A Mathematical Introduction to Data Science September 8, 2017

Instructor: Yuan Yao Due: open date

Homework 1. PCA and MDS

The problem below marked by * is optional with bonus credits. For the experimental problem,
include the source codes which are runnable under standard settings. Since there is NO TA as-
signed for this class, homework will not be graded. But if you would like to submit your exercise,
please send your homework to the address (datascience.hw@gmail.com) with a title “CSIC5011:
Homework #”. T'll read them and give you bonus credits.

1. PCA experiments: Take any digit data ( ‘0’,...,'9”), or all of them, from website

http://wuw-stat.stanford.edu/ tibs/ElemStatLearn/datasets/zip.digits/

and perform PCA experiments with Matlab or other language you are familiar:

Set up data matrix X = (x1,...,xz,) € RP*";
Compute the sample mean [, and form X = X — eil;
Compute top k SVD of X = US,V7T;

Plot eigenvalue curve, i.e. i vs. A\(3,)/tr(3,) (i = 1,..., k), with top-k eigenvalue \;
for sample covariance matrix 8, = %f( + X7 which gives you explained variation of
data by principal components;

Use imshow to visualize the mean and top-k principle components as left singular vectors
U=luy,...,ul;

For k = 1, sort the image data (z;) (i = 1,...,n) according to the top right singular
vectors, v1, in an ascending order;

For k = 2, scatter plot (v1,v2) and select a grid on such a plane to show those images
on the grid (e.g. Figure 14.23 in book [ESL]: Elements of Statistical Learning).

You may try the parallel analysis with permutation test to see how many significant
principle components you will obtain.

2. MDS of cities: Go to the following website

http://wuw.geobytes.com/citydistancetool.htm

Perform the following experiment.

(a)

(b)
()

Input a few cities (no less than 7) in your favorite, and collect the pairwise air traveling
distances shown on the website in to a matrix D;

Make your own codes of Multidimensional Scaling algorithm for D;

Plot the normalized eigenvalues A;/(D_, A;) in a descending order of magnitudes, analyze
your observations (did you see any negative eigenvalues? if yes, why?);
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(d)

Make a scatter plot of those cities using top 2 or 3 eigenvectors, and analyze your
observations.

3. Positive Semi-definiteness: Recall that a n-by-n real symmetric matrix K is called positive
semi-definite (p.s.d. or K = 0) iff for every z € R™, 2T Kz > 0.

Show that K > 0 if and only if its eigenvalues are all nonnegative.

Show that d;; = K;; + Kj; — 2K;; is a squared distance function, i.e. there exists vectors
u;,v; € R™ (1 < 4,5 <n) such that d;; = ||lu; — uy|?.

Let a € R" be a signed measure s.t. >, ; =1 (or ea =1) and H, = I — ea® be the
Householder centering matrix. Show that B, = —%HQDH I~ 0 for matrix D = dij].

If A>0and B =0 (A, B € R™"), show that A+ B = [A;j + Byjlij = 0 (elementwise
sum), and A o B = [A;;B;;];; = 0 (Hadamard product or elementwise product).

4. *Singular Value Decomposition: The goal of this exercise is to refresh your memory about
the singular value decomposition and matrix norms. A good reference to the singular value
decomposition is Chapter 2 in this book:

Matriz Computations, Golub and Van Loan, 3rd edition.

(a)

(d)

Ezistence: Prove the existence of the singular value decomposition. That is, show that if
A is an m x n real valued matrix, then A = ULVT, where U is m x m orthogonal matrix,
V is n x n orthogonal matrix, and ¥ = diag(o1,02,...,0p) (where p = min{m, n}) is an
m X n diagonal matrix. It is customary to order the singular values in decreasing order:
o1 > 09 > ... > 0, > 0. Determine to what extent the SVD is unique. (See Theorem
2.5.2, page 70 in Golub and Van Loan).

Best rank-k approzimation - operator norm: Prove that the “best” rank-k approximation
of a matrix in the operator norm sense is given by its SVD. That is, if A = USV7 is the
SVD of A, then Ay = U, VT (where ¥}, = diag(o1,09,...,0%,0,...,0) is a diagonal
matrix containing the largest k singular values) is a rank-k matrix that satisfies

A= Apll= min [[A-B].
rank(B)=k

(Recall that the operator norm of A is ||A[| = max|;—; [|Az[|. See Theorem 2.5.3 (page
72) in Golub and Van Loan).

Best rank-k approzimation - Frobenius norm: Show that the SVD also provides the best
rank-k approximation for the Frobenius norm, that is, Ay = UL, V7 satisfies

|A—Agllr= min |[A— B|F.
rank(B)=k

Schatten p-norms: A matrix norm | - || that satisfies

1QAZ|| = [|All;
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for all Q and Z orthogonal matrices is called a unitarily invariant norm. The Schatten
p-norm of a matrix A is given by the ¢, norm (p > 1) of its vector of singular values,

namely,
1/p
Al = (Z af’) -

Show that the Schatten p-norm is unitarily invariant. Note that the case p = 1 is
sometimes called the nuclear norm of the matrix, the case p = 2 is the Frobenius norm,
and p = oo is the operator norm.

Best rank-k approximation for unitarily invariant norms: Show that the SVD provides
the best rank-k approximation for any unitarily invariant norm. See also 7.4.51 and
7.4.52 in:

Matriz Analysis, Horn and Johnson, Cambridge University Press, 1985.

Closest rotation: Given a square n x n matrix A whose SVD is A = ULVT, show that
its closest (in the Frobenius norm) orthogonal matrix R (satisfying RR” = RTR = I)
is given by R = UV”. That is, show that

JA=UVTp= min  |A- Rl
RRT=RTR=I
where A = UXV7”. In other words, R is obtained from the SVD of A by dropping the
diagonal matrix 3. Use this observation to conclude what is the optimal rotation that
aligns two sets of points p1,pa, ..., pn and q1, . .., gn in R, that is, find R that minimizes
S |Rpi — qil|%. See also (the papers are posted on course website):

e [Arun87] Arun, K. S., Huang, T. S., and Blostein, S. D., “Least-squares fitting of two
3-D point sets”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 9
(5), pp. 698-700, 1987.

o [Keller75] Keller, J. B., “Closest Unitary, Orthogonal and Hermitian Operators to a
Given Operator”, Mathematics Magazine, 48 (4), pp. 192-197, 1975.

e [FanHoffman55] Fan, K. and Hoffman, A. J., “Some Metric Inequalities in the Space of
Matrices”, Proceedings of the American Mathematical Society, 6 (1), pp. 111-116, 1955.



