
A Mathematical Introduction to Data Science September 8, 2017

Homework 1. PCA and MDS

Instructor: Yuan Yao Due: open date

The problem below marked by ∗ is optional with bonus credits. For the experimental problem,
include the source codes which are runnable under standard settings. Since there is NO TA as-
signed for this class, homework will not be graded. But if you would like to submit your exercise,
please send your homework to the address (datascience.hw@gmail.com) with a title “CSIC5011:
Homework #”. I’ll read them and give you bonus credits.

1. PCA experiments: Take any digit data ( ‘0’,...,‘9’), or all of them, from website

http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/zip.digits/

and perform PCA experiments with Matlab or other language you are familiar:

(a) Set up data matrix X = (x1, . . . , xn) ∈ Rp×n;

(b) Compute the sample mean µ̂n and form X̃ = X − eµ̂Tn ;

(c) Compute top k SVD of X̃ = USkV
T ;

(d) Plot eigenvalue curve, i.e. i vs. λi(Σ̂n)/tr(Σ̂n) (i = 1, . . . , k), with top-k eigenvalue λi
for sample covariance matrix Σ̂n = 1

nX̃ ∗ X̃
T , which gives you explained variation of

data by principal components;

(e) Use imshow to visualize the mean and top-k principle components as left singular vectors
U = [u1, . . . , uk];

(f) For k = 1, sort the image data (xi) (i = 1, . . . , n) according to the top right singular
vectors, v1, in an ascending order;

(g) For k = 2, scatter plot (v1, v2) and select a grid on such a plane to show those images
on the grid (e.g. Figure 14.23 in book [ESL]: Elements of Statistical Learning).

(h)* You may try the parallel analysis with permutation test to see how many significant
principle components you will obtain.

2. MDS of cities: Go to the following website

http://www.geobytes.com/citydistancetool.htm

Perform the following experiment.

(a) Input a few cities (no less than 7) in your favorite, and collect the pairwise air traveling
distances shown on the website in to a matrix D;

(b) Make your own codes of Multidimensional Scaling algorithm for D;

(c) Plot the normalized eigenvalues λi/(
∑

i λi) in a descending order of magnitudes, analyze
your observations (did you see any negative eigenvalues? if yes, why?);
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(d) Make a scatter plot of those cities using top 2 or 3 eigenvectors, and analyze your
observations.

3. Positive Semi-definiteness: Recall that a n-by-n real symmetric matrix K is called positive
semi-definite (p.s.d. or K � 0) iff for every x ∈ Rn, xTKx ≥ 0.

(a) Show that K � 0 if and only if its eigenvalues are all nonnegative.

(b) Show that dij = Kii+Kjj−2Kij is a squared distance function, i.e. there exists vectors
ui, vj ∈ Rn (1 ≤ i, j ≤ n) such that dij = ‖ui − uj‖2.

(c) Let α ∈ Rn be a signed measure s.t.
∑

i αi = 1 (or eTα = 1) and Hα = I − eαT be the
Householder centering matrix. Show that Bα = −1

2HαDH
T
α � 0 for matrix D = [dij ].

(d) If A � 0 and B � 0 (A,B ∈ Rn×n), show that A + B = [Aij + Bij ]ij � 0 (elementwise
sum), and A ◦B = [AijBij ]ij � 0 (Hadamard product or elementwise product).

4. ∗Singular Value Decomposition: The goal of this exercise is to refresh your memory about
the singular value decomposition and matrix norms. A good reference to the singular value
decomposition is Chapter 2 in this book:
Matrix Computations, Golub and Van Loan, 3rd edition.

(a) Existence: Prove the existence of the singular value decomposition. That is, show that if
A is an m×n real valued matrix, then A = UΣV T , where U is m×m orthogonal matrix,
V is n×n orthogonal matrix, and Σ = diag(σ1, σ2, . . . , σp) (where p = min{m,n}) is an
m× n diagonal matrix. It is customary to order the singular values in decreasing order:
σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0. Determine to what extent the SVD is unique. (See Theorem
2.5.2, page 70 in Golub and Van Loan).

(b) Best rank-k approximation - operator norm: Prove that the “best” rank-k approximation
of a matrix in the operator norm sense is given by its SVD. That is, if A = UΣV T is the
SVD of A, then Ak = UΣkV

T (where Σk = diag(σ1, σ2, . . . , σk, 0, . . . , 0) is a diagonal
matrix containing the largest k singular values) is a rank-k matrix that satisfies

‖A−Ak‖ = min
rank(B)=k

‖A−B‖.

(Recall that the operator norm of A is ‖A‖ = max‖x‖=1 ‖Ax‖. See Theorem 2.5.3 (page
72) in Golub and Van Loan).

(c) Best rank-k approximation - Frobenius norm: Show that the SVD also provides the best
rank-k approximation for the Frobenius norm, that is, Ak = UΣkV

T satisfies

‖A−Ak‖F = min
rank(B)=k

‖A−B‖F .

(d) Schatten p-norms: A matrix norm ‖ · ‖ that satisfies

‖QAZ‖ = ‖A‖,
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for all Q and Z orthogonal matrices is called a unitarily invariant norm. The Schatten
p-norm of a matrix A is given by the `p norm (p ≥ 1) of its vector of singular values,
namely,

‖A‖p =

(∑
i

σpi

)1/p

.

Show that the Schatten p-norm is unitarily invariant. Note that the case p = 1 is
sometimes called the nuclear norm of the matrix, the case p = 2 is the Frobenius norm,
and p =∞ is the operator norm.

(e) Best rank-k approximation for unitarily invariant norms: Show that the SVD provides
the best rank-k approximation for any unitarily invariant norm. See also 7.4.51 and
7.4.52 in:
Matrix Analysis, Horn and Johnson, Cambridge University Press, 1985.

(f) Closest rotation: Given a square n× n matrix A whose SVD is A = UΣV T , show that
its closest (in the Frobenius norm) orthogonal matrix R (satisfying RRT = RTR = I)
is given by R = UV T . That is, show that

‖A− UV T ‖F = min
RRT=RTR=I

‖A−R‖F ,

where A = UΣV T . In other words, R is obtained from the SVD of A by dropping the
diagonal matrix Σ. Use this observation to conclude what is the optimal rotation that
aligns two sets of points p1, p2, . . . , pn and q1, . . . , qn in Rd, that is, find R that minimizes∑n

i=1 ‖Rpi − qi‖2. See also (the papers are posted on course website):

• [Arun87] Arun, K. S., Huang, T. S., and Blostein, S. D., “Least-squares fitting of two
3-D point sets”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 9
(5), pp. 698–700, 1987.

• [Keller75] Keller, J. B., “Closest Unitary, Orthogonal and Hermitian Operators to a
Given Operator”, Mathematics Magazine, 48 (4), pp. 192–197, 1975.

• [FanHoffman55] Fan, K. and Hoffman, A. J., “Some Metric Inequalities in the Space of
Matrices”, Proceedings of the American Mathematical Society, 6 (1), pp. 111–116, 1955.


