A Mathematical Introduction to Data Science

March 6, 2019

Homework 3. High Dimensional Statistics Models

Instructor: Yuan Yao

Due: Open Date

The problem below marked by * is optional with bonus credits. For the experimental problem, include the source codes which are runnable under standard settings. Since there is NO grader assigned for this class, homework will not be graded. But if you would like to submit your exercise, please send your homework to the address (datascience.hw@gmail.com) with a title "CSIC5011: Homework #". I'll read them and give you bonus credits.

- 1. Maximum Likelihood Method: consider n random samples from a multivariate normal distribution, $X_i \in \mathbb{R}^p \sim \mathcal{N}(\mu, \Sigma)$ with i = 1, ..., n.
 - (a) Show the log-likelihood function

$$l_n(\mu, \Sigma) = -\frac{n}{2} \operatorname{trace}(\Sigma^{-1}S_n) - \frac{n}{2} \log \det(\Sigma) + C,$$

where $S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \mu) (X_i - \mu)^T$, and some constant C does not depend on μ and Σ ;

(b) Show that $f(X) = \text{trace}(AX^{-1})$ with $A, X \succeq 0$ has a first-order approximation,

$$f(X + \Delta) \approx f(X) - \operatorname{trace}(X^{-1}A'X^{-1}\Delta)$$

hence formally $df(X)/dX = -X^{-1}AX^{-1}$ (note $(I+X)^{-1} \approx I - X$. A typo in previous version missed '-' sign here.);

(c) Show that $g(X) = \log \det(X)$ with $A, X \succeq 0$ has a first-order approximation,

$$g(X + \Delta) \approx g(X) + \operatorname{trace}(X^{-1}\Delta)$$

hence $dg(X)/dX = X^{-1}$ (note: consider eigenvalues of $X^{-1/2}\Delta X^{-1/2}$);

(d) Use these formal derivatives with respect to positive semi-definite matrix variables to show that the maximum likelihood estimator of Σ is

$$\hat{\Sigma}_n^{MLE} = S_n$$

A reference for (b) and (c) can be found in Convex Optimization, by Boyd and Vandenbergh, examples in Appendix A.4.1 and A.4.3:

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

2. Shrinkage: Suppose $y \sim \mathcal{N}(\mu, I_p)$.

(a) Consider the Ridge regression

$$\min_{\mu} \frac{1}{2} \|y - \mu\|_2^2 + \frac{\lambda}{2} \|\mu\|_2^2.$$

Show that the solution is given by

$$\hat{\mu}_i^{ridge} = \frac{1}{1+\lambda} y_i.$$

Compute the risk (mean square error) of this estimator. The risk of MLE is given when C = I.

(b) Consider the LASSO problem,

$$\min_{\mu} \frac{1}{2} \|y - \mu\|_2^2 + \lambda \|\mu\|_1.$$

Show that the solution is given by Soft-Thresholding

$$\hat{\mu}_i^{soft} = \mu_{soft}(y_i; \lambda) := \operatorname{sign}(y_i)(|y_i| - \lambda)_+$$

For the choice $\lambda = \sqrt{2 \log p}$, show that the risk is bounded by

$$\mathbb{E}\|\hat{\mu}^{soft}(y) - \mu\|^2 \le 1 + (2\log p + 1)\sum_{i=1}^p \min(\mu_i^2, 1).$$

Under what conditions on μ , such a risk is smaller than that of MLE? Note: see Gaussian Estimation by Iain Johnstone, Lemma 2.9 and the reasoning before it.

(c) Consider the l_0 regularization

$$\min_{\mu} \|y - \mu\|_2^2 + \lambda^2 \|\mu\|_0,$$

where $\|\mu\|_0 := \sum_{i=1}^p I(\mu_i \neq 0)$. Show that the solution is given by Hard-Thresholding

$$\hat{\mu}_i^{hard} = \mu_{hard}(y_i; \lambda) := y_i I(|y_i| > \lambda).$$

Rewriting $\hat{\mu}^{hard}(y) = (1 - g(y))y$, is g(y) weakly differentiable? Why? (d) Consider the James-Stein Estimator

$$\hat{\mu}^{JS}(y) = \left(1 - \frac{\alpha}{\|y\|^2}\right)y.$$

Show that the risk is

$$\mathbb{E}\|\hat{\mu}^{JS}(y) - \mu\|^2 = \mathbb{E}U_{\alpha}(y)$$

where $U_{\alpha}(y) = p - (2\alpha(p-2) - \alpha^2)/||y||^2$. Find the optimal $\alpha^* = \arg \min_{\alpha} U_{\alpha}(y)$. Show that for p > 2, the risk of James-Stein Estimator is smaller than that of MLE for all $\mu \in \mathbb{R}^p$.

(e) In general, an odd monotone unbounded function $\Theta : \mathbb{R} \to \mathbb{R}$ defined by $\Theta_{\lambda}(t)$ with parameter $\lambda \geq 0$ is called *shrinkage* rule, if it satisfies

[shrinkage] $0 \leq \Theta_{\lambda}(|t|) \leq |t|;$ [odd] $\Theta_{\lambda}(-t) = -\Theta_{\lambda}(t);$ [monotone] $\Theta_{\lambda}(t) \leq \Theta_{\lambda}(t')$ for $t \leq t';$ [unbounded] $\lim_{t\to\infty} \Theta_{\lambda}(t) = \infty.$ Which rules above are shrinkage rules?

3. *Necessary Condition for Admissibility of Linear Estimators. Consider linear estimator for $y \sim \mathcal{N}(\mu, \sigma^2 I_p)$

$$\hat{\mu}_C(y) = Cy.$$

Show that $\hat{\mu}_C$ is admissible only if

- (a) C is symmetric;
- (b) $0 \le \rho_i(C) \le 1$ (where $\rho_i(C)$ are eigenvalues of C);
- (c) $\rho_i(C) = 1$ for at most two *i*.

These conditions are satisfied for MLE estimator when p = 1 and p = 2.

Reference: Theorem 2.3 in Gaussian Estimation by Iain Johnstone, http://statweb.stanford.edu/~imj/Book100611.pdf

4. James Stein Estimator for p = 1:

From Theorem 3.1 in the lecture notes, we know that MLE $\hat{\mu} = Y$ is admissible when p = 1 or 2. However if we use SURE to calculate the risk of James Stein Estimator,

$$R(\hat{\mu}^{\text{JS}},\mu) = \mathbb{E}U(Y) = p - \mathbb{E}_{\mu} \frac{(p-2)^2}{\|Y\|^2}$$

it seems that for p = 1 James Stein Estimator should still has lower risk than MLE for any μ . Explain what violates the above calculation for p = 1.

5. Phase transition in PCA "spike" model: Consider a finite sample of n i.i.d vectors x_1, x_2, \ldots, x_n drawn from the p-dimensional Gaussian distribution $\mathcal{N}(0, \sigma^2 I_{p \times p} + \lambda_0 u u^T)$, where λ_0 / σ^2 is the signal-to-noise ratio (SNR) and $u \in \mathbb{R}^p$. In class we showed that the largest eigenvalue λ of the sample covariance matrix S_n

$$S_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$$

pops outside the support of the Marcenko-Pastur distribution if

$$\frac{\lambda_0}{\sigma^2} > \sqrt{\gamma}$$

or equivalently, if

$$\operatorname{SNR} > \sqrt{\frac{p}{n}}.$$

(Notice that $\sqrt{\gamma} < (1 + \sqrt{\gamma})^2$, that is, λ_0 can be "buried" well inside the support Marcenko-Pastur distribution and still the largest eigenvalue pops outside its support). All the following questions refer to the limit $n \to \infty$ and to almost surely values:

- (a) Find λ given SNR > $\sqrt{\gamma}$.
- (b) Use your previous answer to explain how the SNR can be estimated from the eigenvalues of the sample covariance matrix.
- (c) Find the squared correlation between the eigenvector v of the sample covariance matrix (corresponding to the largest eigenvalue λ) and the "true" signal component u, as a function of the SNR, p and n. That is, find $|\langle u, v \rangle|^2$.
- (d) Confirm your result using MATLAB or R simulations (e.g. set u = e; and choose $\sigma = 1$ and λ_0 in different levels. Compute the largest eigenvalue and its associated eigenvector, with a comparison to the true ones.)
- 6. Exploring S&P500 Stock Prices: Take the Standard & Poor's 500 data:

http://math.stanford.edu/~yuany/course/data/snp452-data.mat,

which contains the data matrix $X \in \mathbb{R}^{n \times p}$ of n = 1258 consecutive observation days and p = 452 daily closing stock prices, and the cell variable "stock" collects the names, codes, and the affiliated industrial sectors of the 452 stocks. Use Matlab or R for the following exploration.

- (a) Take the logarithmic prices $Y = \log X$;
- (b) For each observation time $t \in \{1, \ldots, 1257\}$, calculate logarithmic price jumps

$$\Delta Y_{i,t} = Y_{i,t} - Y_{i,t-1}, \quad i \in \{1, \dots, 452\};$$

(c) Construct the realized covariance matrix $\hat{\Sigma} \in \mathbb{R}^{452 \times 452}$ by,

$$\hat{\Sigma}_{i,j} = \frac{1}{1257} \sum_{\tau=1}^{1257} \Delta Y_{i,\tau} \Delta Y_{j,\tau};$$

- (d) Compute the eigenvalues (and eigenvectors) of $\hat{\Sigma}$ and store them in a descending order by $\{\hat{\lambda}_k, k = 1, \dots, p\}$.
- (e) Horn's Parallel Analysis: the following procedure describes a so-called Parallel Analysis of PCA using random permutations on data. Given the matrix $[\Delta Y_{i,t}]$, apply random permutations $\pi_i : \{1, \ldots, t\} \to \{1, \ldots, t\}$ on each of its rows: $\Delta \tilde{Y}_{i,\pi_i(j)}$ such that

$$[\Delta \tilde{Y}_{\pi(i),t}] = \begin{bmatrix} \Delta Y_{1,1} & \Delta Y_{1,2} & \Delta Y_{1,3} & \dots & \Delta Y_{1,t} \\ \Delta Y_{2,\pi_2(1)} & \Delta Y_{2,\pi_2(2)} & \Delta Y_{2,\pi_2(3)} & \dots & \Delta Y_{2,\pi_2(t)} \\ \Delta Y_{3,\pi_3(1)} & \Delta Y_{3,\pi_3(2)} & \Delta Y_{3,\pi_3(3)} & \dots & \Delta Y_{3,\pi_3(t)} \\ \dots & \dots & \dots & \dots & \dots \\ \Delta Y_{n,\pi_n(1)} & \Delta Y_{n,\pi_n(2)} & \Delta Y_{n,\pi_n(3)} & \dots & \Delta Y_{n,\pi_n(t)} \end{bmatrix}$$

Define $\tilde{\Sigma} = \frac{1}{t}\Delta \tilde{Y} \cdot \Delta \tilde{Y}^T$ as the null covariance matrix. Repeat this for R times and compute the eigenvalues of $\tilde{\Sigma}_r$ for each $1 \leq r \leq R$. Evaluate the *p*-value for each

estimated eigenvalue $\hat{\lambda}_k$ by $(N_k+1)/(R+1)$ where N_k is the counts that $\hat{\lambda}_k$ is less than the *k*-th largest eigenvalue of $\tilde{\Sigma}_r$ over $1 \leq r \leq R$. Eigenvalues with small *p*-values indicate that they are less likely arising from the spectrum of a randomly permuted matrix and thus considered to be signal. Draw your own conclusion with your observations and analysis on this data. A reference is: Buja and Eyuboglu, "Remarks on Parallel Analysis", Multivariate Behavioral Research, 27(4): 509-540, 1992.

7. *Finite rank perturbations of random symmetric matrices: Wigner's semi-circle law (proved by Eugene Wigner in 1951) concerns the limiting distribution of the eigenvalues of random symmetric matrices. It states, for example, that the limiting eigenvalue distribution of $n \times n$ symmetric matrices whose entries w_{ij} on and above the diagonal $(i \leq j)$ are i.i.d Gaussians $\mathcal{N}(0, \frac{1}{4n})$ (and the entries below the diagonal are determined by symmetrization, i.e., $w_{ji} = w_{ij}$) is the semi-circle:

$$p(t) = \frac{2}{\pi}\sqrt{1-t^2}, \quad -1 \le t \le 1,$$

where the distribution is supported in the interval [-1, 1].

- (a) Confirm Wigner's semi-circle law using MATLAB or R simulations (take, e.g., n = 400).
- (b) Find the largest eigenvalue of a rank-1 perturbation of a Wigner matrix. That is, find the largest eigenvalue of the matrix

$$W + \lambda_0 u u^T$$
,

where W is an $n \times n$ random symmetric matrix as above, and u is some deterministic unit-norm vector. Determine the value of λ_0 for which a phase transition occurs. What is the correlation between the top eigenvector of $W + \lambda_0 u u^T$ and the vector u as a function of λ_0 ? Use techniques similar to the ones we used in class for analyzing finite rank perturbations of sample covariance matrices.

[Some Hints about homework] For Wigner Matrix $W = [w_{ij}]_{n \times n}, w_{ij} = w_{ji}, w_{ij} \sim N(0, \frac{\sigma}{\sqrt{n}}),$ the answer is

eigenvalue is
$$\lambda = R + \frac{1}{R}$$

eigenvector satisfies $(u^T \hat{v})^2 = 1 - \frac{1}{R^2}$