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Preface

This book is used in a course instructed by Yuan Yao at Peking University, part
of which is based on a similar course led by Amit Singer at Princeton University.

If knowledge comes from the impressions made upon us by natural
objects, it is impossible to procure knowledge without the use of
objects which impress the mind. –John Dewey

It is important to understand what you CAN DO before you learn to
measure how WELL you seem to have DONE it. –John W. Tukey

... the objective of statistical methods is the reduction of data. A
quantity of data... is to be replaced by relatively few quantities
which shall adequately represent ... the relevant information con-
tained in the original data.
Since the number of independent facts supplied in the data is usu-
ally far greater than the number of facts sought, much of the infor-
mation supplied by an actual sample is irrelevant. It is the object of
the statistical process employed in the reduction of data to exclude
this irrelevant information, and to isolate the whole of the relevant
information contained in the data. –R.A.Fisher
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http://scikit-learn.org/stable/modules/manifold.html

• PCA/MDS(SMACOF algorithm, not spectral 
method)
• ISOMAP/LLE (+MLLE)
• Hessian Eigenmap
• Laplacian Eigenmap
• LTSA
• tSNE
2
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Python scikit-learn Manifold 
learning Toolbox

http://scikit-learn.org/stable/modules/manifold.html
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Matlab Dimensionality 
Reduction Toolbox

• http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_R
eduction.html

• Math.pku.edu.cn/teachers/yaoy/Spring2011/matlab/drtoolbox
– PrincipalFComponentFAnalysisF(PCA),FProbabilisticFPC
– FactorFAnalysisF(FA),FSammon mapping,FLinearFDiscriminant AnalysisF(LDA)
– MultidimensionalFscalingF(MDS),FIsomap,FLandmarkFIsomap
– LocalFLinearFEmbeddingF(LLE),FLaplacian Eigenmaps,FHessianFLLE,FConformalFEigenmaps
– LocalFTangentFSpaceFAlignmentF(LTSA),FMaximumFVarianceFUnfoldingF(extensionFofFLLE)
– LandmarkFMVUF(LandmarkMVU),FFastFMaximumFVarianceFUnfoldingF(FastMVU)
– KernelFPCA
– DiffusionFmaps
– …



Recall: PCA

• Principal Component Analysis (PCA)

One Dimensional 
Manifold

€ 

Xp×n = [X1 X2 ... Xn ]



Recall: MDS

• Given pairwise distances D, where Dij = dij
2, the 

squared distance between point i and j
– Convert the pairwise distance matrix D (c.n.d.) into the 

dot product matrix B (p.s.d.)  
• Bij (a) = -.5 H(a) D H’(a), Hölder matrix H(a) = I-1a’; 
• a = 1k:      Bij = -.5 (Dij  - Dik – Djk)
• a = 1/n: 

– Eigendecomposition of B = YYT

If we preserve the pairwise Euclidean 
distances do we preserve the structure??
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Nonlinear Manifolds..

A



Nonlinear Manifolds..

A



Nonlinear Manifolds..

A
PCA and MDS see the Euclidean 
distance
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Nonlinear Manifolds..

A
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Nonlinear Manifolds..

A

Unfold the manifold

PCA and MDS see the Euclidean 
distance

What is important is the geodesic distance



Intrinsic Description..

• To preserve 
structure, preserve 
the geodesic 
distance and not 
the Euclidean 
distance.



Manifold LearningManifold Learning

Learning when data ∼ M ⊂ RN

Clustering: M → {1, . . . , k}
connected components, min cut

Classification/Regression: M → {−1,+1} or M → R

P onM× {−1, +1} or P onM× R

Dimensionality Reduction: f : M → Rn n << N

M unknown: what can you learn about M from data?
e.g. dimensionality, connected components
holes, handles, homology
curvature, geodesics

Geometric Methods and Manifold Learning – p. 14



Generative Models in Manifold Learning



Spectral Geometric EmbeddingDimensionality Reduction
Given x1, . . . , xn ∈ M ⊂ RN ,
Find y1, . . . , yn ∈ Rd where d << N

ISOMAP (Tenenbaum, et al, 00)
LLE (Roweis, Saul, 00)
Laplacian Eigenmaps (Belkin, Niyogi, 01)
Local Tangent Space Alignment (Zhang, Zha, 02)
Hessian Eigenmaps (Donoho, Grimes, 02)
Diffusion Maps (Coifman, Lafon, et al, 04)

Related: Kernel PCA (Schoelkopf, et al, 98)

Geometric Methods and Manifold Learning – p. 25



Meta-Algorithm
• Construct a neighborhood graph
• Construct a positive semi-definite kernel
• Find the spectrum decomposition

Kernel Spectrum



Two Basic Geometric Embedding 
Methods: Science 2000
• Tenenbaum-de Silva-Langford Isomap Algorithm 

– Global approach. 
– On a low dimensional embedding 

• Nearby points should be nearby. 
• Faraway points should be faraway. 

• Roweis-Saul Locally Linear Embedding Algorithm 
– Local approach 

• Nearby points nearby



Isomap



Isomap
• Estimate the geodesic distance between faraway points.



Isomap
• Estimate the geodesic distance between faraway points.
• For neighboring points Euclidean distance is a good approximation 

to the geodesic distance.
• For faraway points estimate the distance by a series of short hops 

between neighboring points.
– Find shortest paths in a graph with edges connecting 

neighboring data points



Isomap
• Estimate the geodesic distance between faraway points.
• For neighboring points Euclidean distance is a good approximation 

to the geodesic distance.
• For faraway points estimate the distance by a series of short hops 

between neighboring points.
– Find shortest paths in a graph with edges connecting 

neighboring data points

Once we have all pairwise 
geodesic distances use classical 
metric MDS



Isomap - Algorithm
• Construct an n-by-n neighborhood graph 

– connecting points whose distances are within a fixed radius. 
– K nearest neighbor graph 

• Compute the shortest path (geodesic) distances between nodes: D 
– Floyd’s Algorithm (O(N3)) 
– Dijkstra’s Algorithm (O(kN2logN)) 

• Construct a lower dimensional embedding. 
– Classical MDS (K = -0.5 H D H’ = U S U’)



Isomap



Example…



Example…







Residual Variance vs. Intrinsic Dimension

Face Images
SwisRoll

Hand Images 2



ISOMAP on Alanine-dipeptideApplication I: 
Alanine-dipeptide 

ISOMAP 3D embedding with RMSD metric on 3900 Kcenters



Convergence of ISOMAP
• ISOMAP has provable convergence guarantees;
• Given that {xi} is sampled sufficiently dense, 

graph shortest path distance will approximate 
closely the original geodesic distance as 
measured in manifold M;

• But ISOMAP may suffer from nonconvexity such 
as holes on manifolds



Two step approximations



Convergence Theorem 
[Bernstein, de Silva, Langford, 

Introduction Theoretical Claims Conformal ISOMAP Landmark ISOMAP Summary

ISOMAP Asymptotic Convergence Proofs

Main Theorem
Theorem 1: Let M be a compact submanifold of Rn and let {xi} be a finite set
of data points in M. We are given a graph G on {xi} and positive real
numbers ⌅1, ⌅2 < 1 and ⇥, ⇤ > 0. Suppose:
1. G contains all edges (xi , xj) of length ⌅xi � xj⌅ ⇥ ⇤.
2. The data set {xi} statisfies a ⇥-sampling condition – for every point

m ⇤ M there exists an xi such that dM(m, xi) < ⇥.
3. M is geodesically convex – the shortest curve joining any two points on

the surface is a geodesic curve.
4. ⇤ < (2/⇧)r0

⇧
24⌅1, where r0 is the minimum radius of curvature of M –

1
r0

= max�,t ⌅�00(t)⌅ where � varies over all unit-speed geodesics in M.
5. ⇤ < s0, where s0 is the minimum branch separation of M – the largest

positive number for which ⌅x � y⌅ < s0 implies dM(x , y) ⇥ ⇧r0.
6. ⇥ < ⌅2⇤/4.

Then the following is valid for all x , y ⇤ M,
(1� ⌅1)dM(x , y) ⇥ dG(x , y) ⇥ (1+ ⌅2)dM(x , y)

Global vs. Local Methods in NLDR



Probabilistic Result
Introduction Theoretical Claims Conformal ISOMAP Landmark ISOMAP Summary

ISOMAP Asymptotic Convergence Proofs

Recap

I So, short Euclidean distance hops along G approximate well actual
geodesic distance as measured in M.

I What were the main assumptions we made? The biggest one was the
⇥-sampling density condition.

I A probabilistic version of the Main Theorem can be shown where each
point xi is drawn from a density function. Then the approximation
bounds will hold with high probability. Here’s a truncated version of what
the theorem looks like now:

Asymptotic Convergence Theorem: Given ⇤1, ⇤2, µ > 0 then for density
function � sufficiently large:

1� ⇤1 ⇥
dG(x , y)
dM(x , y)

⇥ 1+ ⇤2

will hold with probability at least 1� µ for any two data points x, y.

Global vs. Local Methods in NLDR



A Shortcoming of ISOMAP
• One need to compute pairwise shortest 

path between all sample pairs (i,j)
– Global
– Non-sparse
– Cubic complexity O(N3)



Landmark ISOMAP: Nystrom 
Extension Method

Introduction Theoretical Claims Conformal ISOMAP Landmark ISOMAP Summary

Faster and Scalable

Motivation for L-ISOMAP
I ISOMAP out of the box is not scalable. Two bottlenecks:

I All pairs shortest path - O(kN2 logN).
I MDS eigenvalue calculation on a full NxN matrix - O(N3).
I For contrast, LLE is limited by a sparse eigenvalue computation -
O(dN2).

I Landmark ISOMAP (L-ISOMAP) Idea:
I Use n << N landmark points from {xi} and compute a n x N
matrix of geodesic distances, Dn, from each data point to the
landmark points only.

I Use new procedure Landmark-MDS (LMDS) to find a Euclidean
embedding of all the data – utilizes idea of triangulation similar to
GPS.

I Savings: L-ISOMAP will have shortest paths calculation of
O(knN logN) and LMDS eigenvalue problem of O(n2N).

Global vs. Local Methods in NLDR



Landmark Choice
• Random
• MiniMax: k-center
• Hierarchical landmarks: cover-tree
• Nyström extension method



Locally Linear Embedding
 manifold is a topological space which is locally Euclidean.”

Fit Locally, Think Globally



We expect each data point and its  
neighbours to lie on or close 
 to a locally linear patch of the 
manifold.

Each point can be written as a 
linear combination of its 
neighbors. 
The weights are chosen to 
minimize the reconstruction 
Error.

Derivation on board

Fit Locally…



Important property...



Important property...
• The weights that minimize the reconstruction 

errors are invariant to rotation, rescaling and 
translation of the data points.
– Invariance to translation is enforced by adding the 

constraint that the weights sum to one.



Important property...
• The weights that minimize the reconstruction 

errors are invariant to rotation, rescaling and 
translation of the data points.
– Invariance to translation is enforced by adding the 

constraint that the weights sum to one.
• The same weights that reconstruct the 

datapoints in D dimensions should 
reconstruct it in the manifold in d dimensions.
– The weights characterize the intrinsic geometric 

properties of each neighborhood.



Think Globally…



LLE Algorithm (I)

74 5. MANIFOLD LEARNING

such that dM (x, xi) < ✏, and {i, j} 2 E if dM (xi, xj)  ↵✏ (↵ � 4). Then for any
pair x, y 2 V ,

dS(x, y)  max(↵ � 1,
↵

↵ � 2
)dM (x, y).

Proof. Let � be a shortest path connecting x and y on M whose length is
l. If l  (↵ � 2)✏, then there is an edge connecting x and y whence dS(x, y) =
dM (x, y). Otherwise split � into pieces such that l = l0 + tl1 where l1 = (↵ � 2)✏
and ✏  l0 < (↵ � 2)✏. This divides arc � into a sequence of points �0 = x, �1,. . .,
�t+1 = y such that dM (x, �1) = l0 and dM (�i, �i+1) = l1 (i � 1). There exists a
sequence of x0 = x, x1, . . . , xt+1 = y such that dM (xi, �i)  ✏ and

dM (xi, xi+1)  dM (xi, �i) + dM (�i, �i+1) + dM (�i+1, xi+1)

 ✏ + l1 + ✏

= ↵✏

= l1↵/(↵ � 2)

whence (xi, xi+1) 2 E. Similarly dM (x, x1)  dM (x, �1) + dM (�1, x1)  (↵ � 1)✏ 

l0(↵ � 1).

dS(x, y) 

t�1X

i=0

dM (xi, xi+1)

 l max

✓
↵

↵ � 2
, ↵ � 1

◆

Setting ↵ = 4 gives rise to dS(x, y)  3dM (x, y). ⇤
The other lower bound dS(x, y)  cdG(x, y) requires that for every two points

xi and xj , Euclidean distance kxi � xjk  cdM (xi, xj). This imposes a regularity
on manifold M , whose curvature has to be bounded. We omit this part here and
leave the interested readers to the reference by Bernstein, de Silva, Langford, and
Tenenbaum 2000, as a supporting information to the ISOMAP paper.

3. Locally Linear Embedding (LLE)

In applications points nearby should be mapped nearby, while points far away
should impose no constraint. This is because in applications when points are close
enough, they are similar, while points are far, there is no faithful information to
measure how far they are. This motivates another type of algorithm, locally linear
embedding. This is a local method as it involves local PCA and sparse eigenvector
decomposition.

(1) Construct a neighborhood graph G = (V, E, W ) such that
V = {xi : i = 1, . . . , n}

E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest
neighbors, ✏-neighbors

Wij = d(xi, xj) in Euclidean distance
(2) Local fitting:

Pick up a point xi and its neighbors Ni

Compute the local fitting weights

minP
j2Ni wij=1

kxi �

X

j2Ni

wijxjk
2,
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In applications points nearby should be mapped nearby, while points far away
should impose no constraint. This is because in applications when points are close
enough, they are similar, while points are far, there is no faithful information to
measure how far they are. This motivates another type of algorithm, locally linear
embedding. This is a local method as it involves local PCA and sparse eigenvector
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j2Ni wij=1

kxi �

X

j2Ni

wijxjk
2,
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(2) Local fitting:
Pick up a point xi and its neighbors Ni

Compute the local fitting weights

minP
j2Ni wij=1

kxi �

X

j2Ni

wijxjk
2,

which is equivalent to

minP
j2Ni wij=1

k

X

j2Ni

wij(xj � xi)k
2,

that is, finding a linear combination (possibly not unique!) for the sub-
space spanned by {(xj � xi) : j 2 Ni}. This can be done by Lagrange
multiplier method, i.e. solving

min
wij

1

2
k

X

j2Ni

wij(xj � xi)k
2 + �(1 �

X

j2Ni

wij).

Let wi = [wij1 , . . . wijk ]T 2 Rk, X̄i = [xj1 �xi, . . . , xjk �xi], and the local
Gram (covariance) matrix Ci(j, k) = hxj �xi, xk�xii, whence the weights
are

(80) wi = �C†
i 1,

where the Lagrange multiplier equals to the following normalization pa-
rameter

(81) � =
1

1TC†
i 1

,

and C†
i is a Moore-Penrose (pseudo) inverse of Ci. Note that Ci is often

ill-conditioned and to find its Moore-Penrose inverse one can use regular-
ization method (Ci + µI)�1 for some µ > 0.

(3) Global alignment
Define a n-by-n weight matrix W :

Wij =

⇢
wij , j 2 Ni

0, otherwise

Compute the global embedding d-by-n embedding matrix Y ,

min
Y

X

i

kyi �

nX

j=1

Wijyjk
2 = trace(Y (I � W )T (I � W )Y T )

In other words, construct a positive semi-definite matrix B = (I �

W )T (I�W ) and find d+1 smallest eigenvectors of B, v0, v1, . . . , vd associ-
ated smallest eigenvalues �0, . . . , �d. Drop the smallest eigenvector which
is the constant vector explaining the degree of freedom as translation and
set Y = [v1/

p
(�1), . . . , vd/

p
�d]T .

The benefits of LLE are:

• Neighbor graph: k-nearest neighbors is of O(kn)
• W is sparse: kn/n2 = k/n non-zeroes
• B = (I � W )T (I � W ) is guaranteed to be positive semi-definite

LLE Algorithm (II)



LLE Algorithm (III)
4. LAPLACIAN LLE (EIGENMAP) 61

(3) Global alignment
Define a n-by-n weight matrix W :

Wij =

�
wij , j ⇤ Ni

0, otherwise

Compute the global embedding d-by-n embedding matrix Y ,

min
Y

⌅

i

⇧yi �
n⌅

j=1

Wijyj⇧2 = trace(Y (I �W )T (I �W )Y T )

In other words, construct a positive semi-definite matrix B = (I �
W )T (I�W ) and find d+1 smallest eigenvectors of B, v0, v1, . . . , vd associ-
ated smallest eigenvalues �0, . . . ,�d. Drop the smallest eigenvector which
is the constant vector explaining the degree of freedom as translation and
set Y = [v1/

⇧
(�1), . . . , vd/

⌃
�d]T .

The benefits of LLE are:

• Neighbor graph: k-nearest neighbors is of O(kn)
• W is sparse: kn/n2 = k/n non-zeroes
• B = (I �W )T (I �W ) is guaranteed to be positive semi-definite

However, unlike ISOMAP, it is not clear if LLE constructed above converges
under certain conditions. This has to be left to some variations of basic LLE above,
Hessian LLE and LTSA to finish the convergence conditions.

Table 1. Comparisons between ISOMAP and LLE.

ISOMAP LLE
MDS on geodesic distance matrix local PCA + eigen-decomposition

global approach local approach
no for nonconvex manifolds with holes ok with nonconvex manifolds with holes

Extensions:
landmark (Nystrom)
conformal
isometric, etc.

Extensions:
Hessian
Laplacian
LTSA etc.

4. Laplacian LLE (Eigenmap)

Consider the graph Laplacian with heat kernels [BN01, BN03]. Define a
weight matrix W = (wij) ⇤ Rn⇥n by

wij =

⇥
e�

⇥xi�xj⇥
2

t j ⇤ N (i),

0 otherwise.

Let D = diag(
⇤

j⇤Ni
wij) be the diagonal matrix with weighted degree as diagonal

elements.
Define the unnormalized graph Laplacian by

L = D �W,

and the normalized graph Laplacian by

L = D� 1
2 (D �W )D� 1

2 .



Remarks on LLE
• Searching k-nearest neighbors is of O(kN)

• W is sparse, kN/N^2=k/N nozeros
• W might be negative, additional nonnegative 

constraint can be imposed
• B=(I-W)T(I-W) is positive semi-definite 

(p.s.d.)

• Open Problem: exact reconstruction 
condition?









Grolliers Encyclopedia



Issues of LLE

!41

3. LOCALLY LINEAR EMBEDDING (LLE) 75

Algorithm 4: LLE Algorithm

Input: A graph G = (V,E) such that
1 V = {xi : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors,

✏-neighbors
Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rd⇥n of data.

3 Step 1 (local fitting): for each xi and its neighbors Ni, solve

4

minP
j2Ni wij=1

kxi �
X

j2Ni

wijxjk2,

by ŵi(µ) = (Ci + µI)�1
1 for some regularization parameter µ > 0 and

wi = ŵi/ŵ
T
i 1;

5 Step 2 (global alignment): define the weight embedding matrix

6

Wij =

⇢
wij , j 2 Ni

0, otherwise

Compute K = (I �W )T (I �W ) which is a positive semi-definite kernel matrix;
7 Step 3 (Eigenmap): Compute Eigenvalue decomposition K = U⇤U

T with
⇤ = diag(�1, . . . ,�n) where �1 � �2 � . . .�n�1 > �n = 0; choose bottom d + 1
nonzero eigenvalues and corresponding eigenvectors and drop the smallest
eigenvalue-eigenvector (0-constant) pair, such that

Ud = [un�d, . . . , un�1], uj 2 Rn
,

⇤d = diag(�n�d, . . . ,�n�1).

Define Yd = Ud⇤d
1
2 .

Pick up a point xi and its neighbors Ni. Compute the local fitting
weights

minP
j2Ni wij=1

kxi �

X

j2Ni

wijxjk
2,

which is equivalent to

minP
j2Ni wij=1

k

X

j2Ni

wij(xj � xi)k
2,

that is, finding a linear combination (possibly not unique!) for the sub-
space spanned by {(xj � xi) : j 2 Ni}. This can be done by Lagrange
multiplier method, i.e. solving

min
wij

1

2
k

X

j2Ni

wij(xj � xi)k
2 + �(1 �

X

j2Ni

wij).

Let wi = [wij1 , . . . wijk ]T 2 Rk, X̄i = [xj1 �xi, . . . , xjk �xi], and the local
Gram (covariance) matrix Ci(j, k) = hxj �xi, xk�xii, whence the weights
are

(80) wi = �C†
i 1,

where the Lagrange multiplier equals to the following normalization pa-
rameter

(81) � =
1

1TC†
i 1

,
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space spanned by {(xj � xi) : j 2 Ni}. This can be done by Lagrange
multiplier method, i.e. solving

min
wij

1

2
k

X

j2Ni

wij(xj � xi)k
2 + �(1 �

X

j2Ni

wij).

Let wi = [wij1 , . . . wijk ]T 2 Rk, X̄i = [xj1 �xi, . . . , xjk �xi], and the local
Gram (covariance) matrix Ci(j, k) = hxj �xi, xk�xii, whence the weights
are

(80) wi = �C†
i 1,

where the Lagrange multiplier equals to the following normalization pa-
rameter

(81) � =
1

1TC†
i 1

,
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ill-posed or ill-conditioned?



Issues of LLE

• Low-pass filter of constant 1-vector
– preserve projections on bottom eigenvectors 

associated with small eigenvalues
– suppress projections on top eigenvectors associated 

with large eigenvalues
•  If 1-vector is not so well-spread over null eigenspace, 

instability and missing directions as mu goes down!
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Table 1. Comparisons between ISOMAP and LLE.

ISOMAP LLE
MDS on geodesic distance matrix local PCA + eigen-decomposition

global approach local approach
no for nonconvex manifolds with holes ok with nonconvex manifolds with holes

Extensions:
landmark (Nystrom)
conformal
isometric, etc.

Extensions:
Hessian
Laplacian
LTSA etc.

and C†
i is a Moore-Penrose (pseudo) inverse of Ci. Note that Ci is often

ill-conditioned and to find its Moore-Penrose inverse one can use regular-
ization method (Ci + µI)�1 for some µ > 0.

(2) Global alignment
Define a n-by-n weight matrix W :

Wij =

⇢
wij , j 2 Ni

0, otherwise

Compute the global embedding d-by-n embedding matrix Y ,

min
Y

X

i

kyi �

nX

j=1

Wijyjk
2 = trace(Y (I � W )T (I � W )Y T )

In other words, construct a positive semi-definite matrix K = (I �

W )T (I�W ) and find d+1 smallest eigenvectors of K, v0, v1, . . . , vd associ-
ated smallest eigenvalues �0, . . . , �d. Drop the smallest eigenvector which
is the constant vector explaining the degree of freedom as translation and
set Y = [v1/

p
(�1), . . . , vd/

p
�d]T .

The benefits of LLE are:

• Neighbor graph: k-nearest neighbors is of O(kn)
• W is sparse: kn/n2 = k/n non-zeroes
• K = (I � W )T (I � W ) is guaranteed to be positive semi-definite

However, unlike ISOMAP, it is not clear if LLE constructed above converges
under certain conditions. This has to be left to some variations of basic LLE above,
such as Laplacian LLE, Hessian LLE, and LTSA etc. with convergence guarantees.

3.1. Issues of LLE and a Modified Version. Using the regularization, (80)
leads to a family of weight vectors

(82) wi(µ) = �(Ci + µI)�11 =
X

j

1

�(i)
j + µ

vjv
T
j 1

where the local PCA Ci = V ⇤V T (⇤ = diag(�(i)
j ), V = [vj ]).

So basically wi(µ) is made up of a low-pass filter: the projections of 1 on

those directions Uj such that �(i)
j ⌧ µ are preserved while those projections with

�(i)
j � µ are attenuated. In the ideal case without noise, such a low-pass filter makes

wi(µ) spanned by the normal subspace orthogonal to the local PCA, such that the
reconstructed Y will follow the directions of local PCA. However, in applications
when noise are presented, especially not well separated with signals, such wi(µ) is
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j ), V = [vj ]).

So basically wi(µ) is made up of a low-pass filter: the projections of 1 on those

directions Uj such that �(i)
j ⌧ µ are preserved while those projections with

lambda(i)
j � µ are attenuated. In the ideal case without noise, such a low-pass

filter makes wi(µ) spanned by the normal subspace orthogonal to the local PCA,
such that the reconstructed Y will follow the directions of local PCA. However, in
applications when noise are presented, especially not well separated with signals,



Modified LLE (MLLE)
• Use all the null eigenspace!
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Algorithm 5: MLLE Algorithm

Input: A graph G = (V,E) such that
1 V = {xi : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors,

✏-neighbors
Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rd⇥n of data.

3 Step 1 (local fitting): for each xi and its neighbors Ni, solve

4

minP
j2Ni wij=1

kxi �
X

j2Ni

wijxjk2,

by ŵi(µ) = (Ci + µI)�1
1 for some regularization parameter µ > 0 and

wi = ŵi/ŵ
T
i 1;

5 Step 2 (local residue PCA): for each xi and its neighbors Ni (ki = |Ni|), let

Ci = V ⇤V
T be its eigenvalue decomposition where ⇤ = (�1, . . . ,�ki) with

�1 � · · · � �ki . Find the size of almost normal subspace si as the maximal size
that the ratio of residue eigenvalue sum over principle eigenvalue sum is below a
threshold, i.e.

si = max
l

(
l  ki � d,

Pki
j=ki�l+1 �j
Pki�l

j=1 �j

 ⌘

)

where ⌘ is a parameter, such as the median of ratios of residue eigenvalue sum
over principle eigenvalue sum. Construct the normal subspace basis matrix as
si-bottom eigenvector matrix of Ci, Vi = [vki�si+1, . . . , vki ] 2 Rki⇥si , define the
weight matrix

Wi = (1 � ↵i)wi(µ)1T
si + ViH

T
i 2 Rki⇥si ,

where ↵i = kV T
i 1kik2/

p
si and Hi = Isi � 2uuT

/kuk2 with u = V
T
i 1ki � ↵i1si (or

u = 0 if it is small).
6 Step 3 (global alignment): define the weight embedding matrix

7

cWi(j, :) =

8
<

:

�1T
si , j = i,

Wi, j 2 Ni,

0, otherwise.

Compute K = cWTcW which is a positive semi-definite kernel matrix;
8 Step 4 (Eigenmap): Compute Eigenvalue decomposition K = U⇤U

T with
⇤ = diag(�1, . . . ,�n) where �1 � �2 � . . .�n�1 > �n = 0; choose bottom d + 1
nonzero eigenvalues and corresponding eigenvectors and drop the smallest
eigenvalue-eigenvector (0-constant) pair, such that

Ud = [un�d, . . . , un�1], uj 2 Rn
,

⇤d = diag(�n�d, . . . ,�n�1).

Define Yd = Ud⇤d
1
2 .

such wi(µ) is sensitive to the noise direction and might be mixed with signal di-
rections. LLE in this case can not capture well the signal directions in local PCA.
LTSA [ZZ02] is one improvement over this by exploiting all the local principal
components. On the other hand, Modified Locally Linear Embedding (MLLE)
[ZW] remedies the issue using multiple weight vectors projected from orthogonal
complement of local PCA.

MLLE replace the weight vector above by a weight matrix Wi 2 Rki⇥si , a family
of si weight vectors using bottom si eigenvectors of Ci, Vi = [vki�si+1, . . . , vki ] 2
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Rki⇥si , such that

(83) Wi = (1 � ↵i)wi(µ)1T
si + ViH

T
i ,

where ↵i = kV T
i 1kik2/

p
si and Hi = Isi � 2uuT (kuk2 = 1 or 0) is a Householder

matrix (Hi := Isi if u = 0) such that HV T
i 1ki = ↵i1si (hence WT

i 1ki = 1si ,
every column of Wi being a legal weight vector). In fact, one can choose u in the
direction of V T

i 1ki � ↵i1si . An adaptive choice of si is given in [ZW] using the
trade-o↵ between residual variation and explained variation. Equipped with this
weight matrix, one can set the objective function by simultaneously minimizing the
residue over all reconstruction weights:

min
Y

X

i

siX

l=1

kyi �

X

j2Ni

Wi(j, l)yjk
2 :=

X

i

kY cWik
2
F = trace[Y (

X

i

cWi
cWT

i )Y T ]

where cWi is the embedding of Wi 2 Rki⇥si into Rn⇥si ,

cWi(j, :) =

8
<

:

�1Tsi , j = i,
Wi, j 2 Ni,
0, otherwise.

Python scikit-learn package contains an implementation of MLLE. The error
analysis of MLLE is similar to that of LTSA [ZW], hence it is expected both lead
to similar results in applications. Yet due to the adaptive choice of si, MLLE can
be adaptive to the heterogeneity in manifold curvature variations. However, since
MLLE computes a full spectrum of Ci in each neighbour, it is more expensive than
the partial local SVD in LTSA and more sensitive to the noise than LTSA.

4. Local Tangent Space Alignment (LTSA)

In a contrast to projecting unit vector 1 on to the local normal subspace in
MLLE, Zhenyue Zhang and Hongyuan Zha (2002) [ZZ02] suggest Local Tangent
Space Alignment (LTSA) algorithm to directly minimize the projection of embed-
ding coordinates on the local normal space orthogonal to local PCA. In LTSA only
top eigenvectors of local PCA are used rather than bottom eigenvectors which might
be overwhelmed by noise.

Figure 4. Local tangent space approximation.

Let Yi 2 Rd⇥ki be the embedding coordinates of ki-nearest neighbors of xi

in Rd, ⇥i = X(i)(I �
1
n11T ) = U (i)⌃(i)(V (i))T 2 Rp⇥ki be the coordinates of ki-

nearest neighbors of xi in Rp with respect to the tangent space at xi obtained by
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MLLE Algorithm (II)
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Algorithm 5: MLLE Algorithm

Input: A graph G = (V,E) such that
1 V = {xi : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors,

✏-neighbors
Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rd⇥n of data.

3 Step 1 (local fitting): for each xi and its neighbors Ni, solve

4

minP
j2Ni wij=1

kxi �
X

j2Ni

wijxjk2,

by ŵi(µ) = (Ci + µI)�1
1 for some regularization parameter µ > 0 and

wi = ŵi/ŵ
T
i 1;

5 Step 2 (local residue PCA): for each xi and its neighbors Ni (ki = |Ni|), let

Ci = V ⇤V
T be its eigenvalue decomposition where ⇤ = (�1, . . . ,�ki) with

�1 � · · · � �ki . Find the size of almost normal subspace si as the maximal size
that the ratio of residue eigenvalue sum over principle eigenvalue sum is below a
threshold, i.e.

si = max
l

(
l  ki � d,

Pki
j=ki�l+1 �j
Pki�l

j=1 �j

 ⌘

)

where ⌘ is a parameter, such as the median of ratios of residue eigenvalue sum
over principle eigenvalue sum. Construct the normal subspace basis matrix as
si-bottom eigenvector matrix of Ci, Vi = [vki�si+1, . . . , vki ] 2 Rki⇥si , define the
weight matrix

Wi = (1 � ↵i)wi(µ)1T
si + ViH

T
i 2 Rki⇥si ,

where ↵i = kV T
i 1kik2/

p
si and Hi = Isi � 2uuT

/kuk2 with u = V
T
i 1ki � ↵i1si (or

u = 0 if it is small).
6 Step 3 (global alignment): define the weight embedding matrix

7

cWi(j, :) =

8
<

:

�1T
si , j = i,

Wi, j 2 Ni,

0, otherwise.

Compute K = cWTcW which is a positive semi-definite kernel matrix;
8 Step 4 (Eigenmap): Compute Eigenvalue decomposition K = U⇤U

T with
⇤ = diag(�1, . . . ,�n) where �1 � �2 � . . .�n�1 > �n = 0; choose bottom d + 1
nonzero eigenvalues and corresponding eigenvectors and drop the smallest
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,
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2 .
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rections. LLE in this case can not capture well the signal directions in local PCA.
LTSA [ZZ02] is one improvement over this by exploiting all the local principal
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[ZW] remedies the issue using multiple weight vectors projected from orthogonal
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Algorithm 5: MLLE Algorithm
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that the ratio of residue eigenvalue sum over principle eigenvalue sum is below a
threshold, i.e.

si = max
l

(
l  ki � d,

Pki
j=ki�l+1 �j
Pki�l

j=1 �j

 ⌘

)

where ⌘ is a parameter, such as the median of ratios of residue eigenvalue sum
over principle eigenvalue sum. Construct the normal subspace basis matrix as
si-bottom eigenvector matrix of Ci, Vi = [vki�si+1, . . . , vki ] 2 Rki⇥si , define the
weight matrix

Wi = (1 � ↵i)wi(µ)1T
si + ViH

T
i 2 Rki⇥si ,

where ↵i = kV T
i 1kik2/

p
si and Hi = Isi � 2uuT

/kuk2 with u = V
T
i 1ki � ↵i1si (or

u = 0 if it is small).
6 Step 3 (global alignment): define the weight embedding matrix

7

cWi(j, :) =

8
<

:

�1T
si , j = i,

Wi, j 2 Ni,

0, otherwise.

Compute K = cWTcW which is a positive semi-definite kernel matrix;
8 Step 4 (Eigenmap): Compute Eigenvalue decomposition K = U⇤U

T with
⇤ = diag(�1, . . . ,�n) where �1 � �2 � . . .�n�1 > �n = 0; choose bottom d + 1
nonzero eigenvalues and corresponding eigenvectors and drop the smallest
eigenvalue-eigenvector (0-constant) pair, such that

Ud = [un�d, . . . , un�1], uj 2 Rn
,

⇤d = diag(�n�d, . . . ,�n�1).

Define Yd = Ud⇤d
1
2 .

such wi(µ) is sensitive to the noise direction and might be mixed with signal di-
rections. LLE in this case can not capture well the signal directions in local PCA.
LTSA [ZZ02] is one improvement over this by exploiting all the local principal
components. On the other hand, Modified Locally Linear Embedding (MLLE)
[ZW] remedies the issue using multiple weight vectors projected from orthogonal
complement of local PCA.

MLLE replace the weight vector above by a weight matrix Wi 2 Rki⇥si , a family
of si weight vectors using bottom si eigenvectors of Ci, Vi = [vki�si+1, . . . , vki ] 2



Issues of MLLE
• MLLE computes bottom eigenvectors of 

local Gram (Covariance) matrix, expensive 
in computation and sensitive to noise

• How about only using top eigenvectors in 
local PCA?
– LTSA
– Hessian LLE 
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Local Tangent Space Alignment
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Illustration

Find a good approximation of tangent space of curve using discrete samples.  
— Principal curve/manifold (Hastie-Stuetzle’89, Zha-Zhang’02)



Local SVD
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in the spirit of principal curve or principal manifold proposed by Werner Stuetzle
and Trevor Hastie [HS89]. Zhenyue Zhang and Hongyuan Zha (2002) [ZZ02]
propose to use sampled data to find a good approximation of tangent space via local
PCA, then the reconstruction data coordinates tries to preserve such approximate
tangent space at each point to reach a global alignment.

Algorithm 6: LTSA Algorithm

Input: A weighted undirected graph G = (V,E) such that
1 V = {xi 2 Rp : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors

Output: Euclidean k-dimensional coordinates Y = [yi] 2 Rk⇥n of data.
3 Step 1 (local PCA): Compute local SVD on neighborhood of xi, xij 2 N (xi),

X̃
(i) = [xi1 � µi, ..., xik � µi]

p⇥k = Ũ
(i)⌃̃(Ṽ (i))T ,

where µi =
Pk

j=1 xij . Define

Gi = [1/
p
k, Ṽ1

(i)
, ..., Ṽd

(i)
]k⇥(d+1);

4 Step 2 (tangent space alignment): Alignment (kernel) matrix

K
n⇥n =

nX

i=1

SiWiW
T
i S

T
i , W

k⇥k
i = I �GiG

T
i ,

where selection matrix S
n⇥k
i : [xi1 , ..., xik ] = [x1, ..., xn]Sn⇥k

i ;
5 Step 3 : Find smallest d + 1 eigenvectors of K and drop the smallest eigenvector,

the remaining d eigenvectors will give rise to a d-embedding.

For each xi in Rd with neighbor Ni of size |Ni| = ki�1, let X(i) = [xj1 , xj2 , . . . , xjki
] 2

Rp⇥ki be the coordinate matrix. Consider the local SVD (PCA)

X̃(i) = [xi1 � µi, ..., xiki
� µi]

p⇥ki = X(i)H = Ũ (i)⌃̃(Ṽ (i))T ,

where H = I �
1
ki

1ki1
T
ki

. Left singular vectors {Ũ (i)
1 , ..., Ũ (i)

d } give an orthonormal
basis of the approximate d-dimensional tangent space at xi. Right singular vectors

(Ṽ (i)
1 , . . . , Ṽ (i)

d ) · ⌃̃ 2 Rki⇥d present the d-coordinates of ki samples with respect to
the tangent space basis.

Let Yi 2 Rd⇥ki be the embedding coordinates of the samples in Rd and Li :

Rp⇥d be an estimated basis of the tangent space at xi in Rp. Let ⇥i = Ũ (i)
d ⌃̃d(Ṽ

(i)
d )T 2

Rp⇥ki be the truncated SVD using top d components. LTSA looks for the minimizer
of the following problem

(84) min
Y,L

X

i

kEik
2 =

X

i

����Yi(I �
1

n
11T ) � LT

i ⇥i

����
2

.

One can estimate LT
i = Yi(1 �

1
n11T )⇥†

i . Hence it reduces to

(85) min
Y

X

i

kEik
2 =

X

i

����Yi(I �
1

n
11T )(I � ⇥†

i⇥i)

����
2

where I � ⇥†
i⇥i is the projection to the normal space at xi. This is equivalent to

define

Gi = [1/
p

ki, Ṽ1
(i)

, ..., Ṽd
(i)

]ki⇥(d+1),
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in the spirit of principal curve or principal manifold proposed by Werner Stuetzle
and Trevor Hastie [HS89]. Zhenyue Zhang and Hongyuan Zha (2002) [ZZ02]
propose to use sampled data to find a good approximation of tangent space via local
PCA, then the reconstruction data coordinates tries to preserve such approximate
tangent space at each point to reach a global alignment.

Algorithm 6: LTSA Algorithm

Input: A weighted undirected graph G = (V,E) such that
1 V = {xi 2 Rp : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors

Output: Euclidean k-dimensional coordinates Y = [yi] 2 Rk⇥n of data.
3 Step 1 (local PCA): Compute local SVD on neighborhood of xi, xij 2 N (xi),

X̃
(i) = [xi1 � µi, ..., xik � µi]

p⇥k = Ũ
(i)⌃̃(Ṽ (i))T ,

where µi =
Pk

j=1 xij . Define

Gi = [1/
p
k, Ṽ1

(i)
, ..., Ṽd

(i)
]k⇥(d+1);

4 Step 2 (tangent space alignment): Alignment (kernel) matrix

K
n⇥n =

nX

i=1

SiWiW
T
i S

T
i , W

k⇥k
i = I �GiG

T
i ,

where selection matrix S
n⇥k
i : [xi1 , ..., xik ] = [x1, ..., xn]Sn⇥k

i ;
5 Step 3 : Find smallest d + 1 eigenvectors of K and drop the smallest eigenvector,

the remaining d eigenvectors will give rise to a d-embedding.

For each xi in Rd with neighbor Ni of size |Ni| = ki�1, let X(i) = [xj1 , xj2 , . . . , xjki
] 2

Rp⇥ki be the coordinate matrix. Consider the local SVD (PCA)

X̃(i) = [xi1 � µi, ..., xiki
� µi]

p⇥ki = X(i)H = Ũ (i)⌃̃(Ṽ (i))T ,

where H = I �
1
ki

1ki1
T
ki

. Left singular vectors {Ũ (i)
1 , ..., Ũ (i)

d } give an orthonormal
basis of the approximate d-dimensional tangent space at xi. Right singular vectors

(Ṽ (i)
1 , . . . , Ṽ (i)

d ) · ⌃̃ 2 Rki⇥d present the d-coordinates of ki samples with respect to
the tangent space basis.

Let Yi 2 Rd⇥ki be the embedding coordinates of the samples in Rd and Li :

Rp⇥d be an estimated basis of the tangent space at xi in Rp. Let ⇥i = Ũ (i)
d ⌃̃d(Ṽ

(i)
d )T 2

Rp⇥ki be the truncated SVD using top d components. LTSA looks for the minimizer
of the following problem

(84) min
Y,L

X

i

kEik
2 =

X

i

����Yi(I �
1

n
11T ) � LT

i ⇥i

����
2

.

One can estimate LT
i = Yi(1 �

1
n11T )⇥†

i . Hence it reduces to

(85) min
Y

X

i

kEik
2 =

X

i

����Yi(I �
1

n
11T )(I � ⇥†

i⇥i)

����
2

where I � ⇥†
i⇥i is the projection to the normal space at xi. This is equivalent to

define

Gi = [1/
p

ki, Ṽ1
(i)

, ..., Ṽd
(i)

]ki⇥(d+1),
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in the spirit of principal curve or principal manifold proposed by Werner Stuetzle
and Trevor Hastie [HS89]. Zhenyue Zhang and Hongyuan Zha (2002) [ZZ02]
propose to use sampled data to find a good approximation of tangent space via local
PCA, then the reconstruction data coordinates tries to preserve such approximate
tangent space at each point to reach a global alignment.

Algorithm 6: LTSA Algorithm

Input: A weighted undirected graph G = (V,E) such that
1 V = {xi 2 Rp : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors

Output: Euclidean k-dimensional coordinates Y = [yi] 2 Rk⇥n of data.
3 Step 1 (local PCA): Compute local SVD on neighborhood of xi, xij 2 N (xi),

X̃
(i) = [xi1 � µi, ..., xik � µi]

p⇥k = Ũ
(i)⌃̃(Ṽ (i))T ,

where µi =
Pk

j=1 xij . Define

Gi = [1/
p
k, Ṽ1

(i)
, ..., Ṽd

(i)
]k⇥(d+1);

4 Step 2 (tangent space alignment): Alignment (kernel) matrix

K
n⇥n =

nX

i=1

SiWiW
T
i S

T
i , W

k⇥k
i = I �GiG

T
i ,

where selection matrix S
n⇥k
i : [xi1 , ..., xik ] = [x1, ..., xn]Sn⇥k

i ;
5 Step 3 : Find smallest d + 1 eigenvectors of K and drop the smallest eigenvector,

the remaining d eigenvectors will give rise to a d-embedding.

For each xi in Rd with neighbor Ni of size |Ni| = ki�1, let X(i) = [xj1 , xj2 , . . . , xjki
] 2

Rp⇥ki be the coordinate matrix. Consider the local SVD (PCA)

X̃(i) = [xi1 � µi, ..., xiki
� µi]

p⇥ki = X(i)H = Ũ (i)⌃̃(Ṽ (i))T ,

where H = I �
1
ki

1ki1
T
ki

. Left singular vectors {Ũ (i)
1 , ..., Ũ (i)

d } give an orthonormal
basis of the approximate d-dimensional tangent space at xi. Right singular vectors

(Ṽ (i)
1 , . . . , Ṽ (i)

d ) · ⌃̃ 2 Rki⇥d present the d-coordinates of ki samples with respect to
the tangent space basis.

Let Yi 2 Rd⇥ki be the embedding coordinates of the samples in Rd and Li :

Rp⇥d be an estimated basis of the tangent space at xi in Rp. Let ⇥i = Ũ (i)
d ⌃̃d(Ṽ

(i)
d )T 2

Rp⇥ki be the truncated SVD using top d components. LTSA looks for the minimizer
of the following problem

(84) min
Y,L

X

i

kEik
2 =

X

i

����Yi(I �
1

n
11T ) � LT

i ⇥i

����
2

.

One can estimate LT
i = Yi(1 �

1
n11T )⇥†

i . Hence it reduces to

(85) min
Y

X

i

kEik
2 =

X

i

����Yi(I �
1

n
11T )(I � ⇥†

i⇥i)

����
2

where I � ⇥†
i⇥i is the projection to the normal space at xi. This is equivalent to

define

Gi = [1/
p

ki, Ṽ1
(i)

, ..., Ṽd
(i)

]ki⇥(d+1),
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a weight matrix,

W ki⇥ki
i = I � GiG

T
i ,

and a positive semi-definite kernel matrix for alignment,

Kn⇥n = � =
nX

i=1

SiWiW
T
i ST

i

where the selection matrix Sn⇥k
i : [xi1 , ..., xik ] = [x1, ..., xn]Sn⇥k

i . Notice that con-
stant vector is an eigenvector corresponding to the 0 eigenvalue. Hence similar to
the LLE, one can choose bottom d+1 eigenvectors and drop the constant eigenvec-
tor, which gives embedding matrix Y (n⇥d). An error analysis is given in [ZZ09],
which shows that LTSA may recover the global coordinates asymptotically.

Remark. We note that LTSA can be also applied to the situation that we are
given local pairwise distances between samples. Since MDS and PCA are dual to
each other, one can replace the local PCA in the algorithm by local MDS which

leads to the same results as only right singular vectors ˜V (i) are used there.

5. Laplacian LLE (Eigenmap)

Consider the graph Laplacian with heat kernels [BN01, BN03]. Define a
weight matrix W = (wij) 2 Rn⇥n by

wij =

(
e�

kxi�xjk
2

t j 2 N (i),

0 otherwise.

Let D = diag(
P

j2Ni
wij) be the diagonal matrix with weighted degree as diagonal

elements.
Define the unnormalized graph Laplacian by

L = D � W,

and the normalized graph Laplacian by

L = D� 1
2 (D � W )D� 1

2 .

Note that eigenvectors of L are also generalized eigenvectors of L up to a scaling
matrix. This can be seen in the following reasoning.

L� = ��

, D� 1
2 (D � W )D� 1

2 � = ��

, Lv = (D � W )v = �Dv, v = D� 1
2 �

Generalized eigenvectors v of L are also right eigenvectors of row Markov matrix
P = D�1W . (* Pv = �v , D�1Wv = �v , (I � D�1W )v = (1 � �)v )
(D � W )v = (1 � �)Dv).

Depending on the meaning of eigenvectors above, we can always choose bot-
tom d + 1 eigenvectors, and dropped the smallest eigenvector (the constant vector
associated with eigenvalue 0) and use the remaining d vectors to construct a d
dimensional embedding of data.
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a weight matrix,

W ki⇥ki
i = I � GiG

T
i ,

and a positive semi-definite kernel matrix for alignment,

Kn⇥n = � =
nX

i=1

SiWiW
T
i ST

i

where the selection matrix Sn⇥k
i : [xi1 , ..., xik ] = [x1, ..., xn]Sn⇥k

i . Notice that con-
stant vector is an eigenvector corresponding to the 0 eigenvalue. Hence similar to
the LLE, one can choose bottom d+1 eigenvectors and drop the constant eigenvec-
tor, which gives embedding matrix Y (n⇥d). An error analysis is given in [ZZ09],
which shows that LTSA may recover the global coordinates asymptotically.

Remark. We note that LTSA can be also applied to the situation that we are
given local pairwise distances between samples. Since MDS and PCA are dual to
each other, one can replace the local PCA in the algorithm by local MDS which

leads to the same results as only right singular vectors ˜V (i) are used there.

5. Laplacian LLE (Eigenmap)

Consider the graph Laplacian with heat kernels [BN01, BN03]. Define a
weight matrix W = (wij) 2 Rn⇥n by

wij =

(
e�

kxi�xjk
2

t j 2 N (i),

0 otherwise.

Let D = diag(
P

j2Ni
wij) be the diagonal matrix with weighted degree as diagonal

elements.
Define the unnormalized graph Laplacian by

L = D � W,

and the normalized graph Laplacian by

L = D� 1
2 (D � W )D� 1

2 .

Note that eigenvectors of L are also generalized eigenvectors of L up to a scaling
matrix. This can be seen in the following reasoning.

L� = ��

, D� 1
2 (D � W )D� 1

2 � = ��

, Lv = (D � W )v = �Dv, v = D� 1
2 �

Generalized eigenvectors v of L are also right eigenvectors of row Markov matrix
P = D�1W . (* Pv = �v , D�1Wv = �v , (I � D�1W )v = (1 � �)v )
(D � W )v = (1 � �)Dv).

Depending on the meaning of eigenvectors above, we can always choose bot-
tom d + 1 eigenvectors, and dropped the smallest eigenvector (the constant vector
associated with eigenvalue 0) and use the remaining d vectors to construct a d
dimensional embedding of data.
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a weight matrix,

W ki⇥ki
i = I � GiG

T
i ,

and a positive semi-definite kernel matrix for alignment,

Kn⇥n = � =
nX

i=1

SiWiW
T
i ST

i

where the selection matrix Sn⇥k
i : [xi1 , ..., xik ] = [x1, ..., xn]Sn⇥k

i . Notice that con-
stant vector is an eigenvector corresponding to the 0 eigenvalue. Hence similar to
the LLE, one can choose bottom d+1 eigenvectors and drop the constant eigenvec-
tor, which gives embedding matrix Y (n⇥d). An error analysis is given in [ZZ09],
which shows that LTSA may recover the global coordinates asymptotically.

Remark. We note that LTSA can be also applied to the situation that we are
given local pairwise distances between samples. Since MDS and PCA are dual to
each other, one can replace the local PCA in the algorithm by local MDS which

leads to the same results as only right singular vectors ˜V (i) are used there.

5. Laplacian LLE (Eigenmap)

Consider the graph Laplacian with heat kernels [BN01, BN03]. Define a
weight matrix W = (wij) 2 Rn⇥n by

wij =

(
e�

kxi�xjk
2

t j 2 N (i),

0 otherwise.

Let D = diag(
P

j2Ni
wij) be the diagonal matrix with weighted degree as diagonal

elements.
Define the unnormalized graph Laplacian by

L = D � W,

and the normalized graph Laplacian by

L = D� 1
2 (D � W )D� 1

2 .

Note that eigenvectors of L are also generalized eigenvectors of L up to a scaling
matrix. This can be seen in the following reasoning.

L� = ��

, D� 1
2 (D � W )D� 1

2 � = ��

, Lv = (D � W )v = �Dv, v = D� 1
2 �

Generalized eigenvectors v of L are also right eigenvectors of row Markov matrix
P = D�1W . (* Pv = �v , D�1Wv = �v , (I � D�1W )v = (1 � �)v )
(D � W )v = (1 � �)Dv).

Depending on the meaning of eigenvectors above, we can always choose bot-
tom d + 1 eigenvectors, and dropped the smallest eigenvector (the constant vector
associated with eigenvalue 0) and use the remaining d vectors to construct a d
dimensional embedding of data.

1) Constant eigenvector is of 0-eigenvalue 

2) So choose d+1 smallest eigenvectors for embedding
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in the spirit of principal curve or principal manifold proposed by Werner Stuetzle
and Trevor Hastie [HS89]. Zhenyue Zhang and Hongyuan Zha (2002) [ZZ02]
propose to use sampled data to find a good approximation of tangent space via local
PCA, then the reconstruction data coordinates tries to preserve such approximate
tangent space at each point to reach a global alignment.

Algorithm 6: LTSA Algorithm

Input: A weighted undirected graph G = (V,E) such that
1 V = {xi 2 Rp : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j 2 Ni}, e.g. k-nearest neighbors

Output: Euclidean d-dimensional coordinates Y = [yi] 2 Rk⇥n of data.
3 Step 1 (local PCA): Compute local SVD on neighborhood of xi, xij 2 N (xi),

X̃
(i) = [xi1 � µi, ..., xik � µi]

p⇥k = Ũ
(i)⌃̃(Ṽ (i))T ,

where µi =
Pk

j=1 xij . Define

Gi = [1/
p
k, Ṽ1

(i)
, ..., Ṽd

(i)
]k⇥(d+1);

4 Step 2 (tangent space alignment): Alignment (kernel) matrix

K
n⇥n =

nX

i=1

SiWiW
T
i S

T
i , W

k⇥k
i = I �GiG

T
i ,

where selection matrix S
n⇥k
i : [xi1 , ..., xik ] = [x1, ..., xn]Sn⇥k

i ;
5 Step 3 : Find smallest d + 1 eigenvectors of K and drop the smallest eigenvector,

the remaining d eigenvectors will give rise to a d-embedding.

For each xi in Rd with neighbor Ni of size |Ni| = ki�1, let X(i) = [xj1 , xj2 , . . . , xjki
] 2

Rp⇥ki be the coordinate matrix. Consider the local SVD (PCA)

X̃(i) = [xi1 � µi, ..., xiki
� µi]

p⇥ki = X(i)H = Ũ (i)⌃̃(Ṽ (i))T ,

where H = I �
1
ki

1ki1
T
ki

. Left singular vectors {Ũ (i)
1 , ..., Ũ (i)

d } give an orthonormal
basis of the approximate d-dimensional tangent space at xi. Right singular vectors

(Ṽ (i)
1 , . . . , Ṽ (i)

d ) · ⌃̃ 2 Rki⇥d present the d-coordinates of ki samples with respect to
the tangent space basis.

Let Yi 2 Rd⇥ki be the embedding coordinates of the samples in Rd and Li :

Rp⇥d be an estimated basis of the tangent space at xi in Rp. Let ⇥i = Ũ (i)
d ⌃̃d(Ṽ

(i)
d )T 2

Rp⇥ki be the truncated SVD using top d components. LTSA looks for the minimizer
of the following problem

(84) min
Y,L

X

i

kEik
2 =

X

i

����Yi(I �
1

n
11T ) � LT

i ⇥i

����
2

.

One can estimate LT
i = Yi(1 �

1
n11T )⇥†

i . Hence it reduces to

(85) min
Y

X

i

kEik
2 =

X

i

����Yi(I �
1

n
11T )(I � ⇥†

i⇥i)

����
2

where I � ⇥†
i⇥i is the projection to the normal space at xi. This is equivalent to

define

Gi = [1/
p

ki, Ṽ1
(i)

, ..., Ṽd
(i)

]ki⇥(d+1),
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https://nbviewer.jupyter.org/url/
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https://nbviewer.jupyter.org/url/math.stanford.edu/~yuany/course/data/plot_compare_methods.ipynb


Summary..
ISOMAP LLE

Do MDS on the geodesic distance 
matrix.

Model local neighborhoods as linear a 
patches and then embed in a lower 
dimensional manifold.

Global approach  
O(N^3, but L-ISOMAP)

Local approach 
O(N^2)

Might not work for nonconvex 
manifolds with holes

Nonconvex manifolds with holes

Extensions: Landmark, Conformal & 
Isometric ISOMAP

Extensions: MLLE, LTSA, Hessian 
LLE, Laplacian Eigenmaps etc.

Both needs manifold finely sampled.
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