidean d-dimensional coordinates Y = [y;] € R**™ of data.
Step 1 (local PCA): Compute local SVD on neighborhood of z;, xi; € N(x:),

X(Z) — [xil = My ey Lig, — :ui]pXk - Uu)i(‘?“))Ta

w

where p; = 2?21 zi,;. Define
Gy = [1/VE, WY, . VX,

Step 2 (tangent space alignment): Alignment (kernel) matrix

N

K™ =3 "SWiwil sy, Wit =1-GiGY,
i=1
where selection matrix S?Xk DXy ey Ty] = [0, ...,xn]Si”Xk;
Step 3: Find smallest d 4+ 1 eigenvectors of K and drop the smallest eigenvector,
the remaining d eigenvectors will give rise to a d-embedding.

(o)

Comparisons on Swiss Roll

1 1 1 1 T 1

Isomap (0.38 sec)

LLE (0.13 sec) Modified LLE (0.21 sec)

L L L L L L L

-15105 0 51015 -9&?

LTSA (0.19 sec)

T 1

https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb

Hessian LLE

In LLE, one chooses the weights w;; to minimize the following energy

b 3 min _ | Z wij(w; — @)%

X "‘-._‘__5 0, ,”’ ZjENiw’iJ
if the points £; = z; — x; are linearly dependent

./X2 0= Z wijcﬁj, and 1= Z Wij -

JEN; JEN;

For any smooth function y(x), consider its Taylor expansion up to the second order

y(z) = y(0) + " Vy(0) + %IBT(H?J)(O)x + o(]|z[|).

Q
ng
kS
E
M
S
’Q?
g
<
Q@
|
Lo | —
M

Hessian Null

The Hessian matrix

0 = 555007, =

if function y(x) is a linear transform of the coordinates x € RP in the tangent space
at x;. In this case (I — W)y(0) = 0 and y reaches a minimizer.

In other words, the kernel of (Hy) has dimension d + 1, consisting the constant
function and d linearly independent coordinates. Inspired by such an observation,
Donoho and Grimes |] proposed Hessian LLE (Eigenmap) in search of

i / 1Ml gl = 1.

Hessian LLE Algorithm (I)

Algorithm 7: Hessian LLE Algorithm

Input: A weighted undirected graph G = (V, E, d) such that
1 V={x;eRP:i=1,...,n}
2 F={(i,7): if j is a neighbor of 7, i.e. 7 € N;}, e.g. k-nearest neighbors
Output: Euclidean d-dimensional coordinates Y = [y;] € R**"™ of data.
3 Step 1: Compute local PCA on neighborhood of x;, for,

~ . ~ ~ .

XO =25 = piy ooy iy, —) F = TOSWVNT i € N(),
where p; = Z?Zl Ti; = %Xil;

e Left top singular vectors {(71(7;), LU ng')} give an orthonormal basis of the
approximate tangent space at x;,

e Right top singular vectors [‘71(1:)7 s V;i>] are representation coordinates in
the tangent space of local sample points around x;.

Continued...

Hessian LLE Algorithm (II)

a Step 2: Null Hessian estimation: define

= SR TS ~ ~ d
M = [1,Vi, 0, Vi, ViVl oo, Vo V] € REXOFEH(2))

where V;V; = [VixVir]* € R* denotes the elementwise product (Hadamard
product) between vector V; and V;. Now we perform a Gram-Schmidt
Orthogonalization procedure on M, get

¥ d
M = [17?}17"'7@k7w17w2,...,w(d)] - ka(1+d+(2))

2

Define
(T _ d y
[H]" = [last <2> columns of M]kx(g)
Step 3: Define

K — Zs(i)H(i)TH(i)S(i)T c R™<". (21, ..,a:n]S(i) = [Tiy, .o, i, |,
i=1
find smallest d + 1 eigenvectors of K and drop the smallest eigenvector, and the
remaining d eigenvectors will give rise to a d-embedding.

Comparisons on Swiss Roll

1 1 1 1 T 1

Isomap (0.38 sec)

LLE (0.13 sec) Modified LLE (0.21 sec)

L L L L L L L

-1516-5 0 51015 -d

LTSA (0.19 sec)

T 1

Hessian LLE (0.33 sec)

L L L L L

] 14

https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb

Comparisons on Swiss Roll with

| a Hole
m a n I . m - MDS: 3.367s PCA: 0.018228s

005} .o, EQ ‘Q“’w”
-10 0 10 006 004 002 0

o
20 0 20 40 3 2 -1 0 1 0.05 0 0.05
Laplacian: 0.096386s Diffusion Map: 0.19443s LTSA: 0.15718s
2 ‘-'.. 0.05 o, ? e
0.04 i 2 n! ";
- 7 ’ﬁ'
0.02 ™~ I e Oyl
0 L
O * ‘) I ,Q 3 u*.}
-0.02 N
-0.05 ! A
0.05 0 0.05 0.060.040.02 0 0.020.04

Sigma = 10

Two Assumptions on ISOMAP

(ISO1) Isometry. The mapping 1 preserves geodesic distances. That is, define a distance between
two points m and m’ on the manifold according to the distance travelled by a bug walking
along the manifold M according to the shortest path between m and m’. Then the

isometry assumption says that
G(m,m') =10 — 0|, Vm « 0,m’' « 0,
where | - | denotes Euclidean distance in R

(ISO2) Converity. The parameter space O is a convex subset of R, That is, if 6,60 is a pair of
points in ©, then the entire line segment {(1 —¢)0 +t0' : t € (0,1)} lies in ©.

Convexity is hard to meet: consider two balls in an image which never
intersect, whose center coordinate space (x4,Y¢,X,,Y,) must have a hole.

Relaxations
(Donoho-Grimes'2003)

(LocISO1) Local Isometry. In a small enough neighborhood of each point m, geodesic distances to
nearby points m’ in M are identical to Euclidean distances between the corresponding

parameter points # and 6'.

(LocISO2) Connectedness. The parameter space O is a open connected subset of R,

Convergence of Hessian LLE
(Donoho-Grimes)

Theorem 1 Suppose M = 1)(O) where © is an open connected subset of R, and 1) is a locally
isometric embedding of © into R™. Then H(f) has a d+ 1 dimensional nullspace, consisting of
the constant function and a d-dimensional space of functions spanned by the original isometric
coordinates.

We give the proof in Appendix A.

Corollary 2 Under the same assumptions as Theorem 1, the original isometric coordinates 6
can be recovered, up to a rigid motion, by identifying a suitable basis for the null space of H(f).

Laplacian and LLE

®- O
X, \\\\\ O /// Zwixl—o
o
/
/
/
w; =1
; 5w
/
® X, Hessian H. Taylor expansion :

Fl@i) = F(0) + 2V f + St Ha + ol i)

(I = W)F(O) = F(0) = 3" wif (i) = £(0) = Y wif (0) = Y wiaVf — 2 3wt =
:—%ZxﬁHxi%—trH:Af

when x_i becomes an orthonormal basis...

Discrete Laplacian

Tries to preserve locality

A Fundamental Identity

But L=D-W, D=diag(} ;cn, wij)

. Z yj 2sz TLy

> (Wi —y)*Wis = (w7 + i — 2uiy;) Wi
1,

(%]
2 2
= Z y; Dii + Z y;Djj — 22 Yiy; Wi
(J (2%]

=2y’ Ly

Embedding of Unnormalized
Laplacian Eigenmap

A=0—-y=1

Uniform sampling:]E—Fnlino y' Ly
y ot

LetY = [y1y2...ym]
> Vi = Y;||°Wy; = trace(Y T LY)
i

subjectto YTY = I.
Use eigenvectors of L to embed.
Nonuniform (GEV): argminy’ Ly.

y
yTDy=1

How to find weights?
Heat kernels...

Hy(x,y) = > e () dily)
in R?, closed form expression

2
1 _lz—yl
4t

Ht(aj7 y) — (47Tt)d/2€

Goodness of approximation depends on the gap

1 _ ||x;3||2
(47t)d/2 ‘

Ht(ﬂf, y) o
good for small ¢

H; is a Mercer kernel intrinsically defined on manifold.

Leads to SVMs on manifolds.
23

Laplacian Eigenmaps (I)
[Belkin-Niyoqil

Algorithm 8: Laplacian Eigenmap

Input: An adjacency graph G = (V, E, d) such that
1 V={x;:i=1,...,n}
2 FE={(i,7) : if j is a neighbor of i, i.e. 7 € N;}, e.g. k-nearest neighbors,
e-neighbors
3 di; = d(x;,xj), e.g. Euclidean distance for x; ~ x; are in neighbor
Output: Euclidean d-dimensional coordinates Y = [y;] € R**" of data.
a Step 1: Choose weights
5 (a) Heat kernel weights (parameter t):

_lei—ay0? o
sz _ 6 t) Z ,\.J]7
0, otherwise.

(b) Simple-minded (t — 00), W;; = 1 if i and j are connected by an edge and
Wi; = 0 otherwise.

6 Step 2 (Eigenmap): Let D = diag(>_; Wi;) and L = D — W. Compute smallest
d + 1 generalized eigenvectors

Lyl:)\lDyl, lIO,l,...,d,

such that 0 = A\g < A1 < ... < Ag. Drop the zero eigenvalue Ao and constant
eigenvector yo, and construct Yy = [y1,...,y4] € R™*%.

Hessian vs. Laplacian
* Laplacian LLE

FTLF =Y wifi= 532 20~ [190 = [(erace(s 725
127

where H = [0?/0;0;] € R¥? is the Hessian matrix.

e Hessian LLE
min [[, 7] =1

* Laplacian kernel: const + linear + bilinear
* Hessian kernel: const + linear functions

Note that: A(f) = trace(H(f))

Comparisons on Swiss Roll

1 1 1 1 T 1

Isomap (0.38 sec)

LLE (0.13 sec) Modified LLE (0.21 sec)

L L L L L L L

-1516-5 0 51015 -d

LTSA (0.19 sec)

T 1

Hessian LLE (0.33 sec) SpectralEmbedding (0.19 sec)

L L 1] 1] L

» > °
S °
. .
.
» .

https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb
https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb

Connection to Markov Chain

L =D-W
P=1-D1L=D7Wis a markov matrix
v is generalized eigenvectorof L: Lv=ADv

v is also a right eigenvector of P with
eigenvalue 7-A

Pis lumpable iff v is piece-wise constant

So Laplacian eigenmaps have Markov
Chain interpretations (Diffusion Map), with
more connection to topology ...

Data Graph

* Given n points x;, i=1,...,n, as vertices in V
* Similarity weight between x; and x;is w;=w;,
e.g.

(lw; —x ;12 o
t
0, otherwise.

* Undirected weighted graph G(V,E,W)

Random Walk on Graphs

* Degreed =%, w,, D =diag(d)

« Random walk on G(V,.E,W)
— Transition probability P = D' W where p; = w;/d,
— Stationary distribution 1, ~ d.
— primitive (G is connected with a finite diameter)

— Reversible w;, = w;; == m;p; = T, p;;

Symmetric Kernel

e P=D1Wissimilarto S = D'Y2WD1/2 a5 P = D'1/25D1/2
e Sis real symmetric, whence eigen-decomposition

S=VAV", A =diag(A.ER)

B P=D"WAV'D"?=@®AW, &=D"V, w=D"

Spectrum of P

* Eigenvalues of S and P are the same, so

‘)\.l-l <1

e @ and W are right and left eigenvector matrix of P,
respectively, @'W = VIV = |

* In particular, P 1 =1, whence

d.
p(DH=1 yYyO=—=m,
Sd

[

Diffusion Map

* For primitive P

l=Xg > A1 > Xo...>2 N1 > —1

* Diffusion map of x is defined via right eigenvectors

[X, (0)
(I)t(xi)= A2¢I\24(l) ER"

\A,9, (D))

* Laplacian LLE is the special case with t=0 and top d+1
eigenvectors

Dimensionality Reduction

A, =1 and ¢,= 1, so it does not distinguish points
Threshold by 6, for those

%
A

=1-6, i=1,..m,

<1-90, k>m

Define (X))

(I)(S (xi) _)"t3¢|\3/|(l) ERm_l

\A,.9,, (@)

Varying t or 6 leads to a multiscale analysis

Diffusion Distance

* Define the diffusion distance between points
at scale t

- CI)t(xl.) _(Dt(xj) 2

* This is exactly the weighted 2-distance
between diffusion profiles

o (Py
1*(1/d) E

k=2

= ¥ X (9 (x) - §,(x)’

P]k)

D,(x;,x;):=|P

j

Diffusion Distance Example

I
R
[F 1 .
-y r - 3 +
0.4 ol i My ,.;,:,'_.I \ 3
— - ‘.-' - "j,_]. TE B ~
. e : L T o N
s - = ‘.-'_- 2 | " E y
& TR
o 5§ o N L - 4
L | .'.' \ - } 5 _] !:
5 ; A - i L . .
. - . . -1
= . .-..‘) i)
5 : 5 “an _E - J
p— --’ 1‘. Y

FIGURE 1. Diffusion Distances d;(A, B) >> d;(B, C) while graph
shortest path dgeod(A, B) ~ dgeod(B, C).

General Diffusion Map

* Gaussian kernel ([x =y)
| K, (x.y) = exp

* Normalize kernel
K“(x,y) = K, (x.y) where p(x)=fKS (x,y)du(y)

P (x)p“(y)

e Renormalized kernel

K*(x,y) ’ ;
Ag(x,y) = \/d(“)(x)\/d(“)(y) where — d(x) =fK()(x,y)du(y)

— a=1, Laplacian-Beltrami operator, separate
geometry from density

— a=0, classical normalized graph Laplacian
— a=1/2, backward Fokkar-Planck operator
Coifman-Lafon 2006. Diffusion Maps.

Comparisons of Manifold Learning
Techniques

e MDS

* PCA
 |ISOMAP

* LLE

* Hessian LLE

* Laplacian LLE
e Diffusion Map

* Local Tangent Space Alignment
* Matlab codes: mani.m

Courtesy of Todd Wittman

Comparisons on Swiss Roll

40 20 0 20
Laplacian: 0.10276s
0.04 ’,,—--—‘ ’
0.02
0
0.02
0.04
.05 0 0.05
KNN = 8

-

MDS: 3.4117s PCA: 0.016197s

1 0 1 2 0.05 0 0.05
Diffusion Map: 0.17035s
-,
1 0 1
Alpha =1

38

Diffusion Map vs.
Stochastic Neighbor Embedding

* |n Diffusion Map, it looks for MDS embedding
which preserves diffusion distances

i (P, - P,)°

P. - P!
dk

! J

12(1/d) B

D, (x;,x ;)=

k=2

* SNE considers to find a low-dimensional
Euclidean embedding Y which preserves the
distribution P..

Stochastic Neighbor Embedding

* Like diffusion map, consider the conditional
probability that one data point will pick the
other data point as its neighbor pj

* However, to reconstruct the probability rather
than clusters in embedding:

— Use the pairwise distances in the low-dimensional
map to define the probability that a map point will
pick another map point as its neighbor.

— Compute the Kullback-Leibler divergence between
the probabilities in the high-dimensional and low-
dimensional spaces.

A probabilistic local method

Each point in high-D has a J
conditional probability of picking
each other point as its neighbor.

The distribution over neighbors is °
based on the high-D pairwise o
distances.

— If we do not have coordinates

High-D Space

for the datapoints we can use
a matrix of dissimilarities
instead of pairwise distances.

p.. =
/ Jl —d2
D e

probability of picking j
given that you start at |

Evaluating an arrangement of the data in a low-dimensional
space Y

* Give each data point a location Low-D Space
in the low- dimensional space

Y. .

— Evaluate this .
representation by
seeing how well the

low-D probabilities ;
model the high-D ones. _dij

l
probability of picking j Z e
given that you start at i k

The cost function for a low-dimensional representation

Cost = ZKL(P 10;) = ZZPﬂi logi'l:

* For points where pij is large and qijis small we lose a lot.
— Nearby points in high-D really want to be nearby in low-D

* For points where qjj is large and pij is small we lose a little
because we waste some of the probability mass in the Q
distribution.

— Widely separated points in high-D have a mild preference
for being widely separated in low-D.

Gradient Descent

0Cost
oy,

0 =D tngs +a() (9Y -)

2Z(y] yl)(p]|l q]|z +pz|] qz|])
J

— {y17y2,---;yn}

* Points are pulled towards
each other if the p’ s are
bigger than the g’ s and I

repelled if the g’ s are /
bigger than the p’ s

&

o0 ﬂa o 0
060 o ©, 0 92 o0 5
a P oo oo o9
[} O o & o W & .

o o %0080 ° 00.0508° 7 y Unsupervised
o o ~ :
00 oogooo 0: adagg dajd e y 9 SNE embedding

o * o < & .

©,00. 0 © aaaoaog @’ 6;@ g ¢ Har Y v, of the digits 0-4.

oo (2] o0 ¢ ¢f o iy
a® 0 ,20° 0 90 025 0% fur 7 s Ty Not all the data
oo O o0 ad ﬂé JJ"”—# o iAol & .
06%p 0@ © o YRR C v is displ
p ¥ o, T Isplayed
0" 04 AC 29 ,_ 2 % y
6008 0 70,0 ‘93&&, 2 g 9y gt topof Y VLY
o > 00 7 ﬂagg uﬂ@}_.l , %g‘%ﬁ' 2/ %J?’
O Co o o0 o e A o o2 %4 & & T & & .
% P06 020 9° 7 2 222 23 2 st Yy 7
OO0 g0 ~& 2 o arad i e 2 e
oVYpv O 2D L Qgﬂ 2 #H s, a o
° 000 B3y 2z 755 2% Lt i
6 02, ¢ 22 28233K3> 32@"2%&2’;&% o ﬁ,ﬁﬂ‘%v% ¥ &
o6 3 39 3334 Lody o &gea, Ly ¥ ¢+ g
53353 35 37 722 '.L’Llﬁ,ﬂ 3-/% ﬁfﬁfﬁg?;%%
3, .8 5335 3937 Al SO d
3 3 33 5352%22% 27,97, 0 1L
33 .3-3333 o 2. / £ K .
ErnT odayr 2227°,%2" 777 YN
Vs o, 3303 i 2 g A A E A
33 3332 53353 5 250 /0 ¥, ¢
433323 333 3 2% 2S5 s Ty 7
3 3933 3377 21,5
3 « 2 .77 J el ,r ¢
a’ A \\lu‘)"’ s 1022777 e s
a M 157 sl
W 5 Zok !ﬂ'/ AV A
viaatat o trsel [7
s 0 p277¢ ¢ 7
g 2 > « £ I!,, 4
3 2 B 28 _ 7 27 1 4y
3 s ¥ 2> , r ‘l(r 4
r £ V4
. L A re’
2 2 7

Picking the radius of the gaussian that
IS used to compute the p’s

We need to use different radii in different parts of the
space so that we keep the effective number of
neighbors about constant.

A big radius leads to a high entropy for the distribution
over neighbors of i.

A small radius leads to a low entropy.

So decide what entropy you want and then find the
radius that produces that entropy.

Its easier to specify 2*entropy
.. . P P — 2H(R)
— This is called the perplexity erp(F;) :
— It is the effective number of neighbors. g(p) = — N pjjilogy pji
J

Symmetric SNE

* There is a simpler version of SNE which seems
to work about equally well.

 Symmetric SNE works best if we use different
procedures for computing the p’ s and the g’ s

— This destroys the nice property that if we embed
in a space of the same dimension as the data, the
data itself is the optimal solution.

Computing the p’ s for symmetric SNE

* Each high dimensional point, i, High-D Space
has a conditional probability of .
picking each other point, j, as k]
its neighbor.

* The conditional distribution z
over neighbors is based on the
high-dimensional pairwise .

distances. °

—di2./20'l.2
e]
Pji =

/ Z e—dizk/zGiz
k

probability of picking j
given that you start at |

Turning conditional probabilities
into pairwise probabilities

To get a symmetric probability between i and j we sum the two
conditional probabilities and divide by the number of points
(points are not allowed to choose themselves).

joint probability of B P i T Pil;
picking the pairij ™ pzj — I
n

This ensures that all the pairwise probabilities sum to 1 so they
can be treated as probabilities.

2P =
J

Evaluating an arrangement of the points in the low-dimensional

Give each data-point a location

in the low- dimensional space.

— Define low-dimensional

probabilities symmetrically.

— Evaluate the representation
by seeing how well the low-D
probabilities model the high-

D affinities.

space

Low-D Space

k<l

The cost function for a low-dimensional representation

P
Cost =KL(P|Q)| = Y. p;; log—- 'l

i<j 1ij

* It' s asingle KL instead of the sum of one KL for each
datapoint.

The forces acting on the low-dimensional points

extension stiffness

|]
OKL(P| Q) _ 2> (vi=y) (pj —4;)
0y, J

* Points are pulled towards each
other if the p’ s are bigger than
the q' s and repelled if the g’ s J
are bigger than thep’s

— |Its equivalent to having i
springs whose stiffnesses /

are set dynamically.

SNE applied to 30—-dimensional PCA codes of 5000 MNIST digits

T T
= 9
8‘ x 8"
x 7
6
+ 5
61 - 4 H
o e |
0 2
o 1
4+ O O0OH
2F x -
%
&
e
%
of- s
%
w0
%
-2} ﬁ 4
X
i
4} u
-8} o
-8}]

Why SNE does not have gaps between classes

* In the high-dimensional space there are many pairs of
points that are moderately close to each other.

— The low-D space cannot model this. It doesn’ t have
enough room around the edges.

 Sothere are many pij s that are modeled by smaller qij’ s.

— This has the effect of lots of weak springs pulling
everything together and crushing different classes
together in the middle of the space.

* One solution
— Use light tail Gaussian kernel for high-D pij but;
— Heavy tail for low-D qij

t-SNE

e Use a heavy tailed Student t-distribution
(Cauchy) for g which allows a moderate
distance in high-dimensional space to be

faithfully represented by a larger distance
(push away) in low-dimensional embedding

1
2
1+dU

qdij <

Low-dimensional distance >

Gradient of t-SNE

5C !
6—y~ = 42(191']' —Clij)()’i —YJ') (1 + [|yi —YJ||2)
! J

1 A ;
14 3
G
hp 3 - 10.5
LY o
©
R .S 0
| Is 2
()
L 16 £ -0.5
N
4 2
2 3 »
0

High—dimensional distance >

High—dimensional distance >

(a) Gradient of SNE. (c) Gradient of t-SNE.

t-SNE allows more points in moderate distance neighbors

Two other state-of-the-art dimensionality
reduction methods on the 6000 MNIST digits

Isomap Locally Linear.Embedding

t-SNE on the 6000 MNIST digits

0000000000

SNE vs. Laplacian Eigenmap

 Miguel Carreira-Perpinan (ICML 2010) showed
that the original SNE cost function can be
rewritten so that it is equivalent to Laplacian
Eigenmaps with an extra repulsion term that
spreads out the map points.

* This led to a much faster optimization
method. The fast code is now on the t-SNE

webpage.

SNE vs. Laplacian LLE ->
Elastic Embedding

N N
2
ESNE<X) = Z Pnm ||Xn - Xm||2 ELE(X) = Z Wnm Hxn - Xm”

n,m=1 n,m=1

N
+ > log Y exp (= [[xn = xm]")

n=1 n#m

exXp (_d%m)
En#m’ exp (_d?zm’)

fozl Pnm = 1

N
Elastic Embedding EXN) = Y wi 1% — %l
(EE): n,m=1

Swiss Roll Example

EE, \ = 10!

Figure 3. Swiss roll. Top: EE with homotopy; we show X for different A\. Bottom: true X and results with other methods.

