
A Mathematical Introduction to Data Science March 6, 2019

Homework 3. High Dimensional Statistics Models

Instructor: Yuan Yao Due: Open Date

The problem below marked by ∗ is optional with bonus credits. For the experimental problem,
include the source codes which are runnable under standard settings. Since there is NO grader
assigned for this class, homework will not be graded. But if you would like to submit your exercise,
please send your homework to the address (datascience.hw@gmail.com) with a title “CSIC5011:
Homework #”. I’ll read them and give you bonus credits.

1. Maximum Likelihood Method: consider n random samples from a multivariate normal distri-
bution, Xi ∈ Rp ∼ N (µ,Σ) with i = 1, . . . , n.

(a) Show the log-likelihood function

ln(µ,Σ) = −n
2

trace(Σ−1Sn)− n

2
log det(Σ) + C,

where Sn = 1
n

∑n
i=1(Xi − µ)(Xi − µ)T , and some constant C does not depend on µ and

Σ;

(b) Show that f(X) = trace(AX−1) with A,X � 0 has a first-order approximation,

f(X + ∆) ≈ f(X)− trace(X−1A′X−1∆)

hence formally df(X)/dX = −X−1AX−1 (note (I +X)−1 ≈ I −X. A typo in previous
version missed ‘-’ sign here.);

(c) Show that g(X) = log det(X) with A,X � 0 has a first-order approximation,

g(X + ∆) ≈ g(X) + trace(X−1∆)

hence dg(X)/dX = X−1 (note: consider eigenvalues of X−1/2∆X−1/2);

(d) Use these formal derivatives with respect to positive semi-definite matrix variables to
show that the maximum likelihood estimator of Σ is

Σ̂MLE
n = Sn.

A reference for (b) and (c) can be found in Convex Optimization, by Boyd and Vandenbergh,
examples in Appendix A.4.1 and A.4.3:

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

2. Shrinkage: Suppose y ∼ N (µ, Ip).
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(a) Consider the Ridge regression

min
µ

1

2
‖y − µ‖22 +

λ

2
‖µ‖22.

Show that the solution is given by

µ̂ridgei =
1

1 + λ
yi.

Compute the risk (mean square error) of this estimator. The risk of MLE is given when
C = I.

(b) Consider the LASSO problem,

min
µ

1

2
‖y − µ‖22 + λ‖µ‖1.

Show that the solution is given by Soft-Thresholding

µ̂softi = µsoft(yi;λ) := sign(yi)(|yi| − λ)+.

For the choice λ =
√

2 log p, show that the risk is bounded by

E‖µ̂soft(y)− µ‖2 ≤ 1 + (2 log p+ 1)

p∑
i=1

min(µ2i , 1).

Under what conditions on µ, such a risk is smaller than that of MLE? Note: see Gaussian
Estimation by Iain Johnstone, Lemma 2.9 and the reasoning before it.

(c) Consider the l0 regularization

min
µ
‖y − µ‖22 + λ2‖µ‖0,

where ‖µ‖0 :=
∑p

i=1 I(µi 6= 0). Show that the solution is given by Hard-Thresholding

µ̂hardi = µhard(yi;λ) := yiI(|yi| > λ).

Rewriting µ̂hard(y) = (1− g(y))y, is g(y) weakly differentiable? Why?

(d) Consider the James-Stein Estimator

µ̂JS(y) =

(
1− α

‖y‖2

)
y.

Show that the risk is
E‖µ̂JS(y)− µ‖2 = EUα(y)

where Uα(y) = p− (2α(p− 2)−α2)/‖y‖2. Find the optimal α∗ = arg minα Uα(y). Show
that for p > 2, the risk of James-Stein Estimator is smaller than that of MLE for all
µ ∈ Rp.
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(e) In general, an odd monotone unbounded function Θ : R → R defined by Θλ(t) with
parameter λ ≥ 0 is called shrinkage rule, if it satisfies

[shrinkage] 0 ≤ Θλ(|t|) ≤ |t|;
[odd] Θλ(−t) = −Θλ(t);

[monotone] Θλ(t) ≤ Θλ(t′) for t ≤ t′;
[unbounded] limt→∞Θλ(t) =∞.

Which rules above are shrinkage rules?

3. *Necessary Condition for Admissibility of Linear Estimators. Consider linear estimator for
y ∼ N (µ, σ2Ip)

µ̂C(y) = Cy.

Show that µ̂C is admissible only if

(a) C is symmetric;

(b) 0 ≤ ρi(C) ≤ 1 (where ρi(C) are eigenvalues of C);

(c) ρi(C) = 1 for at most two i.

These conditions are satisfied for MLE estimator when p = 1 and p = 2.

Reference: Theorem 2.3 in Gaussian Estimation by Iain Johnstone,
http://statweb.stanford.edu/~imj/Book100611.pdf

4. James Stein Estimator for p = 1:

From Theorem 3.1 in the lecture notes, we know that MLE µ̂ = Y is admissible when
p = 1 or 2. However if we use SURE to calculate the risk of James Stein Estimator,

R(µ̂JS, µ) = EU(Y ) = p− Eµ
(p− 2)2

‖Y ‖2
< p = R(µ̂MLE, µ)

it seems that for p = 1 James Stein Estimator should still has lower risk than MLE for any
µ. Explain what violates the above calculation for p = 1.

5. Phase transition in PCA “spike” model: Consider a finite sample of n i.i.d vectors x1, x2, . . . , xn
drawn from the p-dimensional Gaussian distribution N (0, σ2Ip×p + λ0uu

T ), where λ0/σ
2 is

the signal-to-noise ratio (SNR) and u ∈ Rp. In class we showed that the largest eigenvalue λ
of the sample covariance matrix Sn

Sn =
1

n

n∑
i=1

xix
T
i

pops outside the support of the Marcenko-Pastur distribution if

λ0
σ2

>
√
γ,

or equivalently, if

SNR >

√
p

n
.

http://statweb.stanford.edu/~imj/Book100611.pdf
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(Notice that
√
γ < (1 +

√
γ)2, that is, λ0 can be “buried” well inside the support Marcenko-

Pastur distribution and still the largest eigenvalue pops outside its support). All the following
questions refer to the limit n→∞ and to almost surely values:

(a) Find λ given SNR >
√
γ.

(b) Use your previous answer to explain how the SNR can be estimated from the eigenvalues
of the sample covariance matrix.

(c) Find the squared correlation between the eigenvector v of the sample covariance matrix
(corresponding to the largest eigenvalue λ) and the “true” signal component u, as a
function of the SNR, p and n. That is, find |〈u, v〉|2.

(d) Confirm your result using MATLAB or R simulations (e.g. set u = e; and choose σ = 1
and λ0 in different levels. Compute the largest eigenvalue and its associated eigenvector,
with a comparison to the true ones.)

6. Exploring S&P500 Stock Prices: Take the Standard & Poor’s 500 data:
http://math.stanford.edu/~yuany/course/data/snp452-data.mat,
which contains the data matrix X ∈ Rn×p of n = 1258 consecutive observation days and
p = 452 daily closing stock prices, and the cell variable “stock” collects the names, codes,
and the affiliated industrial sectors of the 452 stocks. Use Matlab or R for the following
exploration.

(a) Take the logarithmic prices Y = logX;

(b) For each observation time t ∈ {1, . . . , 1257}, calculate logarithmic price jumps

∆Yi,t = Yi,t − Yi,t−1, i ∈ {1, . . . , 452};

(c) Construct the realized covariance matrix Σ̂ ∈ R452×452 by,

Σ̂i,j =
1

1257

1257∑
τ=1

∆Yi,τ∆Yj,τ ;

(d) Compute the eigenvalues (and eigenvectors) of Σ̂ and store them in a descending order
by {λ̂k, k = 1, . . . , p}.

(e) Horn’s Parallel Analysis: the following procedure describes a so-called Parallel Analysis
of PCA using random permutations on data. Given the matrix [∆Yi,t], apply random
permutations πi : {1, . . . , t} → {1, . . . , t} on each of its rows: ∆Ỹi,πi(j) such that

[∆Ỹπ(i),t] =


∆Y1,1 ∆Y1,2 ∆Y1,3 . . . ∆Y1,t

∆Y2,π2(1) ∆Y2,π2(2) ∆Y2,π2(3) . . . ∆Y2,π2(t)
∆Y3,π3(1) ∆Y3,π3(2) ∆Y3,π3(3) . . . ∆Y3,π3(t)

. . . . . . . . . . . . . . .
∆Yn,πn(1) ∆Yn,πn(2) ∆Yn,πn(3) . . . ∆Yn,πn(t)

 .

Define Σ̃ = 1
t∆Ỹ · ∆Ỹ

T as the null covariance matrix. Repeat this for R times and

compute the eigenvalues of Σ̃r for each 1 ≤ r ≤ R. Evaluate the p-value for each

http://math.stanford.edu/~yuany/course/data/snp452-data.mat
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estimated eigenvalue λ̂k by (Nk+1)/(R+1) where Nk is the counts that λ̂k is less than the
k-th largest eigenvalue of Σ̃r over 1 ≤ r ≤ R. Eigenvalues with small p-values indicate
that they are less likely arising from the spectrum of a randomly permuted matrix
and thus considered to be signal. Draw your own conclusion with your observations
and analysis on this data. A reference is: Buja and Eyuboglu, ”Remarks on Parallel
Analysis”, Multivariate Behavioral Research, 27(4): 509-540, 1992.

7. *Finite rank perturbations of random symmetric matrices: Wigner’s semi-circle law (proved
by Eugene Wigner in 1951) concerns the limiting distribution of the eigenvalues of random
symmetric matrices. It states, for example, that the limiting eigenvalue distribution of n× n
symmetric matrices whose entries wij on and above the diagonal (i ≤ j) are i.i.d Gaussians
N (0, 1

4n) (and the entries below the diagonal are determined by symmetrization, i.e., wji =
wij) is the semi-circle:

p(t) =
2

π

√
1− t2, −1 ≤ t ≤ 1,

where the distribution is supported in the interval [−1, 1].

(a) Confirm Wigner’s semi-circle law using MATLAB or R simulations (take, e.g., n = 400).

(b) Find the largest eigenvalue of a rank-1 perturbation of a Wigner matrix. That is, find
the largest eigenvalue of the matrix

W + λ0uu
T ,

where W is an n × n random symmetric matrix as above, and u is some deterministic
unit-norm vector. Determine the value of λ0 for which a phase transition occurs. What
is the correlation between the top eigenvector of W + λ0uu

T and the vector u as a
function of λ0? Use techniques similar to the ones we used in class for analyzing finite
rank perturbations of sample covariance matrices.

[Some Hints about homework] For Wigner Matrix W = [wij ]n×n, wij = wji, wij ∼ N(0, σ√
n

),

the answer is
eigenvalue is λ = R+ 1

R
eigenvector satisfies (uT v̂)2 = 1− 1

R2


